1
|
Perez RL, Chase J, Tanner R. Shared challenges to the control of complex intracellular neglected pathogens. Front Public Health 2024; 12:1423420. [PMID: 39324165 PMCID: PMC11422159 DOI: 10.3389/fpubh.2024.1423420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
The complex intracellular pathogens Mycobacterium tuberculosis, Mycobacterium leprae, Leishmania spp., and Burkholderia pseudomallei, which cause tuberculosis, leprosy, leishmaniasis, and melioidosis respectively, represent major health threats with a significant global burden concentrated in low- and middle-income countries. While these diseases vary in their aetiology, pathology and epidemiology, they share key similarities in the biological and sociodemographic factors influencing their incidence and impact worldwide. In particular, their occurrence in resource-limited settings has important implications for research and development, disease prevalence and associated risk factors, as well as access to diagnostics and therapeutics. In accordance with the vision of the VALIDATE (VAccine deveLopment for complex Intracellular neglecteD pAThogeEns) Network, we consider shared challenges to the effective prevention, diagnosis and treatment of these diseases as shaped by both biological and social factors, illustrating the importance of taking an interdisciplinary approach. We further highlight how a cross-pathogen perspective may provide valuable insights for understanding and addressing challenges to the control of all four pathogens.
Collapse
Affiliation(s)
- Rebecca Lynn Perez
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Wadham College, University of Oxford, Oxford, United Kingdom
| | - Jemima Chase
- Wadham College, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- Wadham College, University of Oxford, Oxford, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Zhao L, Fan K, Sun X, Li W, Qin F, Shi L, Gao F, Zheng C. Host-directed therapy against mycobacterium tuberculosis infections with diabetes mellitus. Front Immunol 2024; 14:1305325. [PMID: 38259491 PMCID: PMC10800548 DOI: 10.3389/fimmu.2023.1305325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Tuberculosis (TB) is caused by the bacterial pathogen Mycobacterium tuberculosis (MTB) and is one of the principal reasons for mortality and morbidity worldwide. Currently, recommended anti-tuberculosis drugs include isoniazid, rifampicin, ethambutol, and pyrazinamide. TB treatment is lengthy and inflicted with severe side-effects, including reduced patient compliance with treatment and promotion of drug-resistant strains. TB is also prone to other concomitant diseases such as diabetes and HIV. These drug-resistant and complex co-morbid characteristics increase the complexity of treating MTB. Host-directed therapy (HDT), which effectively eliminates MTB and minimizes inflammatory tissue damage, primarily by targeting the immune system, is currently an attractive complementary approach. The drugs used for HDT are repositioned drugs in actual clinical practice with relative safety and efficacy assurance. HDT is a potentially effective therapeutic intervention for the treatment of MTB and diabetic MTB, and can compensate for the shortcomings of current TB therapies, including the reduction of drug resistance and modulation of immune response. Here, we summarize the state-of-the-art roles and mechanisms of HDT in immune modulation and treatment of MTB, with a special focus on the role of HDT in diabetic MTB, to emphasize the potential of HDT in controlling MTB infection.
Collapse
Affiliation(s)
- Li Zhao
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Ke Fan
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Xuezhi Sun
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Wei Li
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Fenfen Qin
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Liwen Shi
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlan Zheng
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| |
Collapse
|
3
|
Bisht MK, Dahiya P, Ghosh S, Mukhopadhyay S. The cause-effect relation of tuberculosis on incidence of diabetes mellitus. Front Cell Infect Microbiol 2023; 13:1134036. [PMID: 37434784 PMCID: PMC10330781 DOI: 10.3389/fcimb.2023.1134036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/25/2023] [Indexed: 07/13/2023] Open
Abstract
Tuberculosis (TB) is one of the oldest human diseases and is one of the major causes of mortality and morbidity across the Globe. Mycobacterium tuberculosis (Mtb), the causal agent of TB is one of the most successful pathogens known to mankind. Malnutrition, smoking, co-infection with other pathogens like human immunodeficiency virus (HIV), or conditions like diabetes further aggravate the tuberculosis pathogenesis. The association between type 2 diabetes mellitus (DM) and tuberculosis is well known and the immune-metabolic changes during diabetes are known to cause increased susceptibility to tuberculosis. Many epidemiological studies suggest the occurrence of hyperglycemia during active TB leading to impaired glucose tolerance and insulin resistance. However, the mechanisms underlying these effects is not well understood. In this review, we have described possible causal factors like inflammation, host metabolic changes triggered by tuberculosis that could contribute to the development of insulin resistance and type 2 diabetes. We have also discussed therapeutic management of type 2 diabetes during TB, which may help in designing future strategies to cope with TB-DM cases.
Collapse
Affiliation(s)
- Manoj Kumar Bisht
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Priyanka Dahiya
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sudip Ghosh
- Molecular Biology Unit, Indian Council of Medical Research (ICMR)-National Institute of Nutrition, Jamai Osmania PO, Hyderabad, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| |
Collapse
|
4
|
Al-Sayyar A, Hulme KD, Thibaut R, Bayry J, Sheedy FJ, Short KR, Alzaid F. Respiratory Tract Infections in Diabetes - Lessons From Tuberculosis and Influenza to Guide Understanding of COVID-19 Severity. Front Endocrinol (Lausanne) 2022; 13:919223. [PMID: 35957811 PMCID: PMC9363013 DOI: 10.3389/fendo.2022.919223] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with type-2 diabetes (T2D) are more likely to develop severe respiratory tract infections. Such susceptibility has gained increasing attention since the global spread of Coronavirus Disease 2019 (COVID-19) in early 2020. The earliest reports marked T2D as an important risk-factor for severe forms of disease and mortality across all adult age groups. Several mechanisms have been proposed for this increased susceptibility, including pre-existing immune dysfunction, a lack of metabolic flexibility due to insulin resistance, inadequate dietary quality or adverse interactions with antidiabetic treatments or common comorbidities. Some mechanisms that predispose patients with T2D to severe COVID-19 may indeed be shared with other previously characterized respiratory tract infections. Accordingly, in this review, we give an overview of response to Influenza A virus and to Mycobacterium tuberculosis (Mtb) infections. Similar risk factors and mechanisms are discussed between the two conditions and in the case of COVID-19. Lastly, we address emerging approaches to address research needs in infection and metabolic disease, and perspectives with regards to deployment or repositioning of metabolically active therapeutics.
Collapse
Affiliation(s)
| | - Katina D. Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Ronan Thibaut
- Institut Necker Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1151/CNRS UMRS8253, Immunity and Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, Paris, France
| | - Jagadeesh Bayry
- Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad, India
| | | | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Fawaz Alzaid
- Dasman Diabetes Institute, Dasman, Kuwait
- Institut Necker Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1151/CNRS UMRS8253, Immunity and Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, Paris, France
| |
Collapse
|
5
|
van Doorn CLR, Steenbergen SAM, Walburg KV, Ottenhoff THM. Pharmacological Poly (ADP-Ribose) Polymerase Inhibitors Decrease Mycobacterium tuberculosis Survival in Human Macrophages. Front Immunol 2021; 12:712021. [PMID: 34899683 PMCID: PMC8662539 DOI: 10.3389/fimmu.2021.712021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/12/2021] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellites (DM) is correlated with increased susceptibility to and disease progression of tuberculosis (TB), and strongly impairs effective global TB control measures. To better control the TB-DM co-epidemic, unravelling the bidirectional interactivity between DM-associated molecular processes and immune responses to Mycobacterium tuberculosis (Mtb) is urgently required. Since poly (ADP-ribose) polymerase (PARP) activation has been associated with DM and with Mtb infection in mouse models, we have investigated whether PARP inhibition by pharmacological compounds can interfere with host protection against Mtb in human macrophage subsets, the predominant target cell of Mtb. Pharmacological inhibition of PARP decreased intracellular Mtb and MDR-Mtb levels in human macrophages, identifying PARP as a potential target for host-directed therapy against Mtb. PARP inhibition was associated with modified chemokine secretion and upregulation of cell surface activation markers by human macrophages. Targeting LDH, a secondary target of the PARP inhibitor rucaparib, resulted in decreased intracellular Mtb, suggesting a metabolic role in rucaparib-induced control of Mtb. We conclude that pharmacological inhibition of PARP is a potential novel strategy in developing innovative host-directed therapies against intracellular bacterial infections.
Collapse
|
6
|
Ngo MD, Bartlett S, Ronacher K. Diabetes-Associated Susceptibility to Tuberculosis: Contribution of Hyperglycemia vs. Dyslipidemia. Microorganisms 2021; 9:2282. [PMID: 34835407 PMCID: PMC8620310 DOI: 10.3390/microorganisms9112282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes is a major risk factor for tuberculosis (TB). Diabetes increases the risk of the progression from latent tuberculosis infection (LTBI) to active pulmonary TB and TB patients with diabetes are at greater risk of more severe disease and adverse TB treatment outcomes compared to TB patients without co-morbidities. Diabetes is a complex disease, characterised not only by hyperglycemia but also by various forms of dyslipidemia. However, the relative contribution of these underlying metabolic factors to increased susceptibility to TB are poorly understood. This review summarises our current knowledge on the epidemiology and clinical manifestation of TB and diabetes comorbidity. We subsequently dissect the relative contributions of body mass index, hyperglycemia, elevated cholesterol and triglycerides on TB disease severity and treatment outcomes. Lastly, we discuss the impact of selected glucose and cholesterol-lowering treatments frequently used in the management of diabetes on TB treatment outcomes.
Collapse
Affiliation(s)
- Minh Dao Ngo
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (M.D.N.); (S.B.)
| | - Stacey Bartlett
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (M.D.N.); (S.B.)
| | - Katharina Ronacher
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (M.D.N.); (S.B.)
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Sinha R, Ngo MD, Bartlett S, Bielefeldt-Ohmann H, Keshvari S, Hasnain SZ, Donovan ML, Kling JC, Blumenthal A, Chen C, Short KR, Ronacher K. Pre-Diabetes Increases Tuberculosis Disease Severity, While High Body Fat Without Impaired Glucose Tolerance Is Protective. Front Cell Infect Microbiol 2021; 11:691823. [PMID: 34295838 PMCID: PMC8291147 DOI: 10.3389/fcimb.2021.691823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes (T2D) is a well-known risk factor for tuberculosis (TB), but little is known about pre-diabetes and the relative contribution of impaired glucose tolerance vs. obesity towards susceptibility to TB. Here, we developed a preclinical model of pre-diabetes and TB. Mice fed a high fat diet (HFD) for 12 weeks presented with impaired glucose tolerance and hyperinsulinemia compared to mice fed normal chow diet (NCD). Infection with M. tuberculosis (Mtb) H37Rv after the onset of dysglycemia was associated with significantly increased lung pathology, lower concentrations of TNF-α, IFN-γ, IFN-β and IL-10 and a trend towards higher bacterial burden at 3 weeks post infection. To determine whether the increased susceptibility of pre-diabetic mice to TB is reversible and is associated with dysglycemia or increased body fat mass, we performed a diet reversal experiment. Pre-diabetic mice were fed a NCD for 10 additional weeks (HFD/NCD) at which point glucose tolerance was restored, but body fat mass remained higher compared to control mice that consumed NCD throughout the entire experiment (NCD/NCD). Upon Mtb infection HFD/NCD mice had significantly lower bacterial burden compared to NCD/NCD mice and this was accompanied by restored IFN-γ responses. Our findings demonstrate that pre-diabetes increases susceptibility to TB, but a high body mass index without dysglycemia is protective. This murine model offers the opportunity to further study the underlying immunological, metabolic and endocrine mechanisms of this association.
Collapse
Affiliation(s)
- Roma Sinha
- Translational Research Institute, Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Minh Dao Ngo
- Translational Research Institute, Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Stacey Bartlett
- Translational Research Institute, Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,Australian Infectious Diseases Research Centre - The University of Queensland, Brisbane, QLD, Australia
| | - Sahar Keshvari
- Translational Research Institute, Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sumaira Z Hasnain
- Translational Research Institute, Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia.,Australian Infectious Diseases Research Centre - The University of Queensland, Brisbane, QLD, Australia
| | - Meg L Donovan
- The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Jessica C Kling
- The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Antje Blumenthal
- Australian Infectious Diseases Research Centre - The University of Queensland, Brisbane, QLD, Australia.,The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,Australian Infectious Diseases Research Centre - The University of Queensland, Brisbane, QLD, Australia
| | - Katharina Ronacher
- Translational Research Institute, Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia.,Australian Infectious Diseases Research Centre - The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Sathkumara HD, Eaton JL, Field MA, Govan BL, Ketheesan N, Kupz A. A murine model of tuberculosis/type 2 diabetes comorbidity for investigating the microbiome, metabolome and associated immune parameters. Animal Model Exp Med 2021; 4:181-188. [PMID: 34179725 PMCID: PMC8212822 DOI: 10.1002/ame2.12159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/01/2021] [Indexed: 01/02/2023] Open
Abstract
Tuberculosis (TB) is one of the deadliest infectious diseases in the world. The metabolic disease type 2 diabetes (T2D) significantly increases the risk of developing active TB. Effective new TB vaccine candidates and novel therapeutic interventions are required to meet the challenges of global TB eradication. Recent evidence suggests that the microbiota plays a significant role in how the host responds to infection, injury and neoplastic changes. Animal models that closely reflect human physiology are crucial in assessing new treatments and to decipher the underlying immunological defects responsible for increased TB susceptibility in comorbid patients. In this study, using a diet-induced murine T2D model that reflects the etiopathogenesis of clinical T2D and increased TB susceptibility, we investigated how the intestinal microbiota may impact the development of T2D, and how the gut microbial composition changes following a very low-dose aerosol infection with Mycobacterium tuberculosis (Mtb). Our data revealed a substantial intestinal microbiota dysbiosis in T2D mice compared to non-diabetic animals. The observed differences were comparable to previous clinical reports in TB patients, in which it was shown that Mtb infection causes rapid loss of microbial diversity. Furthermore, diversity index and principle component analyses demonstrated distinct clustering of Mtb-infected non-diabetic mice vs. Mtb-infected T2D mice. Our findings support a broad applicability of T2D mice as a tractable small animal model for studying distinct immune parameters, microbiota and the immune-metabolome of TB/T2D comorbidity. This model may also enable answers to be found to critical outstanding questions about targeted interventions of the gut microbiota and the gut-lung axis.
Collapse
Affiliation(s)
- Harindra D. Sathkumara
- Centre for Molecular TherapeuticsAustralian Institute of Tropical Health and MedicineJames Cook UniversityCairns & TownsvilleQLDAustralia
| | - Janet L. Eaton
- College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQLDAustralia
| | - Matt A. Field
- Centre for Molecular TherapeuticsAustralian Institute of Tropical Health and MedicineJames Cook UniversityCairns & TownsvilleQLDAustralia
- Centre for Tropical Bioinformatics and Molecular BiologyJames Cook UniversityCairnsQLDAustralia
- John Curtin School of Medical ResearchAustralian National UniversityCanberraACTAustralia
| | - Brenda L. Govan
- Centre for Molecular TherapeuticsAustralian Institute of Tropical Health and MedicineJames Cook UniversityCairns & TownsvilleQLDAustralia
- College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQLDAustralia
| | | | - Andreas Kupz
- Centre for Molecular TherapeuticsAustralian Institute of Tropical Health and MedicineJames Cook UniversityCairns & TownsvilleQLDAustralia
| |
Collapse
|
9
|
Systematic Evaluation of Mycobacterium tuberculosis Proteins for Antigenic Properties Identifies Rv1485 and Rv1705c as Potential Protective Subunit Vaccine Candidates. Infect Immun 2021; 89:IAI.00585-20. [PMID: 33318140 PMCID: PMC8097267 DOI: 10.1128/iai.00585-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/27/2020] [Indexed: 01/07/2023] Open
Abstract
The lack of efficacious vaccines against Mycobacterium tuberculosis (MTB) infection is a limiting factor in the prevention and control of tuberculosis (TB), the leading cause of death from an infectious agent. Improvement or replacement of the BCG vaccine with one that reliably protects all age groups is urgent. The lack of efficacious vaccines against Mycobacterium tuberculosis (MTB) infection is a limiting factor in the prevention and control of tuberculosis (TB), the leading cause of death from an infectious agent. Improvement or replacement of the BCG vaccine with one that reliably protects all age groups is urgent. Concerns exist that antigens currently being evaluated are too homogeneous. To identify new protective antigens, we screened 1,781 proteins from a high-throughput proteome-wide protein purification study for antigenic activity. Forty-nine antigens (34 previously unreported) induced antigen-specific gamma interferon (IFN-γ) release from peripheral blood mononuclear cells (PBMCs) derived from 4,452 TB and suspected TB patients and 167 healthy donors. Three (Rv1485, Rv1705c, and Rv1802) of the 20 antigens evaluated in a BALB/c mouse challenge model showed protective efficacy, reducing lung CFU counts by 66.2%, 75.8%, and 60%, respectively. Evaluation of IgG2a/IgG1 ratios and cytokine release indicated that Rv1485 and Rv1705c induce a protective Th1 immune response. Epitope analysis of PE/PPE protein Rv1705c, the strongest candidate, identified a dominant epitope in its extreme N-terminal domain accounting for 90% of its immune response. Systematic preclinical assessment of antigens Rv1485 and Rv1705c is warranted.
Collapse
|
10
|
Morris JL, Govan BL, Rush CM, Ketheesan N. Identification of defective early immune responses to Burkholderia pseudomallei infection in a diet-induced murine model of type 2 diabetes. Microbes Infect 2021; 23:104793. [PMID: 33571673 DOI: 10.1016/j.micinf.2021.104793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/23/2020] [Accepted: 01/27/2021] [Indexed: 11/17/2022]
Abstract
Co-occurrence of bacterial infections with type 2 diabetes (T2D) is a global problem. Melioidosis caused by Burkholderia pseudomallei is 10 times more likely to occur in patients with T2D, than in normoglycemic individuals. Using an experimental model of T2D, we observed that greater susceptibility in T2D was due to differences in proportions of infiltrating leucocytes and reduced levels of MCP-1, IFN-γ and IL-12 at sites of infection within 24 h post-infection. However, by 72 h the levels of inflammatory cytokines and bacteria were markedly higher in visceral tissue and blood in T2D mice. In T2D, dysregulated early immune responses are responsible for the greater predisposition to B. pseudomallei infection.
Collapse
Affiliation(s)
- Jodie L Morris
- College of Medicine and Dentistry, James Cook University, Queensland, 4811, Australia.
| | - Brenda L Govan
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Queensland, 4811, Australia
| | - Catherine M Rush
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Queensland, 4811, Australia
| | - Natkunam Ketheesan
- Science & Technology, University of New England, New South Wales, 2351, Australia.
| |
Collapse
|
11
|
Huizinga GP, Singer BH, Singer K. The Collision of Meta-Inflammation and SARS-CoV-2 Pandemic Infection. Endocrinology 2020; 161:bqaa154. [PMID: 32880654 PMCID: PMC7499583 DOI: 10.1210/endocr/bqaa154] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has forced us to consider the physiologic role of obesity in the response to infectious disease. There are significant disparities in morbidity and mortality by sex, weight, and diabetes status. Numerous endocrine changes might drive these varied responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, including hormone and immune mediators, hyperglycemia, leukocyte responses, cytokine secretion, and tissue dysfunction. Studies of patients with severe COVID-19 disease have revealed the importance of innate immune responses in driving immunopathology and tissue injury. In this review we will describe the impact of the metabolically induced inflammation (meta-inflammation) that characterizes obesity on innate immunity. We consider that obesity-driven dysregulation of innate immune responses may drive organ injury in the development of severe COVID-19 and impair viral clearance.
Collapse
Affiliation(s)
- Gabrielle P Huizinga
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Benjamin H Singer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Michigan Center for Integrative Research in Critical Care, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kanakadurga Singer
- Department of Pediatrics and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|