1
|
Teixeira FME, Oliveira LDM, Branco ACCC, Alberca RW, de Sousa ESA, Leite BHDS, Adan WCDS, Duarte AJDS, Lins RD, Sato MN, Viana IFT. Enhanced immunogenicity and protective efficacy in mice following a Zika DNA vaccine designed by modulation of membrane-anchoring regions and its association to adjuvants. Front Immunol 2024; 15:1307546. [PMID: 38361945 PMCID: PMC10867427 DOI: 10.3389/fimmu.2024.1307546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Zika virus (ZIKV) is a re-emerging pathogen with high morbidity associated to congenital infection. Despite the scientific advances since the last outbreak in the Americas, there are no approved specific treatment or vaccines. As the development of an effective prophylactic approach remains unaddressed, DNA vaccines surge as a powerful and attractive candidate due to the efficacy of sequence optimization in achieving strong immune response. In this study, we developed four DNA vaccine constructs encoding the ZIKV prM/M (pre-membrane/membrane) and E (envelope) proteins in conjunction with molecular adjuvants. The DNA vaccine candidate (called ZK_ΔSTP), where the entire membrane-anchoring regions were completely removed, was far more immunogenic compared to their counterparts. Furthermore, inclusion of the tPA-SP leader sequence led to high expression and secretion of the target vaccine antigens, therefore contributing to adequate B cell stimulation. The ZK_ΔSTP vaccine induced high cellular and humoral response in C57BL/6 adult mice, which included high neutralizing antibody titers and the generation of germinal center B cells. Administration of ZK-ΔSTP incorporating aluminum hydroxide (Alum) adjuvant led to sustained neutralizing response. In consistency with the high and long-term protective response, ZK_ΔSTP+Alum protected adult mice upon viral challenge. Collectively, the ZK_ΔSTP+Alum vaccine formulation advances the understanding of the requirements for a successful and protective vaccine against flaviviruses and is worthy of further translational studies.
Collapse
Affiliation(s)
- Franciane Mouradian Emidio Teixeira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luana de Mendonça Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anna Cláudia Calvielli Castelo Branco
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ricardo Wesley Alberca
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Emanuella Sarmento Alho de Sousa
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Alberto José da Silva Duarte
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Roberto Dias Lins
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | | |
Collapse
|
2
|
He X, Wang J, Tang Y, Chiang ST, Han T, Chen Q, Qian C, Shen X, Li R, Ai X. Recent Advances of Emerging Spleen-Targeting Nanovaccines for Immunotherapy. Adv Healthc Mater 2023; 12:e2300351. [PMID: 37289567 DOI: 10.1002/adhm.202300351] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Vaccines provide a powerful tool to modulate the immune system for human disease prevention and treatment. Classical vaccines mainly initiate immune responses in the lymph nodes (LNs) after subcutaneous injection. However, some vaccines suffer from inefficient delivery of antigens to LNs, undesired inflammation, and slow immune induction when encountering the rapid proliferation of tumors. Alternatively, the spleen, as the largest secondary lymphoid organ with a high density of antigen-presenting cells (APCs) and lymphocytes, acts as an emerging target organ for vaccinations in the body. Upon intravenous administration, the rationally designed spleen-targeting nanovaccines can be internalized by the APCs in the spleen to induce selective antigen presentation to T and B cells in their specific sub-regions, thereby rapidly boosting durable cellular and humoral immunity. Herein, the recent advances of spleen-targeting nanovaccines for immunotherapy based on the anatomical architectures and functional zones of the spleen, as well as their limitations and perspectives for clinical applications are systematically summarized. The aim is to emphasize the design of innovative nanovaccines for enhanced immunotherapy of intractable diseases in the future.
Collapse
Affiliation(s)
- Xuanyi He
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Jing Wang
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuqing Tang
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Seok Theng Chiang
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Tianzhen Han
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Qi Chen
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Chunxi Qian
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoshuai Shen
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Rongxiu Li
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiangzhao Ai
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
3
|
Guan X, Yang Y, Du L. Advances in SARS-CoV-2 receptor-binding domain-based COVID-19 vaccines. Expert Rev Vaccines 2023; 22:422-439. [PMID: 37161869 PMCID: PMC10355161 DOI: 10.1080/14760584.2023.2211153] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023]
Abstract
INTRODUCTION The Coronavirus Disease 2019 (COVID-19) pandemic has caused devastating human and economic costs. Vaccination is an important step in controlling the pandemic. Severe acute respiratory coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, infects cells by binding a cellular receptor through the receptor-binding domain (RBD) within the S1 subunit of the spike (S) protein. Viral entry and membrane fusion are mediated by the S2 subunit. AREAS COVERED SARS-CoV-2 S protein, particularly RBD, serves as an important target for vaccines. Here we review the structure and function of SARS-CoV-2 S protein and its RBD, summarize current COVID-19 vaccines targeting the RBD, and outline potential strategies for improving RBD-based vaccines. Overall, this review provides important information that will facilitate rational design and development of safer and more effective COVID-19 vaccines. EXPERT OPINION The S protein of SARS-CoV-2 harbors numerous mutations, mostly in the RBD, resulting in multiple variant strains. Although many COVID-19 vaccines targeting the RBD of original virus strain (and previous variants) can prevent infection of these strains, their ability against recent dominant variants, particularly Omicron and its offspring, is significantly reduced. Collective efforts are needed to develop effective broad-spectrum vaccines to control current and future variants that have pandemic potential.
Collapse
Affiliation(s)
- Xiaoqing Guan
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
4
|
Siddqui G, Yadav N, Vishwakarma P, Thomas J, Khatri R, Kumar A, Tripathi A, Pramod RK, Vrati S, Samal S. Japanese encephalitis virus induces vasodilation and severe lethality in adult and aged AG129 mice lacking alpha, beta and gamma interferon receptors. Virus Res 2022; 319:198884. [PMID: 35931226 DOI: 10.1016/j.virusres.2022.198884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 10/16/2022]
Abstract
Japanese encephalitis virus (JEV) is a single-stranded positive-sense RNA virus belonging to the Flaviviridae family. The JEV is the leading cause of viral encephalitis in children and the elderly which is spread by mosquitoes. JEV infection has been established in different animal models such as mouse, hamster, guinea pig, swine, rat, monkey, rabbit by using the different routes of inoculations. Here, we have shown that the alpha/beta and gamma -receptor deficient AG129 mouse induces fatal encephalitis in both young and aged old mice, when challenged with high titer JEV Indian clinical isolate by both intraperitoneal and intradermal route. The JEV infected AG129 mouse have shown neurological symptoms, JEV-induced pathological features and supported high level viral replication. Additionally, administration of JEV in AG129 mice resulted in the induction of severe peripheral vascular permeability, which is a major hall mark of Dengue infection but not shown in JEV. Taken together, our results demonstrate interferon α/β and γ receptors knock out AG129 mouse does not need adaptation of JEV clinical isolates and could be is a promising JEV challenge mouse model by mimicking the natural intradermal route of administration for rapid screening of novel antivirals and vaccines.
Collapse
Affiliation(s)
- Gazala Siddqui
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Naveen Yadav
- Laboratory of Medicine and Pathology, School of Medicine, University of Washington, South Lake Union, 850 Republican St., Seattle, Washington 98109
| | - Preeti Vishwakarma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Jolly Thomas
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Amit Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Aarti Tripathi
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Ravindran Kumar Pramod
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | | | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| |
Collapse
|
5
|
Khatri R, Parray HA, Siddiqui G, Chiranjivi AK, Raj S, Kaul R, Maithil V, Samal S, Ahmed S. Biophysical and Biochemical Characterization of the Receptor Binding Domain of SARS-CoV-2 Variants. Protein J 2022; 41:457-467. [PMID: 36048314 PMCID: PMC9434506 DOI: 10.1007/s10930-022-10073-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
The newly emerging SARS-CoV-2 variants are potential threat and posing new challenges for medical intervention due to high transmissibility and escaping neutralizing antibody (NAb) responses. Many of these variants have mutations in the receptor binding domain (RBD) of SARS-CoV-2 spike protein that interacts with the host cell receptor. Rapid mutation in the RBD through natural selection to improve affinity for host receptor and antibody pressure from vaccinated or infected individual will greatly impact the presently adopted strategies for developing interventions. Understanding the nature of mutations and how they impact the biophysical, biochemical and immunological properties of the RBD will help immensely to improve the intervention strategies. To understand the impact of mutation on the protease sensitivity, thermal stability, affinity for the receptor and immune response, we prepared several mutants of soluble RBD that belong to the variants of concern (VoCs) and interest (VoIs) and characterize them. Our results show that the mutations do not impact the overall structure of the RBD. However, the mutants showed increase in the thermal melting point, few mutants were more sensitive to protease degradation, most of them have enhanced affinity for ACE2 and some of them induced better immune response compared to the parental RBD.
Collapse
Affiliation(s)
- Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India
| | - Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India
| | - Gazala Siddiqui
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India
| | - Adarsh Kumar Chiranjivi
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India
| | - Sneha Raj
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India
| | - Rachel Kaul
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India
| | - Vikas Maithil
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India.
- Centralized Core Research Facility (CCRF), All India Institute of Medical Science (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
6
|
Firmino-Cruz L, dos-Santos JS, da Fonseca-Martins AM, Oliveira-Maciel D, Guadagnini-Perez G, Roncaglia-Pereira VA, Dumard CH, Guedes-da-Silva FH, Vicente Santos AC, Alvim RGF, Lima TM, Marsili FF, Abreu DPB, Rossi-Bergmann B, Vale AM, Filardy AD, Silva JL, de Oliveira AC, Gomes AMO, de Matos Guedes HL. Intradermal Immunization of SARS-CoV-2 Original Strain Trimeric Spike Protein Associated to CpG and AddaS03 Adjuvants, but Not MPL, Provide Strong Humoral and Cellular Response in Mice. Vaccines (Basel) 2022; 10:1305. [PMID: 36016193 PMCID: PMC9415730 DOI: 10.3390/vaccines10081305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Despite the intramuscular route being the most used vaccination strategy against SARS-CoV-2, the intradermal route has been studied around the globe as a strong candidate for immunization against SARS-CoV-2. Adjuvants have shown to be essential vaccine components that are capable of driving robust immune responses and increasing the vaccination efficacy. In this work, our group aimed to develop a vaccination strategy for SARS-CoV-2 using a trimeric spike protein, by testing the best route with formulations containing the adjuvants AddaS03, CpG, MPL, Alum, or a combination of two of them. Our results showed that formulations that were made with AddaS03 or CpG alone or AddaS03 combined with CpG were able to induce high levels of IgG, IgG1, and IgG2a; high titers of neutralizing antibodies against SARS-CoV-2 original strain; and also induced high hypersensitivity during the challenge with Spike protein and a high level of IFN-γ producing CD4+ T-cells in mice. Altogether, those data indicate that AddaS03, CpG, or both combined may be used as adjuvants in vaccines for COVID-19.
Collapse
Affiliation(s)
- Luan Firmino-Cruz
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Júlio Souza dos-Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Alessandra Marcia da Fonseca-Martins
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Diogo Oliveira-Maciel
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Gustavo Guadagnini-Perez
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Victor A. Roncaglia-Pereira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Carlos H. Dumard
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Francisca H. Guedes-da-Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Ana C. Vicente Santos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Renata G. F. Alvim
- Cell Culture Engineering Lab., COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil
| | - Tulio M. Lima
- Cell Culture Engineering Lab., COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil
| | - Federico F. Marsili
- Cell Culture Engineering Lab., COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil
| | - Daniel P. B. Abreu
- Cell Culture Engineering Lab., COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil
| | - Bartira Rossi-Bergmann
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Andre M. Vale
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Alessandra D’Almeida Filardy
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Jerson Lima Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Andrea Cheble de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Andre M. O. Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Herbert Leonel de Matos Guedes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Clinical Immunology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|