1
|
Andreacchio G, Longo Y, Moreno Mascaraque S, Anandasothy K, Tofan S, Özün E, Wilschrey L, Ptok J, Huynh DT, Luirink J, Drexler I. Viral Vector-Based Chlamydia trachomatis Vaccines Encoding CTH522 Induce Distinct Immune Responses in C57BL/6J and HLA Transgenic Mice. Vaccines (Basel) 2024; 12:944. [PMID: 39204067 PMCID: PMC11360449 DOI: 10.3390/vaccines12080944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Chlamydia trachomatis remains a major global health problem with increasing infection rates, requiring innovative vaccine solutions. Modified Vaccinia Virus Ankara (MVA) is a well-established, safe and highly immunogenic vaccine vector, making it a promising candidate for C. trachomatis vaccine development. In this study, we evaluated two novel MVA-based recombinant vaccines expressing spCTH522 and CTH522:B7 antigens. Our results show that while both vaccines induced CD4+ T-cell responses in C57BL/6J mice, they failed to generate antigen-specific systemic CD8+ T cells. Only the membrane-anchored CTH522 elicited strong IgG2b and IgG2c antibody responses. In an HLA transgenic mouse model, both recombinant MVAs induced Th1-directed CD4+ T cell and multifunctional CD8+ T cells, while only the CTH522:B7 vaccine generated antibody responses, underscoring the importance of antigen localization. Collectively, our data indicate that distinct antigen formulations can induce different immune responses depending on the mouse strain used. This research contributes to the development of effective vaccines by highlighting the importance of careful antigen design and the selection of appropriate animal models to study specific vaccine-induced immune responses. Future studies should investigate whether these immune responses provide protection in humans and should explore different routes of immunization, including mucosal and systemic immunization.
Collapse
Affiliation(s)
- Giuseppe Andreacchio
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Ylenia Longo
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Sara Moreno Mascaraque
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Kartikan Anandasothy
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Sarah Tofan
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Esma Özün
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Lena Wilschrey
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Johannes Ptok
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Dung T. Huynh
- R&D Department, Abera Bioscience AB, 75184 Uppsala, Sweden
| | - Joen Luirink
- R&D Department, Abera Bioscience AB, 75184 Uppsala, Sweden
| | - Ingo Drexler
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| |
Collapse
|
2
|
Pagliarani S, Johnston SD, Beagley KW, Palmieri C. Immunohistochemical characterization of the immune cell response during chlamydial infection in the male and female koala ( Phascolarctos cinereus) reproductive tract. Vet Pathol 2024; 61:621-632. [PMID: 38240274 PMCID: PMC11264539 DOI: 10.1177/03009858231225499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Chlamydiosis is one of the main causes of the progressive decline of koala populations in eastern Australia. While histologic, immunologic, and molecular studies have provided insights into the basic function of the koala immune system, the in situ immune cell signatures during chlamydial infection of the reproductive tract in koalas have not been investigated. Thirty-two female koalas and 47 males presented to wildlife hospitals with clinical signs suggestive of Chlamydia infection were euthanized with the entire reproductive tract collected for histology; immunohistochemistry (IHC) for T-cell (CD3ε, CD4, and CD8α), B-cell (CD79b), and human leukocyte antigen (HLA)-DR markers; and quantitative real-time polymerase chain reaction (rtPCR) for Chlamydia pecorum. T-cells, B-cells, and HLA-DR-positive cells were observed in both the lower and upper reproductive tracts of male and female koalas with a statistically significant associations between the degree of the inflammatory reaction; the number of CD3, CD4, CD79b, and HLA-DR positive cells; and the PCR load. CD4-positive cells were negatively associated with the severity of the gross lesions. The distribution of immune cells was also variable according to the location within the genital tract in both male and female koalas. These preliminary results represent a step forward towards further exploring mechanisms behind chlamydial infection immunopathogenesis, thus providing valuable information about the immune response and infectious diseases in free-ranging koalas.
Collapse
Affiliation(s)
- Sara Pagliarani
- The University of Queensland, Gatton, QLD, Australia
- University of Guelph, Guelph, ON, Canada
| | | | | | | |
Collapse
|
3
|
The dual role of cytokine responses to Chlamydia trachomatis infection in host pathogen crosstalk. Microb Pathog 2022; 173:105812. [DOI: 10.1016/j.micpath.2022.105812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
4
|
Pedraza L, Camargo M, Moreno-Pérez DA, Sánchez R, Del Río-Ospina L, Báez-Murcia IM, Patarroyo ME, Patarroyo MA. Identifying HLA DRB1-DQB1 alleles associated with Chlamydia trachomatis infection and in silico prediction of potentially-related peptides. Sci Rep 2021; 11:12837. [PMID: 34145318 PMCID: PMC8213839 DOI: 10.1038/s41598-021-92294-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
HLA class II (HLA-II) genes' polymorphism influences the immune response to Chlamydia trachomatis (Ct), it is considered a sexually transmitted infection. However, associations between HLA-II alleles and Ct-infection have been little explored in humans; this study was thus aimed at determining HLA-DRB1-DQB1 alleles/haplotypes' effect on Ct-infection outcome in a cohort of Colombian women. Cervical sample DNA was used as template for detecting Ct by PCR and typing HLA-DRB1-DQB1 alleles/haplotypes by Illumina MiSeq sequencing. Survival models were adjusted for identifying the alleles/haplotypes' effect on Ct-outcome; bioinformatics tools were used for predicting secreted bacterial protein T- and B-cell epitopes. Sixteen HLA-DRB1 alleles having a significant effect on Ct-outcome were identified in the 262 women analysed. DRB1*08:02:01G and DRB1*12:01:01G were related to infection-promoting events. Only the DQB1*05:03:01G allele related to clearance/persistence events was found for HLA-DQB1. HLA-DRB1 allele homozygous women were associated with events having a lower probability of clearance and/or early occurrence of persistence. Twenty-seven peptides predicted in silico were associated with protective immunity against Ct; outer membrane and polymorphic membrane protein-derived peptides had regions having dual potential for being T- or B-cell epitopes. This article describes HLA-DRB1-DQB1 alleles/haplotypes related to Ct-infection resolution and the peptides predicted in silico which might probably be involved in host immune response. The data provides base information for developing future studies leading to the development of effective prevention measures against Ct-infection.
Collapse
Affiliation(s)
- Leidy Pedraza
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
- MSc Programme in Microbiology, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia
| | - Milena Camargo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), 111166, Bogotá D.C., Colombia
| | - Darwin A Moreno-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), 111166, Bogotá D.C., Colombia
| | - Ricardo Sánchez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia
| | - Luisa Del Río-Ospina
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
| | - Indira M Báez-Murcia
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
| | - Manuel E Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, 110231, Bogotá D.C., Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia.
- Faculty of Medicine, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia.
- Health Sciences Division, Main Campus, Universidad Santo Tomás, 110231, Bogotá D.C., Colombia.
| |
Collapse
|
5
|
Poli-Neto OB, Carlos D, Favaretto A, Rosa-E-Silva JC, Meola J, Tiezzi D. Eutopic endometrium from women with endometriosis and chlamydial endometritis share immunological cell types and DNA repair imbalance: A transcriptome meta-analytical perspective. J Reprod Immunol 2021; 145:103307. [PMID: 33725527 DOI: 10.1016/j.jri.2021.103307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/03/2021] [Accepted: 03/01/2021] [Indexed: 12/21/2022]
Abstract
The aim of this study was to identify the key similarities between the eutopic endometrium of women with endometriosis and chlamydia-induced endometritis taking into account tissue microenvironment heterogeneity, transcript gene profile, and enriched pathways. A meta-analysis of whole transcriptome microarrays was performed using publicly available data, including samples containing both glandular and stromal endometrial components. Control samples were obtained from women without any reported pathological condition. Only samples obtained during the proliferative menstrual phase were included. Cellular tissue heterogeneity was predicted using a method that integrates gene set enrichment and deconvolution approaches. The batch effect was estimated by principal variant component analysis and removed using an empirical Bayes method. Differentially expressed genes were identified using an adjusted p-value < 0.05 and fold change = 1.5. The protein-protein interaction network was built using the STRING database and interaction score over 400. The Molecular Signatures Database was used to analyse the functional enrichment analysis. Both conditions showed similarities in cell types in the microenvironment, particularly CD4+ and CD8+ Tem cells, NKT cells, Th2 cells, basophils, and eosinophils. With regards to the regulation of cellular senescence and DNA integrity/damage checkpoint, which are commonly enriched pathways, 21 genes were down-regulated and directly related to DNA repair. Compared to the endometriosis samples, some chlamydial endometritis samples presented a lack of enriched immune pathways. Our results suggest that both conditions show similar distributions of microenvironment cell types, the downregulation of genes involved in DNA repair and cell cycle control, and pathways involved in immune response evasion.
Collapse
Affiliation(s)
- Omero Benedicto Poli-Neto
- Gynecological and Obstetrics Department, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil.
| | - Daniela Carlos
- Biochemistry and Immunology Department, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Aureo Favaretto
- Gynecological and Obstetrics Department, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Julio Cesar Rosa-E-Silva
- Gynecological and Obstetrics Department, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Juliana Meola
- Gynecological and Obstetrics Department, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Daniel Tiezzi
- Gynecological and Obstetrics Department, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| |
Collapse
|
6
|
Kohn M, Lanfermann C, Laudeley R, Glage S, Rheinheimer C, Klos A. Complement and Chlamydia psittaci: Non-Myeloid-Derived C3 Predominantly Induces Protective Adaptive Immune Responses in Mouse Lung Infection. Front Immunol 2021; 12:626627. [PMID: 33746963 PMCID: PMC7969653 DOI: 10.3389/fimmu.2021.626627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Recent advances in complement research have revolutionized our understanding of its role in immune responses. The immunomodulatory features of complement in infections by intracellular pathogens, e.g., viruses, are attracting increasing attention. Thereby, local production and activation of complement by myeloid-derived cells seem to be crucial. We could recently show that C3, a key player of the complement cascade, is required for effective defense against the intracellular bacterium Chlamydia psittaci. Avian zoonotic strains of this pathogen cause life-threatening pneumonia with systemic spread in humans; closely related non-avian strains are responsible for less severe diseases of domestic animals with economic loss. To clarify how far myeloid- and non-myeloid cell-derived complement contributes to immune response and resulting protection against C. psittaci, adoptive bone marrow transfer experiments focusing on C3 were combined with challenge experiments using a non-avian (BSL 2) strain of this intracellular bacterium. Surprisingly, our data prove that for C. psittaci-induced pneumonia in mice, non-myeloid-derived, circulating/systemic C3 has a leading role in protection, in particular on the development of pathogen-specific T- and B- cell responses. In contrast, myeloid-derived and most likely locally produced C3 plays only a minor, mainly fine-tuning role. The work we present here describes authentic, although less pronounced, antigen directed immune responses.
Collapse
Affiliation(s)
- Martin Kohn
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Christian Lanfermann
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Robert Laudeley
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Medical School Hannover, Hannover, Germany
| | - Claudia Rheinheimer
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Andreas Klos
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| |
Collapse
|
7
|
Talepoor AG, Fouladseresht H, Khosropanah S, Doroudchi M. Immune-Inflammation in Atherosclerosis: A New Twist in an Old Tale. Endocr Metab Immune Disord Drug Targets 2020; 20:525-545. [DOI: 10.2174/1871530319666191016095725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/26/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022]
Abstract
Background and Objective:Atherosclerosis, a chronic and progressive inflammatory disease, is triggered by the activation of endothelial cells followed by infiltration of innate and adaptive immune cells including monocytes and T cells in arterial walls. Major populations of T cells found in human atherosclerotic lesions are antigen-specific activated CD4+ effectors and/or memory T cells from Th1, Th17, Th2 and Treg subsets. In this review, we will discuss the significance of T cell orchestrated immune inflammation in the development and progression of atherosclerosis.Discussion:Pathogen/oxidative stress/lipid induced primary endothelial wound cannot develop to a full-blown atherosclerotic lesion in the absence of chronically induced inflammation. While the primary inflammatory response might be viewed as a lone innate response, the persistence of such a profound response over time must be (and is) associated with diverse local and systemic T cell responses. The interplay between T cells and innate cells contributes to a phenomenon called immuneinflammation and has an impact on the progression and outcome of the lesion. In recent years immuneinflammation, an old term, has had a comeback in connecting the puzzle pieces of chronic inflammatory diseases.Conclusion:Taking one-step back and looking from afar at the players of immune-inflammation may help us provide a broader perspective of these complicated interactions. This may lead to the identification of new drug targets and the development of new therapies as well as preventative measures.
Collapse
Affiliation(s)
- Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahdad Khosropanah
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Sun Z, Sun Y, Li Y, Luan X, Chen H, Wu H, Peng B, Lu C. Identification of HeLa cell proteins that interact with Chlamydia trachomatis glycogen synthase using yeast two‑hybrid assays. Mol Med Rep 2020; 21:1572-1580. [PMID: 32016474 PMCID: PMC7003024 DOI: 10.3892/mmr.2020.10947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
Chlamydia trachomatis (C. trachomatis) is the leading cause of bacterial sexually transmitted diseases and infectious diseases that cause blindness. The pathophysiology of chlamydial infections is poorly understood, but secreted proteins have emerged as key virulence factors. C. trachomatis glycogen synthase (GlgA) is a chlamydial secretory protein, which localizes in the lumen of chlamydial inclusion bodies and the cytosol of host cells. In order to improve understanding of the roles of GlgA in chlamydial pathogenesis, four proteins that interact with GlgA, Homo sapiens CXXC finger protein 1, prohibitin (PHB), gelsolin-like actin-capping protein and apolipoprotein A-I binding protein were identified using yeast two-hybrid assays. The functions of these proteins are complex, and preliminary results suggested that PHB interacts with GlgA. However, further studies are required to determine the specific interactions of these proteins with GlgA. The findings of the present study may provide a direction and foundation for future studies focusing on the mechanism of GlgA in C. trachomatis infection.
Collapse
Affiliation(s)
- Zhenjie Sun
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuhui Sun
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yumeng Li
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiuli Luan
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hui Chen
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Haiying Wu
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Bo Peng
- Department of Pathology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Chunxue Lu
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
9
|
Chlamydia and Its Many Ways of Escaping the Host Immune System. J Pathog 2019; 2019:8604958. [PMID: 31467721 PMCID: PMC6699355 DOI: 10.1155/2019/8604958] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
The increasing number of new cases of Chlamydia infection worldwide may be attributed to the pathogen's ability to evade various host immune responses. Summarized here are means of evasion utilized by Chlamydia enabling survival in a hostile host environment. The pathogen's persistence involves a myriad of molecular interactions manifested in a variety of ways, e.g., formation of membranous intracytoplasmic inclusions and cytokine-induced amino acid synthesis, paralysis of phagocytic neutrophils, evasion of phagocytosis, inhibition of host cell apoptosis, suppression of antigen presentation, and induced expression of a check point inhibitor of programmed host cell death. Future studies could focus on the targeting of these molecules associated with immune evasion, thus limiting the spread and tissue damage caused by this pathogen.
Collapse
|
10
|
Thema N, Tshilwane S, Son L, Smith R, Faber F, Steyn H, van Kleef M, Liebenberg J, Pretorius A. Ehrlichia ruminantium antigens and peptides induce cytotoxic T cell responses in vitro. Vet Immunol Immunopathol 2019; 207:1-9. [DOI: 10.1016/j.vetimm.2018.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/25/2018] [Accepted: 11/18/2018] [Indexed: 01/31/2023]
|
11
|
Inic-Kanada A, Stojanovic M, Marinkovic E, Becker E, Stein E, Lukic I, Djokic R, Schuerer N, Hegemann JH, Barisani-Asenbauer T. A Probiotic Adjuvant Lactobacillus rhamnosus Enhances Specific Immune Responses after Ocular Mucosal Immunization with Chlamydial Polymorphic Membrane Protein C. PLoS One 2016; 11:e0157875. [PMID: 27636704 PMCID: PMC5026373 DOI: 10.1371/journal.pone.0157875] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/06/2016] [Indexed: 11/19/2022] Open
Abstract
Recent advances in the development of chlamydia vaccines, using live-attenuated or ultraviolet light-inactivated chlamydia, are paving the way for new possibilities to oppose the societal challenges posed by chlamydia-related diseases, such as blinding trachoma. An effective subunit vaccine would mitigate the risks associated with the use of a whole-cell vaccine. Our rationale for the design of an efficient subunit vaccine against Chlamydia trachomatis (Ct) is based on the membrane proteins involved in the initial Ct-host cell contact and on the route of immunization that mimics the natural infection process (i.e., via the ocular mucosa). The first aim of our study was to characterize the specific conjunctival and vaginal immune responses following eye drop immunization in BALB/c mice, using the N-terminal portion of the Ct serovar E polymorphic membrane protein C (N-PmpC) as the subunit vaccine antigen. Second, we aimed to examine the adjuvant properties of the probiotic Lactobacillus rhamnosus (LB) when formulated with N-PmpC. N-PmpC applied alone stimulated the production of N-PmpC- and Ct serovar B-specific antibodies in serum, tears and vaginal washes, whereas the combination with LB significantly enhanced these responses. The N-PmpC/LB combination initiated a T cell response characterized by an elevated percentage of CD25+ T cells and CD8+ effector T cells, enhanced CD4+ T-helper 1 skewing, and increased regulatory T cell responses. Together, these results show that eye drop vaccination with combined use of N-PmpC and a live probiotic LB stimulates specific cellular and humoral immune responses, not only locally in the conjunctiva but also in the vaginal mucosa, which could be a promising approach in Ct vaccine development.
Collapse
Affiliation(s)
- Aleksandra Inic-Kanada
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marijana Stojanovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Emilija Marinkovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Elisabeth Becker
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Gebäude 25.02.U1, 40225, Düsseldorf, Germany
| | - Elisabeth Stein
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ivana Lukic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Radmila Djokic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Nadine Schuerer
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes H. Hegemann
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Gebäude 25.02.U1, 40225, Düsseldorf, Germany
| | - Talin Barisani-Asenbauer
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
12
|
Genital Chlamydia trachomatis: understanding the roles of innate and adaptive immunity in vaccine research. Clin Microbiol Rev 2016; 27:346-70. [PMID: 24696438 DOI: 10.1128/cmr.00105-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted disease worldwide, and despite significant advances in chlamydial research, a prophylactic vaccine has yet to be developed. This Gram-negative obligate intracellular bacterium, which often causes asymptomatic infection, may cause pelvic inflammatory disease (PID), ectopic pregnancies, scarring of the fallopian tubes, miscarriage, and infertility when left untreated. In the genital tract, Chlamydia trachomatis infects primarily epithelial cells and requires Th1 immunity for optimal clearance. This review first focuses on the immune cells important in a chlamydial infection. Second, we summarize the research and challenges associated with developing a chlamydial vaccine that elicits a protective Th1-mediated immune response without inducing adverse immunopathologies.
Collapse
|
13
|
Poston TB, Darville T. Chlamydia trachomatis: Protective Adaptive Responses and Prospects for a Vaccine. Curr Top Microbiol Immunol 2016; 412:217-237. [PMID: 27033698 DOI: 10.1007/82_2016_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chlamydia trachomatis is the most common cause of sexually transmitted bacterial infection globally. These infections translate to a significant public health burden, particularly women's healthcare costs due to serious disease sequelae such as pelvic inflammatory disease (PID), tubal factor infertility, chronic pelvic pain, and ectopic pregnancy. There is no evidence that natural immunity can provide complete, long-term protection necessary to prevent chronic pathology, making human vaccine development critical. Vaccine design will require careful consideration of protective versus pathological host-response mechanisms in concert with elucidation of optimal antigens and adjuvants. Evidence suggests that a Th1 response, facilitated by IFN-γ-producing CD4 T cells, will be instrumental in generating long-term, sterilizing immunity. Although the role of antibodies is not completely understood, they have exhibited a protective effect by enhancing chlamydial clearance. Future work will require investigation of broadly neutralizing antibodies and antibody-augmented cellular immunity to successfully design a vaccine that potently elicits both arms of the immune response. Sterilizing immunity is the ultimate goal. However, vaccine-induced partial immunity that prevents upper genital tract infection and inflammation would be cost-effective compared to current screening and treatment strategies. In this chapter, we examine evidence from animal and human studies demonstrating protective adaptive immune responses to Chlamydia and discuss future challenges and prospects for vaccine development.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Jansen ME, Branković I, Spaargaren J, Ouburg S, Morré SA. Potential protective effect of a G>A SNP in the 3'UTR of HLA-A for Chlamydia trachomatis symptomatology and severity of infection. Pathog Dis 2015; 74:ftv116. [PMID: 26656886 DOI: 10.1093/femspd/ftv116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 11/13/2022] Open
Abstract
The interindividual differences in response to Chlamydia trachomatis (CT) infections are for an important part based on the differences in our host genetic make-up. In the past, several genes and pathways have been identified and linked to protection against or risk for CT infection (i.e. susceptibility), and/or the severity of infection, with a major emphasis on the development of tubal pathology, one of the main causes of female infertility. In the current study, we analyzed in Dutch Caucasian women whether the carriage of HLA-A G>A SNP (rs1655900) was related to the susceptibility of CT infection in a STD cohort (n = 329) and to the severity of infection in a subfertility cohort (n = 482). We also investigated if this A-allele was linked to increase in severity of symptoms, from mild symptoms (lower genital infection) to lower abdominal pain (upper genital tract infection) to the most severe late complication of tubal pathology, including double-sided tubal pathology. We showed that the carriage of HLA-A SNP rs1655900 studied is not associated with the susceptibility to CT infection based on the data from the STD cohort, but might be protective to the development of late complications (p = 0.0349), especially tubal pathology could be relevant.
Collapse
Affiliation(s)
- Marleen E Jansen
- Institute for Public Health Genomics, Department of Genetics and Cell Biology, School for Oncology and Developmental Biology (GROW), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Ivan Branković
- Institute for Public Health Genomics, Department of Genetics and Cell Biology, School for Oncology and Developmental Biology (GROW), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD, Maastricht, the Netherlands Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Joke Spaargaren
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Sander Ouburg
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Servaas A Morré
- Institute for Public Health Genomics, Department of Genetics and Cell Biology, School for Oncology and Developmental Biology (GROW), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD, Maastricht, the Netherlands Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Enhanced Direct Major Histocompatibility Complex Class I Self-Antigen Presentation Induced by Chlamydia Infection. Infect Immun 2015; 84:480-90. [PMID: 26597986 DOI: 10.1128/iai.01254-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022] Open
Abstract
The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8(+) cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8(+) T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8(+) killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins.
Collapse
|
16
|
Redgrove KA, McLaughlin EA. The Role of the Immune Response in Chlamydia trachomatis Infection of the Male Genital Tract: A Double-Edged Sword. Front Immunol 2014; 5:534. [PMID: 25386180 PMCID: PMC4209867 DOI: 10.3389/fimmu.2014.00534] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/09/2014] [Indexed: 01/16/2023] Open
Abstract
Chlamydia trachomatis (CT) is the most prevalent bacterial sexually transmitted infection in the world, with more than 100 million cases reported annually. While there have been extensive studies into the adverse effects that CT infection has on the female genital tract, and on the subsequent ability of these women to conceive, studies into the consequences on male fertility have been limited and controversial. This is in part due to the asymptomatic nature of the infection, where it is estimated that 50% of men with Chlamydia fail to show any symptoms. It is accepted, however, that acute and/or persistent CT infection is the causative agent for conditions such as urethritis, epididymitis, epididymo-orchitis, and potentially prostatitis. As with most infections, the immune system plays a fundamental role in the body’s attempts to eradicate the infection. The first and most important immune response to Chlamydia infection is a local one, whereby immune cells such as leukocytes are recruited to the site of infections, and subsequently secrete pro-inflammatory cytokines and chemokines such as interferon gamma. Immune cells also work to initiate and potentiate chronic inflammation through the production of reactive oxygen species (ROS), and the release of molecules with degradative properties including defensins, elastase, collagenase, cathespins, and lysozyme. This long-term inflammation can lead to cell proliferation (a possible precursor to cancer), tissue remodeling, and scarring, as well as being linked to the onset of autoimmune responses in genetically disposed individuals. This review will focus on the ability of the immune system to recognize and clear acute and persistent chlamydial infections in the male genital tract, and on the paradoxical damage that chronic inflammation resulting from the infection can cause on the reproductive health of the individual.
Collapse
Affiliation(s)
- Kate A Redgrove
- Priority Research Centre in Reproductive Biology and Chemical Biology, University of Newcastle , Callaghan, NSW , Australia ; School of Environmental and Life Science, University of Newcastle , Callaghan, NSW , Australia
| | - Eileen A McLaughlin
- Priority Research Centre in Reproductive Biology and Chemical Biology, University of Newcastle , Callaghan, NSW , Australia ; School of Environmental and Life Science, University of Newcastle , Callaghan, NSW , Australia
| |
Collapse
|
17
|
Yamasaki M, Araki K, Nakanishi T, Nakayasu C, Yamamoto A. Role of CD4(+) and CD8α(+) T cells in protective immunity against Edwardsiella tarda infection of ginbuna crucian carp, Carassius auratus langsdorfii. FISH & SHELLFISH IMMUNOLOGY 2014; 36:299-304. [PMID: 24316500 DOI: 10.1016/j.fsi.2013.11.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/09/2013] [Accepted: 11/26/2013] [Indexed: 06/02/2023]
Abstract
Edwardsiella tarda is an intracellular pathogen that causes edwardsiellosis in fish. Our previous study suggests that cell-mediated immunity (CMI) plays an essential role in protection against E. tarda infection. In the present study, we adoptively transferred T-cell subsets sensitized with E. tarda to isogenic naïve ginbuna crucian carp to determination the T-cell subsets involved in protecting fish from E. tarda infection. Recipients of CD4(+) and CD8α(+) cells acquired significant resistance to infection with E. tarda 8 days after sensitization, indicating that helper T cells and cytotoxic T lymphocytes plays crucial roles in protective immunity to E. tarda. Moreover, transfer of sensitized CD8α(+) cells up-regulated the expression of genes encoding interferon-γ (IFN-γ) and perforin, suggesting that protective immunity to E. tarda involves cell-mediated cytotoxicity and interferon-γ-mediated induction of CMI. The results establish that CMI plays a crucial role in immunity against E. tarda. These findings provide novel insights into understanding the role of CMI to intracellular pathogens of fish.
Collapse
Affiliation(s)
- Masatoshi Yamasaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-8580, Japan
| | - Kyosuke Araki
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima 890-0056, Japan.
| | - Teruyuki Nakanishi
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Chihaya Nakayasu
- National Research Institute of Aquaculture, Fisheries Research Agency, Minami-ise, Mie 516-0193, Japan
| | - Atsushi Yamamoto
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima 890-0056, Japan
| |
Collapse
|
18
|
MDR-selective microbial-based therapy: a novel approach to cancer treatment. Med Hypotheses 2013; 81:207-11. [PMID: 23719029 DOI: 10.1016/j.mehy.2013.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/23/2013] [Accepted: 05/02/2013] [Indexed: 12/15/2022]
Abstract
Microbial-based therapy of cancer is one of the earliest non-surgical anticancer therapies. The main limitation of such therapies is the toxicity of the therapeutic dose. This article discusses a novel approach that exploits cancer multidrug resistance (MDR) to provide a safer microbial-based therapy. As multidrug resistant cells can only contain limited amounts of a variety of susceptible drugs including certain antibiotics, we can take advantage of MDR to create a micro-environment (antibiotic free) that favors growth of intracellular bacteria within cancer cells. Thus, this approach targets cancer cells and spares normal cells (shielded by antibiotic): providing a more selective thus safer anticancer treatment. This article also explores the potentials of Chlamydia pneumoniae as an anti-cancer agent in this MDR-selective microbial-based therapy: its unique life cycle and the immune response to its infection suggest that it could be used directly, in the proposed approach, without any pre-requirements.
Collapse
|
19
|
Yamasaki M, Araki K, Nakanishi T, Nakayasu C, Yoshiura Y, Iida T, Yamamoto A. Adaptive immune response to Edwardsiella tarda infection in ginbuna crucian carp, Carassius auratus langsdorfii. Vet Immunol Immunopathol 2013; 153:83-90. [DOI: 10.1016/j.vetimm.2013.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/24/2013] [Accepted: 02/07/2013] [Indexed: 12/24/2022]
|
20
|
Manam S, Nicholson BJ, Murthy AK. OT-1 mice display minimal upper genital tract pathology following primary intravaginal Chlamydia muridarum infection. Pathog Dis 2013; 67:221-4. [PMID: 23620186 PMCID: PMC3641702 DOI: 10.1111/2049-632x.12032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 01/24/2023] Open
Abstract
Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide and leads to serious pathological sequelae in the upper genital tract (UGT) including pelvic inflammatory disease, ectopic pregnancy, and infertility. Several components of the host immune responses have been shown to contribute to the UGT pathology following genital chlamydial infection. We have shown recently that CD8(+) T cells induce the chlamydial UGT pathology via the production of TNF-α. However, those studies did not determine whether the pathology is mediated by bystander or antigen-specific CD8(+) T cells. In this study, we compared chlamydial clearance and UGT pathology in OT-1 transgenic mice and the corresponding C57BL/6J wild-type mice following primary intravaginal Chlamydia muridarum infection. All CD8(+) T cells in the OT-1 mice respond only to the Ova 257-264 peptide and are incapable of responding to other antigenic epitopes including those of Chlamydia. OT-1 mice displayed vaginal chlamydial clearance comparable to the wild-type animals. However, both oviduct and uterine horn pathology were minimal in the OT-1 mice compared with the high degree of pathology observed in the wild-type animals. These results strongly suggest that Chlamydia-specific, not bystander, CD8(+) T cells mediate the UGT pathological sequelae following genital chlamydial infection.
Collapse
Affiliation(s)
- Srikanth Manam
- Department of Pathology, Midwestern University, Downers Grove, IL 60515, USA
| | | | | |
Collapse
|
21
|
Picard MD, Cohane KP, Gierahn TM, Higgins DE, Flechtner JB. High-throughput proteomic screening identifies Chlamydia trachomatis antigens that are capable of eliciting T cell and antibody responses that provide protection against vaginal challenge. Vaccine 2012; 30:4387-93. [PMID: 22682294 DOI: 10.1016/j.vaccine.2012.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 12/24/2011] [Accepted: 01/06/2012] [Indexed: 11/20/2022]
Abstract
A comprehensive proteomic screening technology was previously used to characterize T cell responses to Chlamydia trachomatis infection. In this study, we demonstrated that T cells specific for protein antigens identified through this comprehensive technology home to the site of infection after mucosal challenge with C. trachomatis. In addition, T cell responses to these proteins were elicited in multiple genetic backgrounds. Two protein antigens, CT823 and CT144, were evaluated as vaccine candidates. When administered with AbISCO-100 adjuvant, these antigens stimulated potent CD8(+) T cell responses, polyfunctional T(H)1-polarized CD4(+) T cell responses, and high titer protein-specific T(H)1-skewed antibody responses. Vaccination with either antigen with AbISCO-100 provided long-lived protection against intravaginal challenge with C. trachomatis. Adoptive transfer of immune T cells also conferred protection in the challenge model whereas passive transfer of immune serum did not, indicating the critical role for T cell responses in control of this infection. The ability of these antigens to induce potent immune responses and provide long-lived protection in response to challenge provides a basis for the rational design of a C. trachomatis subunit vaccine.
Collapse
Affiliation(s)
- Michele D Picard
- Genocea Biosciences, Inc., 161 First Street, Cambridge, MA 02142, United States
| | | | | | | | | |
Collapse
|
22
|
Sixt BS, Hiess B, König L, Horn M. Lack of effective anti-apoptotic activities restricts growth of Parachlamydiaceae in insect cells. PLoS One 2012; 7:e29565. [PMID: 22253735 PMCID: PMC3253803 DOI: 10.1371/journal.pone.0029565] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/30/2011] [Indexed: 12/02/2022] Open
Abstract
The fundamental role of programmed cell death in host defense is highlighted by the multitude of anti-apoptotic strategies evolved by various microbes, including the well-known obligate intracellular bacterial pathogens Chlamydia trachomatis and Chlamydia (Chlamydophila) pneumoniae. As inhibition of apoptosis is assumed to be essential for a successful infection of humans by these chlamydiae, we analyzed the anti-apoptotic capacity of close relatives that occur as symbionts of amoebae and might represent emerging pathogens. While Simkania negevensis was able to efficiently replicate within insect cells, which served as model for metazoan-derived host cells, the Parachlamydiaceae (Parachlamydia acanthamoebae and Protochlamydia amoebophila) displayed limited intracellular growth, yet these bacteria induced typical features of apoptotic cell death, including formation of apoptotic bodies, nuclear condensation, internucleosomal DNA fragmentation, and effector caspase activity. Induction of apoptosis was dependent on bacterial activity, but not bacterial de novo protein synthesis, and was detectable already at very early stages of infection. Experimental inhibition of host cell death greatly enhanced parachlamydial replication, suggesting that lack of potent anti-apoptotic activities in Parachlamydiaceae may represent an important factor compromising their ability to successfully infect non-protozoan hosts. These findings highlight the importance of the evolution of anti-apoptotic traits for the success of chlamydiae as pathogens of humans and animals.
Collapse
Affiliation(s)
- Barbara S. Sixt
- Department of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Birgit Hiess
- Department of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Lena König
- Department of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Matthias Horn
- Department of Microbial Ecology, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
23
|
|
24
|
Blanchard N, Shastri N. Cross-presentation of peptides from intracellular pathogens by MHC class I molecules. Ann N Y Acad Sci 2010; 1183:237-50. [PMID: 20146719 DOI: 10.1111/j.1749-6632.2009.05135.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Many prokaryotic and eukaryotic parasites multiply in specialized subcellular niches in the host cell. The invading microbes hijack key cellular functions to establish the intracellular niches but, unlike viruses, do not need the protein synthesis machinery of host cells to replicate. Circulating CD8+ T cells provide protective immunity by recognizing pathogen-derived peptide major histocompatibility complex class I molecules (pMHC I) expressed by infected cells. Here, we review studies on the complex and varied pathways that produce the appropriate pMHC I as ligands for the CD8+ T cells. We also discuss possible explanations for the curious observations that CD8+ T cells are specific for fewer pMHC I ligands in parasite infections compared to the diversity of pMHC I ligands in viral infections.
Collapse
Affiliation(s)
- Nicolas Blanchard
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA.
| | | |
Collapse
|