1
|
Chunduru K, A R M, Poornima S, Hande H M, Devaki R, Varghese GM, Saravu K. Clinical, laboratory profile and molecular characterization of Orientia tsutsugamushi among fatal scrub typhus patients from Karnataka, India. Infect Dis (Lond) 2024; 56:220-229. [PMID: 38069822 DOI: 10.1080/23744235.2023.2290106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/27/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Scrub typhus is a vector-borne infection caused by the obligate intracellular organism Orientia tsutsugamushi. In some cases, scrub typhus can result in severe complications, multiorgan failure and death. OBJECTIVE To study the clinical and laboratory profiles of patients who succumbed to scrub typhus. METHODS A prospective cohort study was conducted from August 2019 through April 2023 on scrub typhus patients admitted to our hospital. Clinical and laboratory parameters of all the patients were recorded, and blood samples were drawn. To confirm scrub typhus, a nested polymerase chain reaction (nPCR) was performed in collected samples. Viable amplicons were sequenced, and phylogenetic analyses were performed to identify infecting genotypes. RESULTS A total of 261 patients were enrolled. Of these, nine (3.45%) patients succumbed at a median (Interquartile Range) duration of 5 (1.5, 10.5) days after admission. Sepsis with septic shock (9, 100%) and acute kidney injury (AKI) (6, 66%) were noted among the succumbed patients. All the succumbed patients (100%) required intensive care admission, inotropic and ventilatory support. While 5 (55%) patients required dialysis, two (22%) required blood transfusion. Three (33%) patient samples were co-positive for Leptospira IgM, and four (44%) patients had superinfection with Candida tropicalis, multi-drug-resistant (MDR) E. Coli sepsis, pan drug-resistant (PDR) Acinetobacter Baumanii, and Klebsiella pneumoniae. Phylogenetic analysis revealed Orientia tsutsugamushi Japanese Gilliam-variant (JG-v) like (50%), Karp-like (37.5%), and Japanese Gilliam (JG) like (12.5%) strains among succumbed patients. CONCLUSION Delay in scrub typhus diagnosis can result in severe complications, septic shock, and multisystem organ failure, culminating in death.
Collapse
Affiliation(s)
- Kiran Chunduru
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manoj A R
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subhadra Poornima
- Department of Genetics and Molecular Medicine, Kamineni Life Sciences, Hyderabad, Telangana, India
| | - Manjunatha Hande H
- Department of Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ramakrishna Devaki
- Department of Biochemistry, Kamineni Academy of Medical Sciences and Research Centre, LB Nagar, Hyderabad, Telangana, India
| | - George M Varghese
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Kavitha Saravu
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
2
|
Chunduru K, A R M, Poornima S, Hande H M, M M, Varghese GM, Devaki R, Saravu K. Clinical, laboratory, and molecular epidemiology of Orientia tsutsugamushi infection from Southwestern India. PLoS One 2023; 18:e0289126. [PMID: 37490497 PMCID: PMC10368267 DOI: 10.1371/journal.pone.0289126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
Scrub typhus is a vector borne disease which in a proportion of patients causes multiorgan involvement and death if untreated. Infecting genotype and virulence factors play a role in severity of infection and outcome. The current prospective cohort study was undertaken to elucidate the severity of illness in scrub typhus patients and to identify the circulating genotypes in Karnataka, India. A total of 214 patients of either gender from 9 districts of Karnataka and one patient each from Andhra Pradesh and Kerala, India were enrolled in the study. With a predefined severity criterion, 132 patients were segregated to the severe group. Multi organ involvement was seen in 59 (44.69%) patients. Phylogenetic analysis revealed JG-v like (48.97%), Karp-like (26.53%), JG-like (22.44%), and Kato-like (2.04%) strains in Karnataka. Patients infected with Orientia tsutsugamushi Karp-like strains had respiratory involvement (69.2%), cardiovascular involvement (46.2%) and thrombocytopenia (23.1%) and required higher hospital resource utilization.
Collapse
Affiliation(s)
- Kiran Chunduru
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manoj A R
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subhadra Poornima
- Department of Genetics and Molecular Medicine, Kamineni Life Sciences, Hyderabad, Telangana, India
| | - Manjunatha Hande H
- Department of Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mridula M
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - George M Varghese
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Ramakrishna Devaki
- Department of Biochemistry, Kamineni Academy of Medical Sciences and Research Centre, LB Nagar, Hyderabad, Telangana, India
| | - Kavitha Saravu
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
3
|
Thiriot J, Liang Y, Fisher J, Walker DH, Soong L. Host transcriptomic profiling of CD-1 outbred mice with severe clinical outcomes following infection with Orientia tsutsugamushi. PLoS Negl Trop Dis 2022; 16:e0010459. [PMID: 36417363 PMCID: PMC9683618 DOI: 10.1371/journal.pntd.0010459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
Orientia tsutsugamushi is an obligately intracellular bacterium with endothelial tropism and can cause mild to lethal scrub typhus in humans. No vaccine is available for this reemerging and severely neglected infection. Previous scrub typhus studies have utilized inbred mice, yet such models have intrinsic limitations. Thus, the development of suitable mouse models that better mimic human diseases is in great need for immunologic investigation and future vaccine studies. This study is aimed at establishing scrub typhus in outbred CD-1 mice and defining immune biomarkers related to disease severity. CD-1 mice received O. tsutsugamushi Karp strain via the i.v. route; major organs were harvested at 2-12 days post-infection for kinetic analyses. We found that for our given infection doses, CD-1 mice were significantly more susceptible (90-100% lethal) than were inbred C57BL/6 mice (0-10% lethal). Gross pathology of infected CD-1 mouse organs revealed features that mimicked human scrub typhus, including pulmonary edema, interstitial pneumonia, perivascular lymphocytic infiltrates, and vasculitis. Alteration in angiopoietin/receptor expression in inflamed lungs implied endothelial dysfunction. Lung immune gene profiling using NanoString analysis displayed a Th1/CD8-skewed, but Th2 repressed profile, including novel biomarkers not previously investigated in other scrub typhus models. Bio-plex analysis revealed a robust inflammatory response in CD-1 mice as evidenced by increased serum cytokine and chemokine levels, correlating with immune cell recruitment during the severe stages of the disease. This study provides an important framework indicating a value of CD-1 mice for delineating host susceptibility to O. tsutsugamushi, immune dysregulation, and disease pathogenesis. This preclinical model is particularly useful for future translational and vaccine studies for severe scrub typhus.
Collapse
Affiliation(s)
- Joseph Thiriot
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - James Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
4
|
Jiang L, Belinskaya T, Zhang Z, Chan TC, Ching WM, Chao CC. Regulation of Serum Exosomal MicroRNAs in Mice Infected with Orientia tsutsugamushi. Microorganisms 2020; 9:microorganisms9010080. [PMID: 33396228 PMCID: PMC7823836 DOI: 10.3390/microorganisms9010080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/21/2022] Open
Abstract
Exosomes are small extracellular vesicles that carry proteins, lipids, and nucleic acids. They are circulated in many body fluids and play an important role in intercellular communications. MicroRNAs (miRNAs), as major components of exosomes, are often regulated in many diseases including bacterial and viral infections. Functionally, exosome-carried miRNAs interact with various immune cells and affect their behavior. Little is known whether exosomal miRNAs are regulated during scrub typhus, a potentially lethal infection caused by intracellular bacteria, Orientiatsutsugamushi. In the present study, we utilized a scrub typhus mouse model and collected serum at various time points post infection. A custom quantitative PCR array covering 92 murine miRNAs was used to profile serum exosomal miRNAs. A total of 12 miRNAs were found to be significantly up- or down-regulated at least at one time point post infection when compared to uninfected animals. Further analysis identified multiple miRNAs in the let-7 family that were consistently down-regulated at early and late phase of infection. Functionally, serum exosomes isolated from infected mice displayed strong proinflammatory effect when incubated with bone marrow-derived macrophages. Our data revealed dynamic regulations of serum exosomal miRNA during scrub typhus infection, which could significantly influence host immune responses and disease outcome.
Collapse
Affiliation(s)
- Le Jiang
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (L.J.); (T.B.); (Z.Z.); (T.-C.C.); (W.-M.C.)
| | - Tatyana Belinskaya
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (L.J.); (T.B.); (Z.Z.); (T.-C.C.); (W.-M.C.)
| | - Zhiwen Zhang
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (L.J.); (T.B.); (Z.Z.); (T.-C.C.); (W.-M.C.)
| | - Teik-Chye Chan
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (L.J.); (T.B.); (Z.Z.); (T.-C.C.); (W.-M.C.)
| | - Wei-Mei Ching
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (L.J.); (T.B.); (Z.Z.); (T.-C.C.); (W.-M.C.)
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Chien-Chung Chao
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (L.J.); (T.B.); (Z.Z.); (T.-C.C.); (W.-M.C.)
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence:
| |
Collapse
|
5
|
Banerjee A, Kulkarni S. Orientia tsutsugamushi: The dangerous yet neglected foe from the East. Int J Med Microbiol 2020; 311:151467. [PMID: 33338890 DOI: 10.1016/j.ijmm.2020.151467] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 10/06/2020] [Accepted: 11/25/2020] [Indexed: 01/22/2023] Open
Abstract
Orientia tsutsugamushi (OT), the causative agent of the vector-borne Scrub typhus zoonotic disease in humans, is a unique microorganism that exists in the Asia-Pacific region since a long time. In spite of its occurrence, the organism had been neglected until recent years. Humans are the accidental dead-end hosts of O. tsutsugamushi and display manifestations which are both severe and misleading. The vast antigenic diversity of OT and non-pathognomic symptoms of Scrub typhus, create hurdles in the clinical management of the disease and impede the OT-research. Many countries in the Asia-Pacific region have reported the resurgence of OT- infections and have raised concerns for its expanding distribution. This has triggered the development of advanced techniques for diagnosis and research on exploring a successful vaccine candidate to reduce the burden of the disease. Thus, the aim of this systematic review is to provide an update on the recent advances in the OT-research and highlight the key areas that have remained obscure and demand attention.
Collapse
Affiliation(s)
- Anwesha Banerjee
- ICMR-National AIDS Research Institute, Bhosari, Pune, 411026, India
| | - Smita Kulkarni
- ICMR-National AIDS Research Institute, Bhosari, Pune, 411026, India.
| |
Collapse
|
6
|
Dual RNA-seq of Orientia tsutsugamushi informs on host-pathogen interactions for this neglected intracellular human pathogen. Nat Commun 2020; 11:3363. [PMID: 32620750 PMCID: PMC7335160 DOI: 10.1038/s41467-020-17094-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Studying emerging or neglected pathogens is often challenging due to insufficient information and absence of genetic tools. Dual RNA-seq provides insights into host-pathogen interactions, and is particularly informative for intracellular organisms. Here we apply dual RNA-seq to Orientia tsutsugamushi (Ot), an obligate intracellular bacterium that causes the vector-borne human disease scrub typhus. Half the Ot genome is composed of repetitive DNA, and there is minimal collinearity in gene order between strains. Integrating RNA-seq, comparative genomics, proteomics, and machine learning to study the transcriptional architecture of Ot, we find evidence for wide-spread post-transcriptional antisense regulation. Comparing the host response to two clinical isolates, we identify distinct immune response networks for each strain, leading to predictions of relative virulence that are validated in a mouse infection model. Thus, dual RNA-seq can provide insight into the biology and host-pathogen interactions of a poorly characterized and genetically intractable organism such as Ot.
Collapse
|
7
|
Soong L. Dysregulated Th1 Immune and Vascular Responses in Scrub Typhus Pathogenesis. THE JOURNAL OF IMMUNOLOGY 2019; 200:1233-1240. [PMID: 29431689 DOI: 10.4049/jimmunol.1701219] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/30/2017] [Indexed: 12/25/2022]
Abstract
Scrub typhus is an emerging, insect-transmitted disease caused by Orientia tsutsugamushi, a Gram- and LPS-negative bacterium that replicates freely within professional phagocytes and endothelial cells. Scrub typhus is prevalent with high mortality rates, but information regarding its molecular pathogenesis, microbial virulence determinants, and key immune responses is limited. Improved animal models have recently been developed that respectively resemble the pathological features of self-limiting or severe scrub typhus in humans. Strong activation of Th1 and CD8, but not Th2 and regulatory T, immune responses, accompanied by altered angiopoietin/Tie2-related regulation, are hallmarks of lethal infection in murine models. This review, based primarily on recent advances from clinical and experimental studies, highlights tissue- and endothelial cell-specific biomarkers that are indicative of immune dysregulation. The potential roles of neutrophils and damage-associated molecular pattern molecules at late stages of disease are discussed in the context of vascular leakage, pulmonary and renal injury, and scrub typhus pathogenesis.
Collapse
Affiliation(s)
- Lynn Soong
- Department of Microbiology and Immunology, Center for Tropical Diseases, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555; and .,Department of Pathology, Center for Tropical Diseases, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
8
|
Jiang L, Morris EK, Aguilera-Olvera R, Zhang Z, Chan TC, Shashikumar S, Chao CC, Casares SA, Ching WM. Dissemination of Orientia tsutsugamushi, a Causative Agent of Scrub Typhus, and Immunological Responses in the Humanized DRAGA Mouse. Front Immunol 2018; 9:816. [PMID: 29760694 PMCID: PMC5936984 DOI: 10.3389/fimmu.2018.00816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/04/2018] [Indexed: 12/23/2022] Open
Abstract
Scrub typhus is caused by Orientia tsutsugamushi, an obligated intracellular bacterium that affects over one million people per year. Several mouse models have been used to study its pathogenesis, disease immunology, and for testing vaccine candidates. However, due to the intrinsic differences between the immune systems in mouse and human, these mouse models could not faithfully mimic the pathology and immunological responses developed by human patients, limiting their value in both basic and translational studies. In this study, we have tested for the first time, a new humanized mouse model through footpad inoculation of O. tsutsugamushi in DRAGA (HLA-A2.HLA-DR4.Rag1KO.IL2RγcKO.NOD) mice with their human immune system reconstituted by infusion of HLA-matched human hematopoietic stem cells from umbilical cord blood. Upon infection, Orientia disseminated into various organs of DRAGA mice resulted in lethality in a dose-dependent manner, while all C3H/HeJ mice infected by the same route survived. Tissue-specific lesions associated with inflammation and/or necroses were observed in multiple organs of infected DRAGA mice. Consistent with the intracellular nature of Orientia, strong Th1, but subdued Th2 responses were elicited as reflected by the human cytokine profiles in sera from infected mice. Interestingly, the percentage of both activated and regulatory (CD4+FOXP3+) human T cells were elevated in spleen tissues of infected mice. After immunization with irradiated whole cell Orientia, humanized DRAGA mice showed a significant activation of human T cells as evidenced by increased number of human CD4+ and CD8+ T cells. Specific human IgM and IgG antibodies were developed after repetitive immunization. The humanized DRAGA mouse model represents a new pre-clinical model for studying Orientia-human interactions and also for testing vaccines and novel therapeutics for scrub typhus.
Collapse
Affiliation(s)
- Le Jiang
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States
| | - Erin K Morris
- Veterinary Services Program, Department of Pathology Services, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Rodrigo Aguilera-Olvera
- US Military Malaria Vaccine Program, Naval Medical Research Center, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Zhiwen Zhang
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States
| | - Teik-Chye Chan
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States
| | - Soumya Shashikumar
- US Military Malaria Vaccine Program, Naval Medical Research Center, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Chien-Chung Chao
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States.,Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Sofia A Casares
- US Military Malaria Vaccine Program, Naval Medical Research Center, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Wei-Mei Ching
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States.,Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
9
|
Díaz FE, Abarca K, Kalergis AM. An Update on Host-Pathogen Interplay and Modulation of Immune Responses during Orientia tsutsugamushi Infection. Clin Microbiol Rev 2018; 31:e00076-17. [PMID: 29386235 PMCID: PMC5967693 DOI: 10.1128/cmr.00076-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The obligate intracellular bacterium Orientia tsutsugamushi is the causative agent of scrub typhus in humans, a serious mite-borne disease present in a widespread area of endemicity, which affects an estimated 1 million people every year. This disease may exhibit a broad range of presentations, ranging from asymptomatic to fatal conditions, with the latter being due to disseminated endothelial infection and organ injury. Unique characteristics of the biology and host-pathogen interactions of O. tsutsugamushi, including the high antigenic diversity among strains and the highly variable, short-lived memory responses developed by the host, underlie difficulties faced in the pursuit of an effective vaccine, which is an imperative need. Other factors that have hindered scientific progress relative to the infectious mechanisms of and the immune response triggered by this bacterium in vertebrate hosts include the limited number of mechanistic studies performed on animal models and the lack of genetic tools currently available for this pathogen. However, recent advances in animal model development are promising to improve our understanding of host-pathogen interactions. Here, we comprehensively discuss the recent advances in and future perspectives on host-pathogen interactions and the modulation of immune responses related to this reemerging disease, highlighting the role of animal models.
Collapse
Affiliation(s)
- Fabián E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katia Abarca
- Departamento en Enfermedades Infecciosas e Inmunología Pediátricas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Hauptmann M, Kolbaum J, Lilla S, Wozniak D, Gharaibeh M, Fleischer B, Keller CA. Protective and Pathogenic Roles of CD8+ T Lymphocytes in Murine Orientia tsutsugamushi Infection. PLoS Negl Trop Dis 2016; 10:e0004991. [PMID: 27606708 PMCID: PMC5015871 DOI: 10.1371/journal.pntd.0004991] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/19/2016] [Indexed: 01/12/2023] Open
Abstract
T cells are known to contribute to immune protection against scrub typhus, a potentially fatal infection caused by the obligate intracellular bacterium Orientia (O.) tsutsugamushi. However, the contribution of CD8+ T cells to protection and pathogenesis during O. tsutsugamushi infection is still unknown. Using our recently developed BALB/c mouse model that is based on footpad inoculation of the human-pathogenic Karp strain, we show that activated CD8+ T cells infiltrate spleen and lung during the third week of infection. Depletion of CD8+ T cells with monoclonal antibodies resulted in uncontrolled pathogen growth and mortality. Adoptive transfer of CD8+ T cells from infected animals protected naïve BALB/c mice from lethal outcome of intraperitoneal challenge. In C57Bl/6 mice, the pulmonary lymphocyte compartment showed an increased percentage of CD8+ T cells for at least 135 days post O. tsutsugamushi infection. Depletion of CD8+ T cells at 84 days post infection caused reactivation of bacterial growth. In CD8+ T cell-deficient beta 2-microglobulin knockout mice, bacterial replication was uncontrolled, and all mice succumbed to the infection, despite higher serum IFN-γ levels and stronger macrophage responses in liver and lung. Moreover, we show that CD8+ T cells but not NKT cells were required for hepatocyte injury: elevated concentrations of serum alanine aminotransferase and infection-induced subcapsular necrotic liver lesions surrounded by macrophages were found in C57Bl/6 and CD1d-deficient mice, but not in beta 2-microglobulin knockout mice. In the lungs, peribronchial macrophage infiltrations also depended on CD8+ T cells. In summary, our results demonstrate that CD8+ T cells restrict growth of O. tsutsugamushi during acute and persistent infection, and are required to protect from lethal infections in BALB/c and C57BL/6 mice. However, they also elicit specific pathologic tissue lesions in liver and lung.
Collapse
Affiliation(s)
- Matthias Hauptmann
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Julia Kolbaum
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stefanie Lilla
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - David Wozniak
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Mohammad Gharaibeh
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Bernhard Fleischer
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian A. Keller
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
11
|
Keller CA, Hauptmann M, Kolbaum J, Gharaibeh M, Neumann M, Glatzel M, Fleischer B. Dissemination of Orientia tsutsugamushi and inflammatory responses in a murine model of scrub typhus. PLoS Negl Trop Dis 2014; 8:e3064. [PMID: 25122501 PMCID: PMC4133189 DOI: 10.1371/journal.pntd.0003064] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/20/2014] [Indexed: 01/10/2023] Open
Abstract
Central aspects in the pathogenesis of scrub typhus, an infection caused by Orientia (O.) tsutsugamushi, have remained obscure. Its organ and cellular tropism are poorly understood. The purpose of this study was to analyze the kinetics of bacterial dissemination and associated inflammatory responses in infected tissues in an experimental scrub typhus mouse model, following infection with the human pathogenic strain Karp. We provide a thorough analysis of O. tsutsugamushi infection in inbred Balb/c mice using footpad inoculation, which is close to the natural way of infection. By a novel, highly sensitive qPCR targeting the multi copy traD genes, we quantitatively monitored the spread of O. tsutsugamushi Karp from the skin inoculation site via the regional lymph node to the internal target organs. The highest bacterial loads were measured in the lung. Using confocal imaging, we also detected O. tsutsugamushi at the single cell level in the lung and found a predominant macrophage rather than endothelial localization. Immunohistochemical analysis of infiltrates in lung and brain revealed differently composed lesions with specific localizations: iNOS-expressing macrophages were frequent in infiltrative parenchymal noduli, but uncommon in perivascular lesions within these organs. Quantitative analysis of the macrophage response by immunohistochemistry in liver, heart, lung and brain demonstrated an early onset of macrophage activation in the liver. Serum levels of interferon (IFN)-γ were increased during the acute infection, and we showed that IFN-γ contributed to iNOS-dependent bacterial growth control. Our data show that upon inoculation to the skin, O. tsutsugamushi spreads systemically to a large number of organs and gives rise to organ-specific inflammation patterns. The findings suggest an essential role for the lung in the pathogenesis of scrub typhus. The model will allow detailed studies on host-pathogen interaction and provide further insight into the pathogenesis of O. tsutsugamushi infection. Many details of the pathogenesis of scrub typhus, an infection caused by the intracellular bacterium Orientia tsutsugamushi that is endemic in Southeast Asia, have remained unclear until today. In this study, we present an experimental self-healing mouse model of scrub typhus based on footpad skin inoculation of the human pathogenic Karp strain of O. tsutsugamushi that shares many features with human infection. We established a novel quantitative PCR with increased sensitivity for the measurement of bacterial organ loads of infected mice. It was thereby shown that O. tsutsugamushi initially accumulated in the regional lymph node and subsequently spread to many organs with the highest bacterial loads found in the lung. The predominant host cells in the lung were macrophages located in the parenchymal interstitium, rather than endothelial cells. Our data also show unexpected organ-specific differences in the dynamics of macrophage activation. This mouse model will help to advance our understanding of scrub typhus pathogenesis.
Collapse
Affiliation(s)
| | | | - Julia Kolbaum
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Melanie Neumann
- Mouse Pathology Core Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernhard Fleischer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Increased endothelial and macrophage markers are associated with disease severity and mortality in scrub typhus. J Infect 2014; 69:462-9. [PMID: 24995849 DOI: 10.1016/j.jinf.2014.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Scrub typhus is endemic in the Asia-Pacific region. Mortality is high even with treatment, and further knowledge of the immune response during this infection is needed. This study was aimed at comparing plasma levels of monocyte/macrophage and endothelial related inflammatory markers in patients and controls in South India and to explore a possible correlation to disease severity and clinical outcome. METHODS Plasma levels of ALCAM, VCAM-1, sCD163, sCD14, YKL-40 and MIF were measured in scrub typhus patients (n = 129), healthy controls (n = 31) and in infectious disease controls (n = 31), both in the acute phase and after recovery, by enzyme immunoassays. RESULTS Patients had markedly elevated levels of all mediators in the acute phase, differing from both healthy and infectious disease controls. During follow-up levels of ALCAM, VCAM-1, sCD14 and YKL-40 remained elevated compared to levels in healthy controls. High plasma ALCAM, VCAM-1, sCD163, sCD14, and MIF, and in particular YKL-40 were all associated with disease severity and ALCAM, sCD163, MIF and especially YKL-40, were associated with mortality. CONCLUSIONS Our findings show that scrub typhus is characterized by elevated levels of monocyte/macrophage and endothelial related markers. These inflammatory markers, and in particular YKL-40, may contribute to disease severity and clinical outcome.
Collapse
|
13
|
Sunyakumthorn P, Paris DH, Chan TC, Jones M, Luce-Fedrow A, Chattopadhyay S, Jiang J, Anantatat T, Turner GDH, Day NPJ, Richards AL. An intradermal inoculation model of scrub typhus in Swiss CD-1 mice demonstrates more rapid dissemination of virulent strains of Orientia tsutsugamushi. PLoS One 2013; 8:e54570. [PMID: 23342173 PMCID: PMC3546997 DOI: 10.1371/journal.pone.0054570] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/12/2012] [Indexed: 01/23/2023] Open
Abstract
Scrub typhus is an important endemic disease of the Asia-Pacific region caused by Orientia tsutsugamushi. To develop an effective vaccine to prevent scrub typhus infection, a better understanding of the initial host-pathogen interaction is needed. The objective of this study was to investigate early bacterial dissemination in a CD-1 Swiss outbred mouse model after intradermal injection of O. tsutsugamushi. Three human pathogenic strains of O. tsutsugamushi (Karp, Gilliam, and Woods) were chosen to investigate the early infection characteristics associated with bacterial virulence. Tissue biopsies of the intradermal injection site and draining lymph nodes were examined using histology and immunohistochemistry to characterize bacterial dissemination, and correlated with quantitative real-time PCR for O. tsutsugamushi in blood and tissue from major organs. Soluble adhesion molecules were measured to examine cellular activation in response to infection. No eschar formation was seen at the inoculation site and no clinical disease developed within the 7 day period of observation. However, O. tsutsugamushi was localized at the injection site and in the draining lymph nodes by day 7 post inoculation. Evidence of leukocyte and endothelial activation was present by day 7 with significantly raised levels of sL-selectin, sICAM-1 and sVCAM-1. Infection with the Karp strain was associated with earlier and higher bacterial loads and more extensive dissemination in various tissues than the less pathogenic Gilliam and Woods strains. The bacterial loads of O. tsutsugamushi were highest in the lungs and spleens of mice inoculated with Karp and Gilliam, but not Woods strains. Strains of higher virulence resulted in more rapid systemic infection and dissemination in this model. The CD-1 mouse intradermal inoculation model demonstrates features relevant to early scrub typhus infection in humans, including the development of regional lymphadenopathy, leukocyte activation and distant organ dissemination after low-dose intradermal injection with O. tsutsugamushi.
Collapse
Affiliation(s)
- Piyanate Sunyakumthorn
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Orientia tsutsugamushi, the causative agent of scrub typhus, induces an inflammatory program in human macrophages. Microb Pathog 2012; 55:55-63. [PMID: 23088884 DOI: 10.1016/j.micpath.2012.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/10/2012] [Accepted: 10/15/2012] [Indexed: 01/21/2023]
Abstract
Scrub typhus is a life-threatening disease caused by Orientia tsutsugamushi, a bacterium that primarily infects endothelial cells both in vitro and in vivo. Evidence suggests that the interaction of O. tsutsugamushi with myeloid cells may play a pivotal role in O. tsutsugamushi infection. We demonstrated that O. tsutsugamushi replicated within human monocyte-derived macrophages. Bacteria stimulated the expression of a large number of genes, including type I interferon genes, interferon-stimulated genes, inflammation-associated genes and apoptosis-related genes, and the release of inflammatory cytokines such as Tumor Necrosis Factor and interleukin-1β. In addition, O. tsutsugamushi induced an M1-type genetic program in macrophages. O. tsutsugamushi viability was required for the type I interferon response and, to a lesser degree, for the inflammatory response. As interferon-γ is known to elicit M1 polarization, we assessed the effect of interferon-γ on the fate of O. tsutsugamushi in macrophages. Exogenous interferon-γ partially inhibited O. tsutsugamushi replication within macrophages. Our results suggest that the inflammatory response induced by O. tsutsugamushi may account for the local and systemic inflammation observed in scrub typhus.
Collapse
|
15
|
Tantibhedhyangkul W, Prachason T, Waywa D, El Filali A, Ghigo E, Thongnoppakhun W, Raoult D, Suputtamongkol Y, Capo C, Limwongse C, Mege JL. Orientia tsutsugamushi stimulates an original gene expression program in monocytes: relationship with gene expression in patients with scrub typhus. PLoS Negl Trop Dis 2011; 5:e1028. [PMID: 21610853 PMCID: PMC3096591 DOI: 10.1371/journal.pntd.0001028] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/22/2011] [Indexed: 12/14/2022] Open
Abstract
Orientia tsutsugamushi is the causal agent of scrub typhus, a public health problem in the Asia-Pacific region and a life-threatening disease. O. tsutsugamushi is an obligate intracellular bacterium that mainly infects endothelial cells. We demonstrated here that O. tsutsugamushi also replicated in monocytes isolated from healthy donors. In addition, O. tsutsugamushi altered the expression of more than 4,500 genes, as demonstrated by microarray analysis. The expression of type I interferon, interferon-stimulated genes and genes associated with the M1 polarization of macrophages was significantly upregulated. O. tsutsugamushi also induced the expression of apoptosis-related genes and promoted cell death in a small percentage of monocytes. Live organisms were indispensable to the type I interferon response and apoptosis and enhanced the expression of M1-associated cytokines. These data were related to the transcriptional changes detected in mononuclear cells isolated from patients with scrub typhus. Here, the microarray analyses revealed the upregulation of 613 genes, which included interferon-related genes, and some features of M1 polarization were observed in these patients, similar to what was observed in O. tsutsugamushi-stimulated monocytes in vitro. This is the first report demonstrating that monocytes are clearly polarized in vitro and ex vivo following exposure to O. tsutsugamushi. These results would improve our understanding of the pathogenesis of scrub typhus, during which interferon-mediated activation of monocytes and their subsequent polarization into an M1 phenotype appear critical. This study may give us a clue of new tools for the diagnosis of patients with scrub typhus.
Collapse
Affiliation(s)
- Wiwit Tantibhedhyangkul
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Centre National de la Recherche Scientifique - Institut de Recherche pour le Développement Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
- Department of Immunology, Mahidol University, Bangkok, Thailand
| | - Thanavadee Prachason
- Division of Molecular Genetics, Department of Research and Development, Mahidol University, Bangkok, Thailand
- Department of Immunology, Mahidol University, Bangkok, Thailand
| | - Duangdao Waywa
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adil El Filali
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Centre National de la Recherche Scientifique - Institut de Recherche pour le Développement Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Eric Ghigo
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Centre National de la Recherche Scientifique - Institut de Recherche pour le Développement Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Wanna Thongnoppakhun
- Division of Molecular Genetics, Department of Research and Development, Mahidol University, Bangkok, Thailand
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Centre National de la Recherche Scientifique - Institut de Recherche pour le Développement Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Yupin Suputtamongkol
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Christian Capo
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Centre National de la Recherche Scientifique - Institut de Recherche pour le Développement Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Chanin Limwongse
- Division of Molecular Genetics, Department of Research and Development, Mahidol University, Bangkok, Thailand
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jean-Louis Mege
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Centre National de la Recherche Scientifique - Institut de Recherche pour le Développement Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
- * E-mail:
| |
Collapse
|