1
|
Andrade RS, Faria AR, Andrade HM, de Sousa Bueno Filho JS, Mansur HS, Mansur AAP, Lage AP, Dorneles EMS. Use of recombinant malate dehydrogenase (MDH) and superoxide dismutase (SOD) [CuZn] as antigens in indirect ELISA for diagnosis of bovine brucellosis. J Microbiol Methods 2024; 217-218:106874. [PMID: 38101579 DOI: 10.1016/j.mimet.2023.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
The objective of this study was to validate an indirect enzyme-linked immunoassay (iELISA) using the recombinant proteins, malate dehydrogenase (MDH) and superoxide dismutase (SOD) [CuZn], as antigens and to evaluate its ability to discriminate antibodies produced by vaccination from those induced by infection in the diagnosis of bovine brucellosis. Sera from six groups were evaluated: G1 - culture-positive animals (52 serum samples) (naturally infected); G2 - non-vaccinated animals (28 serum samples) positive in RBT (Rose Bengal test) and 2ME (2-mercaptoethanol test) selected from brucellosis-positive herds; G3 - animals from a brucellosis-free area (32 serum samples); G4 - S19 vaccinated heifers (114 serum samples); G5 - RB51 vaccinated heifers (60 serum samples); G6 - animals inoculated with inactivated Yersinia enterocolitica O:9 (42 serum samples). Diagnostic sensitivity (DSe) and diagnostic specificity (DSp) were estimated using the frequentist approach and the confidence interval (CI) (95%) calculated by the Clopper-Pearson (exact) method. The DSe for iELISA_MDH in the G1 group was 71.7% (CI 95%: 57.6-83.2%) and for the G2 100.0% (CI 95%: 87.7-100.0%), whereas the DSp was 84.4% in the G3 (CI 95%: 67.2-94.7%). For the iELISA_SOD the DSe was estimated 67.3% for the G1 (CI 95%: 52.9-79.7%) and 71.4% for G2 (CI 95%: 51.3-86.8%), while the DSp for G3 was 87.5% (CI 95%: 71.0-96.5%). iELISA_MDH and iELISA_SOD showed potential to be used in the diagnosis of infected animals, increasing the range of serological tests available for the diagnosis of bovine brucellosis, with the advantage of being S-LPS-free. However, none of the tests could differentiate between infection and vaccination.
Collapse
Affiliation(s)
- Rafaella Silva Andrade
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Angélica Rosa Faria
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Hélida Monteiro Andrade
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Herman Sander Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alexandra Ancelmo Piscitelli Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andrey Pereira Lage
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine Maria Seles Dorneles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Fang X, Kang L, Qiu YF, Li ZS, Bai Y. Yersinia enterocolitica in Crohn’s disease. Front Cell Infect Microbiol 2023; 13:1129996. [PMID: 36968108 PMCID: PMC10031030 DOI: 10.3389/fcimb.2023.1129996] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Increasing attention is being paid to the unique roles gut microbes play in both physiological and pathological processes. Crohn’s disease (CD) is a chronic, relapsing, inflammatory disease of the gastrointestinal tract with unknown etiology. Currently, gastrointestinal infection has been proposed as one initiating factor of CD. Yersinia enterocolitica, a zoonotic pathogen that exists widely in nature, is one of the most common bacteria causing acute infectious gastroenteritis, which displays clinical manifestations similar to CD. However, the specific role of Y. enterocolitica in CD is controversial. In this Review, we discuss the current knowledge on how Y. enterocolitica and derived microbial compounds may link to the pathogenesis of CD. We highlight examples of Y. enterocolitica-targeted interventions in the diagnosis and treatment of CD, and provide perspectives for future basic and translational investigations on this topic.
Collapse
Affiliation(s)
| | | | | | | | - Yu Bai
- *Correspondence: Zhao-Shen Li, ; Yu Bai,
| |
Collapse
|
3
|
Site-specific ubiquitination of MLKL targets it to endosomes and targets Listeria and Yersinia to the lysosomes. Cell Death Differ 2022; 29:306-322. [PMID: 34999730 PMCID: PMC8816944 DOI: 10.1038/s41418-021-00924-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Phosphorylation of the pseudokinase mixed lineage kinase domain-like protein (MLKL) by the protein kinase RIPK3 targets MLKL to the cell membrane, where it triggers necroptotic cell death. We report that conjugation of K63-linked polyubiquitin chains to distinct lysine residues in the N-terminal HeLo domain of phosphorylated MLKL (facilitated by the ubiquitin ligase ITCH that binds MLKL via a WW domain) targets MLKL instead to endosomes. This results in the release of phosphorylated MLKL within extracellular vesicles. It also prompts enhanced endosomal trafficking of intracellular bacteria such as Listeria monocytogenes and Yersinia enterocolitica to the lysosomes, resulting in decreased bacterial yield. Thus, MLKL can be directed by specific covalent modifications to differing subcellular sites, whence it signals either for cell death or for non-deadly defense mechanisms.
Collapse
|
4
|
Uğurlu Ö, Evran S. Bimolecular fluorescence complementation assay to explore protein-protein interactions of the Yersinia virulence factor YopM. Biochem Biophys Res Commun 2021; 582:43-48. [PMID: 34689104 DOI: 10.1016/j.bbrc.2021.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
Yersinia outer protein M (YopM) is one of the effector proteins and essential for virulence. YopM is delivered by the Yersinia type III secretion system (T3SS) into the host cell, where it shows immunosuppressive effect through interaction with host proteins. Therefore, protein-protein interactions of YopM is significant to understand its molecular mechanism. In this study, we aimed to explore protein-protein interactions of YopM with the two components of T3SS, namely LcrV and LcrG. We used bimolecular fluorescence complementation (BiFC) assay and monitored the reassembly of green fluorescence protein in Escherichia coli. As an indicator of the protein-protein interaction, we monitored the in vivo reconstitution of fluorescence by measuring fluorescence intensity and imaging the cells under fluorescence microscope. We showed, for the first time, that YopM interacts with LcrG, but not with LcrV. Here, we propose BiFC assay as a simple method to screen novel interaction partners of YopM.
Collapse
Affiliation(s)
- Özge Uğurlu
- Ege University, Faculty of Science, Department of Biochemistry, 35100, Bornova-Izmir, Turkey; Department of Medical Services and Techniques, Hatay Vocational School of Health Services, Hatay Mustafa Kemal University, Tayfur Sökmen Campus, 31060, Alahan-Antakya/ Hatay, Turkey
| | - Serap Evran
- Ege University, Faculty of Science, Department of Biochemistry, 35100, Bornova-Izmir, Turkey.
| |
Collapse
|
5
|
Roles of Eicosanoids in Regulating Inflammation and Neutrophil Migration as an Innate Host Response to Bacterial Infections. Infect Immun 2021; 89:e0009521. [PMID: 34031130 DOI: 10.1128/iai.00095-21] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Eicosanoids are lipid-based signaling molecules that play a unique role in innate immune responses. The multiple types of eicosanoids, such as prostaglandins (PGs) and leukotrienes (LTs), allow the innate immune cells to respond rapidly to bacterial invaders. Bacterial pathogens alter cyclooxygenase (COX)-derived prostaglandins (PGs) in macrophages, such as PGE2 15d-PGJ2, and lipoxygenase (LOX)-derived leukotriene LTB4, which has chemotactic functions. The PG synthesis and secretion are regulated by substrate availability of arachidonic acid and by the COX-2 enzyme, and the expression of this protein is regulated at multiple levels, both transcriptionally and posttranscriptionally. Bacterial pathogens use virulence strategies such as type three secretion systems (T3SSs) to deliver virulence factors altering the expression of eicosanoid-specific biosynthetic enzymes, thereby modulating the host response to bacterial lipopolysaccharides (LPS). Recent advances have identified a novel role of eicosanoids in inflammasome activation during intracellular infection with bacterial pathogens. Specifically, PGE2 was found to enhance inflammasome activation, driving the formation of pore-induced intracellular traps (PITs), thus trapping bacteria from escaping the dying cell. Finally, eicosanoids and IL-1β released from macrophages are implicated in the efferocytosis of neighboring neutrophils. Neutrophils play an essential role in phagocytosing and degrading PITs and associated bacteria to restore homeostasis. This review focuses on the novel functions of host-derived eicosanoids in the host-pathogen interactions.
Collapse
|
6
|
Li D, Wang H, Zhang P, Zhang Y, He X, Zhong H, Guan K, Min M, Gao Q, Wei C. Yersinia YopT inhibits RLH-mediated NF-κB and IRF3 signal transduction. Microbiol Immunol 2020; 64:768-777. [PMID: 32902897 DOI: 10.1111/1348-0421.12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/18/2020] [Accepted: 09/03/2020] [Indexed: 11/28/2022]
Abstract
The Gram-negative bacterial pathogen Yersinia delivers six effector proteins into the host cells to block the host innate immune response. One of the effectors, YopT, is a potent cysteine protease that causes the disruption of the actin cytoskeleton to inhibit phagocytosis of the pathogen; however, its molecular mechanism and relevance to pathogenesis need further investigation. In this report, we show that RIG-I is a novel target of the YopT protein. Remarkably, YopT interacts with RIG-I and inhibits rat liver homogenate-mediated nuclear factor-κB and interferon regulatory factor-3 activation. Further studies revealed a YopT-dependent increase in the K48-polymerized ubiquitination of RIG-I. These findings suggest that YopT negatively regulates RIG-I-mediated cellular antibacterial response by targeting RIG-I.
Collapse
Affiliation(s)
- Dongyu Li
- Bioengineering, College of Biological Engineering and Food, Hubei University of Technology, Wuhan, China.,Beijing Institute of Biotechnology, Beijing, China
| | - Haoyong Wang
- Bioengineering, College of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Pingping Zhang
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | - Xiang He
- Beijing Institute of Biotechnology, Beijing, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Beijing, China
| | - Kai Guan
- Beijing Institute of Biotechnology, Beijing, China
| | - Min Min
- Department of Gastroenterology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qi Gao
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (No. BZ0329), Beijing, China.,Beijing Hotgen Biotechnology Inc., Beijing, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
7
|
Ost GS, Wirth C, Bogdanović X, Kao WC, Schorch B, Aktories PJK, Papatheodorou P, Schwan C, Schlosser A, Jank T, Hunte C, Aktories K. Inverse control of Rab proteins by Yersinia ADP-ribosyltransferase and glycosyltransferase related to clostridial glucosylating toxins. SCIENCE ADVANCES 2020; 6:eaaz2094. [PMID: 32195351 PMCID: PMC7065874 DOI: 10.1126/sciadv.aaz2094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/17/2019] [Indexed: 05/20/2023]
Abstract
We identified a glucosyltransferase (YGT) and an ADP-ribosyltransferase (YART) in Yersinia mollaretii, highly related to glucosylating toxins from Clostridium difficile, the cause of antibiotics-associated enterocolitis. Both Yersinia toxins consist of an amino-terminal enzyme domain, an autoprotease domain activated by inositol hexakisphosphate, and a carboxyl-terminal translocation domain. YGT N-acetylglucosaminylates Rab5 and Rab31 at Thr52 and Thr36, respectively, thereby inactivating the Rab proteins. YART ADP-ribosylates Rab5 and Rab31 at Gln79 and Gln64, respectively. This activates Rab proteins by inhibiting GTP hydrolysis. We determined the crystal structure of the glycosyltransferase domain of YGT (YGTG) in the presence and absence of UDP at 1.9- and 3.4-Å resolution, respectively. Thereby, we identified a previously unknown potassium ion-binding site, which explains potassium ion-dependent enhanced glycosyltransferase activity in clostridial and related toxins. Our findings exhibit a novel type of inverse regulation of Rab proteins by toxins and provide new insights into the structure-function relationship of glycosyltransferase toxins.
Collapse
Affiliation(s)
- G. Stefan Ost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Institut für Biologie, Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Christophe Wirth
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Xenia Bogdanović
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Wei-Chun Kao
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Björn Schorch
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Philipp J. K. Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Panagiotis Papatheodorou
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Carsten Schwan
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, 97080 Würzburg, Germany
| | - Thomas Jank
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Carola Hunte
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Corresponding author.
| |
Collapse
|
8
|
Rego YF, Queiroz MP, Brito TO, Carvalho PG, de Queiroz VT, de Fátima Â, Macedo Jr. F. A review on the development of urease inhibitors as antimicrobial agents against pathogenic bacteria. J Adv Res 2018; 13:69-100. [PMID: 30094084 PMCID: PMC6077150 DOI: 10.1016/j.jare.2018.05.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 01/24/2023] Open
Abstract
Ureases are enzymes that hydrolyze urea into ammonium and carbon dioxide. They have received considerable attention due to their impacts on living organism health, since the urease activity in microorganisms, particularly in bacteria, are potential causes and/or factors contributing to the persistence of some pathogen infections. This review compiles examples of the most potent antiurease organic substances. Emphasis was given to systematic screening studies on the inhibitory activity of rationally designed series of compounds with the corresponding SAR considerations. Ureases of Canavalia ensiformis, the usual model in antiureolytic studies, are emphasized. Although the active site of this class of hydrolases is conserved among bacteria and vegetal ureases, the same is not observerd for allosteric site. Therefore, inhibitors acting by participating in interactions with the allosteric site are more susceptible to a potential lack of association among their inhibitory profile for different ureases. The information about the inhibitory activity of different classes of compounds can be usefull to guide the development of new urease inhibitors that may be used in future in small molecular therapy against pathogenic bacteria.
Collapse
Affiliation(s)
- Yuri F. Rego
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo P. Queiroz
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tiago O. Brito
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Priscila G. Carvalho
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Vagner T. de Queiroz
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernando Macedo Jr.
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| |
Collapse
|
9
|
Bancerz-Kisiel A, Pieczywek M, Łada P, Szweda W. The Most Important Virulence Markers of Yersinia enterocolitica and Their Role during Infection. Genes (Basel) 2018; 9:E235. [PMID: 29751540 PMCID: PMC5977175 DOI: 10.3390/genes9050235] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Yersinia enterocolitica is the causative agent of yersiniosis, a zoonotic disease of growing epidemiological importance with significant consequences for public health. This pathogenic species has been intensively studied for many years. Six biotypes (1A, 1B, 2, 3, 4, 5) and more than 70 serotypes of Y. enterocolitica have been identified to date. The biotypes of Y. enterocolitica are divided according to their pathogenic properties: the non-pathogenic biotype 1A, weakly pathogenic biotypes 2⁻5, and the highly pathogenic biotype 1B. Due to the complex pathogenesis of yersiniosis, further research is needed to expand our knowledge of the molecular mechanisms involved in the infection process and the clinical course of the disease. Many factors, both plasmid and chromosomal, significantly influence these processes. The aim of this study was to present the most important virulence markers of Y. enterocolitica and their role during infection.
Collapse
Affiliation(s)
- Agata Bancerz-Kisiel
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Marta Pieczywek
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Piotr Łada
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Wojciech Szweda
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| |
Collapse
|
10
|
Chlebicz A, Śliżewska K. Campylobacteriosis, Salmonellosis, Yersiniosis, and Listeriosis as Zoonotic Foodborne Diseases: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E863. [PMID: 29701663 PMCID: PMC5981902 DOI: 10.3390/ijerph15050863] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/16/2022]
Abstract
Zoonoses are diseases transmitted from animals to humans, posing a great threat to the health and life of people all over the world. According to WHO estimations, 600 million cases of diseases caused by contaminated food were noted in 2010, including almost 350 million caused by pathogenic bacteria. Campylobacter, Salmonella, as well as Yersinia enterocolitica and Listeria monocytogenes may dwell in livestock (poultry, cattle, and swine) but are also found in wild animals, pets, fish, and rodents. Animals, often being asymptomatic carriers of pathogens, excrete them with faeces, thus delivering them to the environment. Therefore, pathogens may invade new individuals, as well as reside on vegetables and fruits. Pathogenic bacteria also penetrate food production areas and may remain there in the form of a biofilm covering the surfaces of machines and equipment. A common occurrence of microbes in food products, as well as their improper or careless processing, leads to common poisonings. Symptoms of foodborne infections may be mild, sometimes flu-like, but they also may be accompanied by severe complications, some even fatal. The aim of the paper is to summarize and provide information on campylobacteriosis, salmonellosis, yersiniosis, and listeriosis and the aetiological factors of those diseases, along with the general characteristics of pathogens, virulence factors, and reservoirs.
Collapse
Affiliation(s)
- Agnieszka Chlebicz
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland.
| | - Katarzyna Śliżewska
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland.
| |
Collapse
|
11
|
Horne S, Schroeder M, Murphy J, Prüβ B. Acetoacetate and ethyl acetoacetate as novel inhibitors of bacterial biofilm. Lett Appl Microbiol 2018; 66:329-339. [DOI: 10.1111/lam.12852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/20/2022]
Affiliation(s)
- S.M. Horne
- Department of Microbiological Sciences North Dakota State University Fargo ND USA
| | - M. Schroeder
- Department of Microbiological Sciences North Dakota State University Fargo ND USA
| | - J. Murphy
- Department of Microbiological Sciences North Dakota State University Fargo ND USA
| | - B.M. Prüβ
- Department of Microbiological Sciences North Dakota State University Fargo ND USA
| |
Collapse
|
12
|
Hurst MRH, Beattie A, Altermann E, Moraga RM, Harper LA, Calder J, Laugraud A. The Draft Genome Sequence of the Yersinia entomophaga Entomopathogenic Type Strain MH96T. Toxins (Basel) 2016; 8:toxins8050143. [PMID: 27187466 PMCID: PMC4885058 DOI: 10.3390/toxins8050143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 01/28/2023] Open
Abstract
Here we report the draft genome of Yersinia entomophaga type strain MH96T. The genome shows 93.8% nucleotide sequence identity to that of Yersinia nurmii type strain APN3a-cT, and comprises a single chromosome of approximately 4,275,531 bp. In silico analysis identified that, in addition to the previously documented Y. entomophaga Yen-TC gene cluster, the genome encodes a diverse array of toxins, including two type III secretion systems, and five rhs-associated gene clusters. As well as these multicomponent systems, several orthologs of known insect toxins, such as VIP2 toxin and the binary toxin PirAB, and distant orthologs of some mammalian toxins, including repeats-in-toxin, a cytolethal distending toxin, hemolysin-like genes and an adenylate cyclase were identified. The genome also contains a large number of hypothetical proteins and orthologs of known effector proteins, such as LopT, as well as genes encoding a wide range of proteolytic determinants, including metalloproteases and pathogen fitness determinants, such as genes involved in iron metabolism. The bioinformatic data derived from the current in silico analysis, along with previous information on the pathobiology of Y. entomophaga against its insect hosts, suggests that a number of these virulence systems are required for survival in the hemocoel and incapacitation of the insect host.
Collapse
Affiliation(s)
- Mark R H Hurst
- AgResearch, Farm Systems & Environment, Lincoln Research Centre, Christchurch 8140, New Zealand.
| | - Amy Beattie
- AgResearch, Farm Systems & Environment, Lincoln Research Centre, Christchurch 8140, New Zealand.
| | - Eric Altermann
- AgResearch Limited, Rumen Microbiology, Palmerston North 4474, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand.
| | - Roger M Moraga
- AgResearch Limited, Bioinformatics & Statistics, Hamilton 3214, New Zealand.
| | - Lincoln A Harper
- AgResearch, Farm Systems & Environment, Lincoln Research Centre, Christchurch 8140, New Zealand.
| | - Joanne Calder
- AgResearch, Farm Systems & Environment, Lincoln Research Centre, Christchurch 8140, New Zealand.
| | - Aurelie Laugraud
- AgResearch Limited, Bioinformatics & Statistics, Lincoln Research Centre, Christchurch 8140, New Zealand.
| |
Collapse
|
13
|
Pasini E, Aquilani R, Testa C, Baiardi P, Angioletti S, Boschi F, Verri M, Dioguardi F. Pathogenic Gut Flora in Patients With Chronic Heart Failure. JACC-HEART FAILURE 2015; 4:220-7. [PMID: 26682791 DOI: 10.1016/j.jchf.2015.10.009] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 10/05/2015] [Accepted: 10/19/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The goal of this study was to measure the presence of pathogenic gut flora and intestinal permeability (IP) and their correlations with disease severity, venous blood congestion, and inflammation in patients with chronic heart failure (CHF). BACKGROUND Evidence suggests that translocation of gut flora and/or their toxins from the intestine to the bloodstream is a possible trigger of systemic CHF inflammation. However, the relation between pathogenic gut flora and CHF severity, as well as IP, venous blood congestion as right atrial pressure (RAP), and/or systemic inflammation (C-reactive protein [CRP]), is still unknown. METHODS This study analyzed 60 well-nourished patients in stable condition with mild CHF (New York Heart Association [NYHA] functional class I to II; n = 30) and moderate to severe CHF (NYHA functional class III to IV; n = 30) and matched healthy control subjects (n = 20). In all subjects, the presence and development in the feces of bacteria and fungi (Candida species) were measured; IP according to cellobiose sugar test results was documented. The study data were then correlated with RAP (echocardiography) and systemic inflammation. RESULTS Compared with normal control subjects, the entire CHF population had massive quantities of pathogenic bacteria and Candida such as Campylobacter (85.3 ± 3.7 CFU/ml vs. 1.0 ± 0.3 CFU/ml; p < 0.001), Shigella (38.9 ± 12.3 CFU/ml vs. 1.6 ± 0.2 CFU/ml; p < 0.001), Salmonella (31.3 ± 9.1 CFU/ml vs 0 CFU/ml; p < 0.001), Yersinia enterocolitica (22.9 ± 6.3 CFU/ml vs. 0 CFU/ml; p < 0.0001), and Candida species (21.3 ± 1.6 CFU/ml vs. 0.8 ± 0.4 CFU/ml; p < 0.001); altered IP (10.2 ± 1.2 mg vs. 1.5 ± 0.8 mg; p < 0.001); and increased RAP (12.6 ± 0.6 mm Hg) and inflammation (12.5 ± 0.6 mg/dl). These variables were more pronounced in patients with moderate to severe NYHA functional classes than in patients with the mild NYHA functional class. Notably, IP, RAP, and CRP were mutually interrelated (IP vs. RAP, r = 0.55; p < 0.0001; IP vs. CRP, r = 0.78; p < 0.0001; and RAP vs. CRP, r = 0.78; p < 0.0001). CONCLUSIONS This study showed that patients with CHF may have intestinal overgrowth of pathogenic bacteria and Candida species and increased IP associated with clinical disease severity, venous blood congestion, and inflammation.
Collapse
Affiliation(s)
- Evasio Pasini
- Fondazione "Salvatore Maugeri," IRCCS, Medical Centre of Lumezzane, Brescia, Italy
| | - Roberto Aquilani
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia, Italy
| | - Cristian Testa
- Laboratory of Clinical Microbiology and Virology Functional Point, Bergamo, Italy
| | - Paola Baiardi
- Direzione Scientifica Centrale, Fondazione Salvatore Maugeri, IRCCS, Pavia, Italy
| | - Stefania Angioletti
- Laboratory of Clinical Microbiology and Virology Functional Point, Bergamo, Italy
| | - Federica Boschi
- Department of Drug Science, University of Pavia, Pavia, Italy.
| | - Manuela Verri
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia, Italy
| | - Francesco Dioguardi
- Department of Clinical Science and Community Health, University of Milano, Milan, Italy
| |
Collapse
|
14
|
Transcriptomic Analysis of Yersinia enterocolitica Biovar 1B Infecting Murine Macrophages Reveals New Mechanisms of Extracellular and Intracellular Survival. Infect Immun 2015; 83:2672-85. [PMID: 25895974 DOI: 10.1128/iai.02922-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/10/2015] [Indexed: 11/20/2022] Open
Abstract
Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocolitica biovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26 °C to establish a baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37 °C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies.
Collapse
|
15
|
Contribution of Crk adaptor proteins to host cell and bacteria interactions. BIOMED RESEARCH INTERNATIONAL 2014; 2014:372901. [PMID: 25506591 PMCID: PMC4260429 DOI: 10.1155/2014/372901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/14/2014] [Indexed: 12/27/2022]
Abstract
The Crk adaptor family of proteins comprises the alternatively spliced CrkI and CrkII isoforms, as well as the paralog Crk-like (CrkL) protein, which is encoded by a different gene. Initially thought to be involved in signaling during apoptosis and cell adhesion, this ubiquitously expressed family of proteins is now known to play essential roles in integrating signals from a wide range of stimuli. In this review, we describe the structure and function of the different Crk proteins. We then focus on the emerging roles of Crk adaptors during Enterobacteriaceae pathogenesis, with special emphasis on the important human pathogens Salmonella, Shigella, Yersinia, and enteropathogenic Escherichia coli. Throughout, we remark on opportunities for future research into this intriguing family of proteins.
Collapse
|
16
|
Scientific Opinion on the evaluation of molecular typing methods for major food‐borne microbiological hazards and their use for attribution modelling, outbreak investigation and scanning surveillance: Part 1 (evaluation of methods and applications). EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3502] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|