1
|
AlSaeed H, Haider MJA, Alzaid F, Al-Mulla F, Ahmad R, Al-Rashed F. PPARdelta: A key modulator in the pathogenesis of diabetes mellitus and Mycobacterium tuberculosis co-morbidity. iScience 2024; 27:110046. [PMID: 38989454 PMCID: PMC11233913 DOI: 10.1016/j.isci.2024.110046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/20/2024] [Accepted: 05/17/2024] [Indexed: 07/12/2024] Open
Abstract
The interplay between lipid metabolism and immune response in macrophages plays a pivotal role in various infectious diseases, notably tuberculosis (TB). Herein, we illuminate the modulatory effect of heat-killed Mycobacterium tuberculosis (HKMT) on macrophage lipid metabolism and its implications on the inflammatory cascade. Our findings demonstrate that HKMT potently activates the lipid scavenger receptor, CD36, instigating lipid accumulation. While CD36 inhibition mitigated lipid increase, it unexpectedly exacerbated the inflammatory response. Intriguingly, this paradoxical effect was linked to an upregulation of PPARδ. Functional analyses employing PPARδ modulation revealed its central role in regulating both lipid dynamics and inflammation, suggesting it as a potential therapeutic target. Moreover, primary monocytic cells from diabetic individuals, a demographic at amplified risk of TB, exhibited heightened PPARδ expression and inflammation, further underscoring its pathological relevance. Targeting PPARδ in these cells effectively dampened the inflammatory response, offering a promising therapeutic avenue against TB.
Collapse
Affiliation(s)
- Halemah AlSaeed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, Dasman, Kuwait, PO BOX 1180, Dasman 15462, State of Kuwait
| | - Mohammed J A Haider
- Department of Biological Sciences, Faculty of Science, Kuwait University, PO BOX 5969, Safat 13060, State of Kuwait
| | - Fawaz Alzaid
- Bioenergetics Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, 75015 Paris, France
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, Dasman, Kuwait, PO BOX 1180, Dasman 15462, State of Kuwait
| | - Fatema Al-Rashed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, Dasman, Kuwait, PO BOX 1180, Dasman 15462, State of Kuwait
| |
Collapse
|
2
|
Wang J, Cao H, Yang H, Wang N, Weng Y, Luo H. The function of CD36 in Mycobacterium tuberculosis infection. Front Immunol 2024; 15:1413947. [PMID: 38881887 PMCID: PMC11176518 DOI: 10.3389/fimmu.2024.1413947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
CD36 is a scavenger receptor that has been reported to function as a signaling receptor that responds to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and could integrate metabolic pathways and cell signaling through its dual functions. Thereby influencing activation to regulate the immune response and immune cell differentiation. Recent studies have revealed that CD36 plays critical roles in the process of lipid metabolism, inflammatory response and immune process caused by Mycobacterium tuberculosis infection. This review will comprehensively investigate CD36's functions in lipid uptake and processing, inflammatory response, immune response and therapeutic targets and biomarkers in the infection process of M. tuberculosis. The study also raised outstanding issues in this field to designate future directions.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Hongwei Yang
- Department of Clinical Laboratory, Suzhou BOE Hospital, Suzhou, Jiangsu, China
| | - Nan Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, China
| | - Yiwei Weng
- Department of Clinical Laboratory, The Fourth People’s Hospital of Kunshan, Suzhou, Jiangsu, China
| | - Hao Luo
- Department of Clinical Laboratory, The Second People's Hospital of Kunshan, Suzhou, China
| |
Collapse
|
3
|
Rahlwes KC, Dias BR, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence 2023; 14:2150449. [PMID: 36419223 PMCID: PMC9817126 DOI: 10.1080/21505594.2022.2150449] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, an infectious disease with one of the highest morbidity and mortality rates worldwide. Leveraging its highly evolved repertoire of non-protein and protein virulence factors, Mtb invades through the airway, subverts host immunity, establishes its survival niche, and ultimately escapes in the setting of active disease to initiate another round of infection in a naive host. In this review, we will provide a concise synopsis of the infectious life cycle of Mtb and its clinical and epidemiologic significance. We will also take stock of its virulence factors and pathogenic mechanisms that modulate host immunity and facilitate its spread. Developing a greater understanding of the interface between Mtb virulence factors and host defences will enable progress toward improved vaccines and therapeutics to prevent and treat tuberculosis.
Collapse
Affiliation(s)
- Kathryn C. Rahlwes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beatriz R.S. Dias
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Priscila C. Campos
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel Alvarez-Arguedas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael U. Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,CONTACT Michael U. Shiloh
| |
Collapse
|
4
|
Zihad SNK, Sifat N, Islam MA, Monjur-Al-Hossain A, Sikdar KYK, Sarker MMR, Shilpi JA, Uddin SJ. Role of pattern recognition receptors in sensing Mycobacterium tuberculosis. Heliyon 2023; 9:e20636. [PMID: 37842564 PMCID: PMC10570006 DOI: 10.1016/j.heliyon.2023.e20636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 09/06/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
Mycobacterium tuberculosis is one of the major invasive intracellular pathogens causing most deaths by a single infectious agent. The interaction between host immune cells and this pathogen is the focal point of the disease, Tuberculosis. Host immune cells not only mount the protective action against this pathogen but also serve as the primary niche for growth. Thus, recognition of this pathogen by host immune cells and following signaling cascades are key dictators of the disease state. Immune cells, mainly belonging to myeloid cell lineage, recognize a wide variety of Mycobacterium tuberculosis ligands ranging from carbohydrate and lipids to proteins to nucleic acids by different membrane-bound and soluble pattern recognition receptors. Simultaneous interaction between different host receptors and pathogen ligands leads to immune-inflammatory response as well as contributes to virulence. This review summarizes the contribution of pattern recognition receptors of host immune cells in recognizing Mycobacterium tuberculosis and subsequent initiation of signaling pathways to provide the molecular insight of the specific Mtb ligands interacting with specific PRR, key adaptor molecules of the downstream signaling pathways and the resultant effector functions which will aid in identifying novel drug targets, and developing novel drugs and adjuvants.
Collapse
Affiliation(s)
| | - Nazifa Sifat
- Department of Pharmacy, ASA University of Bangladesh, Dhaka, 1207, Bangladesh
| | | | | | | | - Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhaka, 1205, Bangladesh
- Department of Pharmacy, Gono University, Nolam, Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - Jamil A. Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
5
|
Discovery of nitric oxide-inducing activities of synthetic LAM glycan motifs prepared by scalable rapid syntheses. Carbohydr Polym 2022; 296:119637. [DOI: 10.1016/j.carbpol.2022.119637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/01/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
|
6
|
Nontuberculous Mycobacteria, Macrophages, and Host Innate Immune Response. Infect Immun 2021; 89:e0081220. [PMID: 34097459 DOI: 10.1128/iai.00812-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Although nontuberculous mycobacteria (NTM) are considered opportunistic infections, incidence and prevalence of NTM infection are increasing worldwide becoming a major public health threat. Innate immunity plays an essential role in mediating the initial host response against these intracellular bacteria. Specifically, macrophages phagocytose and eliminate NTM and act as antigen-presenting cells, which trigger downstream activation of cellular and humoral adaptive immune responses. Identification of macrophage receptors, mycobacterial ligands, phagosome maturation, autophagy/necrosis, and escape mechanisms are important components of this immunity network. The role of the macrophage in mycobacterial disease has mainly been studied in tuberculosis (TB), but limited information exists on its role in NTM. In this review, we focus on NTM immunity, the role of macrophages, and host interaction in NTM infection.
Collapse
|
7
|
Banesh S, Trivedi V. Therapeutic Potentials of Scavenger Receptor CD36 Mediated Innate Immune Responses Against Infectious and Non-Infectious Diseases. Curr Drug Discov Technol 2020; 17:299-317. [PMID: 31376823 DOI: 10.2174/1570163816666190802153319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/18/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
CD36 is a multifunctional glycoprotein, expressed in different types of cells and known to play a significant role in the pathophysiology of the host. The structural studies revealed that the scavenger receptor consists of short cytosolic domains, two transmembrane domains, and a large ectodomain. The ectodomain serves as a receptor for a diverse number of endogenous and exogenous ligands. The CD36-specific ligands are involved in regulating the immune response during infectious and non-infectious diseases in the host. The role of CD36 in regulating the innate immune response during Pneumonia, Tuberculosis, Malaria, Leishmaniasis, HIV, and Sepsis in a ligand- mediated fashion. Apart from infectious diseases, it is also considered to be involved in metabolic disorders such as Atherosclerosis, Alzheimer's, cancer, and Diabetes. The ligand binding to scavenger receptor modulates the CD36 down-stream innate immune response, and it can be exploited to design suitable immuno-modulators. Hence, the current review focused on the role of the CD36 in innate immune response and therapeutic potentials of novel heterocyclic compounds as CD36 ligands during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Sooram Banesh
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
8
|
Fu Y, Yang X, Chen H, Lu Y. Diagnostic value of miR-145 and its regulatory role in macrophage immune response in tuberculosis. Genet Mol Biol 2020; 43:e20190238. [PMID: 32614357 PMCID: PMC7263433 DOI: 10.1590/1678-4685-gmb-2019-0238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/17/2020] [Indexed: 12/27/2022] Open
Abstract
Tuberculosis (TB) induced by Mycobacterium tuberculosis (Mtb) is a serious global health burden. This study sought to investigate the expression and diagnostic value of serum miR-145 in TB patients and explore the biological function of miR-145 using macrophages. Serum expression levels of miR-145 were estimated by quantitative real-time PCR. A receiver operating characteristic curve was plotted to evaluate the diagnostic accuracy of miR-145. This study further focused on the effects of miR-145 on cell viability and inflammation in macrophages upon Mtb infection, and explored the potential target gene of miR-145. Serum expression levels of miR-145 were decreased in TB patients, and the upregulated inflammatory cytokines in TB patients were negatively correlated with the serum expression levels of miR-145. miR-145 had considerable diagnostic accuracy in distinguishing of TB patients from healthy individuals and differentiating between active TB cases and latent TB cases. Mtb infection induced an increase in cell viability and inflammatory responses in macrophages, but these promoting effects were rescued by the overexpression of miR-145. CXCL16 was determined as a target gene of miR-145 in macrophages. Overall, this study demonstrated that the decreased serum miR-145 expression serves a candidate diagnostic biomarker in TB patients. The overexpression of miR-145 in macrophages upon Mtb infection can suppress cell viability and infection-induced inflammation via regulating CXCL16, indicating the potential of miR-145 as a therapeutic target of TB.
Collapse
Affiliation(s)
- Yinghui Fu
- The Fourth Department of Tuberculosis, Shenyang Chest Hospital, Shenyang, Liaoning 110034, China
| | - Xue Yang
- The Fourth Department of Tuberculosis, Shenyang Chest Hospital, Shenyang, Liaoning 110034, China
| | - Hongyan Chen
- Department of Science and education, Shenyang Chest Hospital, Shenyang, Liaoning 110034, China
| | - Yugang Lu
- Tongji University School of Medicine, Department of Anesthesiology, Shanghai Pulmonary Hospital, Shanghai 200433, China
| |
Collapse
|
9
|
Vinod V, Vijayrajratnam S, Vasudevan AK, Biswas R. The cell surface adhesins of Mycobacterium tuberculosis. Microbiol Res 2019; 232:126392. [PMID: 31841935 DOI: 10.1016/j.micres.2019.126392] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/11/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023]
Abstract
Bacterial cell surface adhesins play a major role in facilitating host colonization and subsequent establishment of infection. The surface of Mycobacterium tuberculosis, owing to the complex architecture of its cell envelope, expresses numerous adhesins with varied chemical nature, including proteins, lipids, lipoproteins, glycoproteins and glycopolymers. Studies on mycobacterial adhesins show that they bind with multifarious host receptors and extracellular matrix (ECM) components. In this review we have highlighted the adhesins that are abundantly present on the mycobacterial surface and their interactions with host receptors. M. tuberculosis interacts with various host cell surface receptors such as toll like receptors, C-type lectin receptors, scavenger receptors, and Fc and complement receptors. Apart from these, ECM components like fibronectin, collagen, elastin, laminin, fibrillin and vitronectin also provide binding sites for surface adhesins of the tubercle bacilli. M. tuberculosis adhesins include proteins with and without signal peptide sequence and transmembrane proteins. Other surface adhesin macromolecules of M. tuberculosis comprises of lipids, glycolipids and glycopolymers. The interaction between the mycobacterial adhesins and their host receptors result in adhesion of the microbe to the host cells, induction of immune response and aid in the pathogenesis of the disease. A thorough understanding of the different M. tuberculosis surface adhesins and host receptors will provide a better picture of interaction between them at molecular level. The information gained on adhesins and host receptors will prove beneficial in developing novel therapeutic strategies such as the use of anti-adhesin molecules to hinder the adhesion of bacteria to the host cells, thereby preventing establishment of infection. The surface molecules discussed in this review will also benefit in identification of new drug targets, diagnostic markers or vaccine candidates against the deadly pathogen.
Collapse
Affiliation(s)
- Vivek Vinod
- Center for Nanosciences and Molecular Medicine, Amrita School of Medical Sciences and Research Center (AIMS), Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Sukhithasri Vijayrajratnam
- Center for Nanosciences and Molecular Medicine, Amrita School of Medical Sciences and Research Center (AIMS), Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Anil Kumar Vasudevan
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Raja Biswas
- Center for Nanosciences and Molecular Medicine, Amrita School of Medical Sciences and Research Center (AIMS), Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| |
Collapse
|
10
|
Allam G, Gaber AM, Othman SI, Abdel-Moneim A. The potential role of interleukin-37 in infectious diseases. Int Rev Immunol 2019; 39:3-10. [PMID: 31633447 DOI: 10.1080/08830185.2019.1677644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interleukin-37 (IL-37) is a newly introduced cytokine to interleukin-1 family. Many studies have demonstrated that IL-37 owns immunosuppressive effects against both innate and acquired immune responses via inhibition of several inflammatory mediators. Thence, IL-37 has anti-inflammatory action in some diseases including cancer, autoimmune diseases, cardiovascular diseases and infectious diseases. Recent investigations have reported the important role of IL-37 in immunity against viral, bacterial and fungal infections as they prevent inappropriate immune activation and suppress the inflammation induced by these infectious agents. Thus, IL-37 could play a crucial role in protecting host tissues from injury during infections by damping excessive inflammatory reactions. However, the precise roles of IL-37 in infectious diseases remain largely unknown. The current review shed light on the pivotal role of IL-37 in infectious diseases such as the human immunodeficiency virus-1 (HIV-1), viral myocarditis, hepatitis C virus (HCV), hepatitis B virus (HBV), tuberculosis, leprosy, pneumococcal pneumonia, listeria infection, aspergillosis, candidiasis and eumycetoma. In conclusion, this review reported that IL-37 has a crucial role in reducing infection-associated inflammation and has a good impact on inflammation-induced pathology. However, tight regulation that achieved balance between effector immune responses that required for pathogen elimination and limited tissue damage that resulted from excessive inflammation should be existed in the potential IL-37 therapy to prevent clinical complications of a disease.
Collapse
Affiliation(s)
- Gamal Allam
- Immunology Section, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.,Egyptian-Korean College of Industry and Energy Technology, Beni-Suef Technological University, Beni-Suef, Egypt
| | - Asmaa M Gaber
- Physiology Section, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Sarah I Othman
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Adel Abdel-Moneim
- Physiology Section, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
11
|
Czekalska A, Majewski D, Puszczewicz M. Immunodeficiency and autoimmunity during biological disease-modifying antirheumatic drug therapy. Reumatologia 2019; 57:214-220. [PMID: 31548748 PMCID: PMC6753594 DOI: 10.5114/reum.2019.87616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Biological disease-modifying antirheumatic drugs target specific components of the immune response related to pathogenesis of autoimmune and inflammatory diseases. Introduction of biologic therapies has enabled better disease control than conventional drugs and thus a reduction in comorbidity and mortality. However, there is concern about adverse effects of these drugs including infections, cancers and drug-induced autoimmune diseases. Patients undergoing biologic treatment are at small but significant risk of serious infections. The overall risk of malignancies in patients on biologics compared with the general population is not increased, but there is evidence of a higher risk of individual cancers. Surprisingly, biological treatment may induce autoantibody production and, rarely, development of autoimmune diseases. A growing body of literature has evaluated the risk of adverse effects during biologic therapies. This paper outlines adverse effects of biological disease-modifying antirheumatic drugs related to immune system disorders, both immunodeficiency and autoimmunity.
Collapse
Affiliation(s)
- Anna Czekalska
- Department of Rheumatology and Internal Medicine, Poznan University of Medical Sciences, Poland
| | - Dominik Majewski
- Department of Rheumatology and Internal Medicine, Poznan University of Medical Sciences, Poland
| | - Mariusz Puszczewicz
- Department of Rheumatology and Internal Medicine, Poznan University of Medical Sciences, Poland
| |
Collapse
|
12
|
The Mycobacterium tuberculosis capsule: a cell structure with key implications in pathogenesis. Biochem J 2019; 476:1995-2016. [PMID: 31320388 PMCID: PMC6698057 DOI: 10.1042/bcj20190324] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/17/2023]
Abstract
Bacterial capsules have evolved to be at the forefront of the cell envelope, making them an essential element of bacterial biology. Efforts to understand the Mycobacterium tuberculosis (Mtb) capsule began more than 60 years ago, but the relatively recent development of mycobacterial genetics combined with improved chemical and immunological tools have revealed a more refined view of capsule molecular composition. A glycogen-like α-glucan is the major constituent of the capsule, with lower amounts of arabinomannan and mannan, proteins and lipids. The major Mtb capsular components mediate interactions with phagocytes that favor bacterial survival. Vaccination approaches targeting the mycobacterial capsule have proven successful in controlling bacterial replication. Although the Mtb capsule is composed of polysaccharides of relatively low complexity, the concept of antigenic variability associated with this structure has been suggested by some studies. Understanding how Mtb shapes its envelope during its life cycle is key to developing anti-infective strategies targeting this structure at the host-pathogen interface.
Collapse
|
13
|
Gough ME, Graviss EA, Chen TA, Obasi EM, May EE. Compounding effect of vitamin D 3 diet, supplementation, and alcohol exposure on macrophage response to mycobacterium infection. Tuberculosis (Edinb) 2019; 116S:S42-S58. [PMID: 31126718 DOI: 10.1016/j.tube.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Abstract
Vitamin D3 is known to be a key component in the defense against Mycobacterium tuberculosis (Mtb) infection through the regulation of cytokine and effector molecules. Conversely, alcohol exposure has been recognized as an immune dysregulator. Macrophages were extracted from D3 deficient and sufficient diet mice and supplemented with D3 or exposed to ethanol during ex vivo infection using M. bovis BCG, as a surrogate for Mtb. Results of our study indicate that while exogenous supplementation or alcohol exposure did alter immune response, in vivo diet was the greatest determinant of cytokine and effector molecule production. Alcohol exposure was found to profoundly dysregulate primary murine macrophages, with ethanol-exposed cells generally characterized as hyper- or hyporesponsive. Exogenous D3 supplementation had a normative effect for diet deficient host, however supplementation was not sufficient to compensate for the effects of diet deficiency. Vitamin D3 sufficient diet resulted in reduced cell cytotoxicity for the majority of time points. Results provide insight into the ramifications of both the individual and combined health risks of D3 deficiency or alcohol exposure. Given the clinical relevance of D3 deficiency and alcohol use comorbidities, outcomes of this study have implications in therapeutic approaches for the treatment of tuberculosis disease.
Collapse
Affiliation(s)
- Maya E Gough
- Biomedical Engineering Department, University of Houston, USA
| | - Edward A Graviss
- Pathology & Genomic Medicine, Houston Methodist Research Institute, USA
| | - Tzu-An Chen
- HEALTH Research Institute, University of Houston, USA
| | - Ezemenari M Obasi
- HEALTH Research Institute, University of Houston, USA; Psychological, Health, & Learning Sciences Department, University of Houston, USA
| | - Elebeoba E May
- Biomedical Engineering Department, University of Houston, USA; HEALTH Research Institute, University of Houston, USA.
| |
Collapse
|
14
|
Gough M, May E. In Silico Model of Vitamin D 3 Dependent NADPH Oxidase Complex Activation During Mycobacterium Infection. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:2382-2385. [PMID: 30440886 DOI: 10.1109/embc.2018.8512889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a highly infectious aerosolizable bacterium, which causes upward of 1.5 million deaths per year. Alveolar macrophages, the primary defense cell of the lung, are the preferred host cell of this intracellular bacterium. Vitamin D3 is a known transcription factor, modulating the transcription of pro- and anti-inflammatory cytokines and immunologically relevant proteins. In a vitamin D3 deficient host, the immune systems response to infection is greatly impaired. We used a quantitative systems biology approach to model the impact of long-term vitamin D3 deficiency on macrophage effector response. We then compared our simulation output to our in vitro model of mycobacterium infection of macrophages from vitamin D3 supplemented hosts. Our in silico model results agreed with in vitro levels of hydrogen peroxide (H2O2) production, an antimicrobial effector molecule produced by the host's macrophage, known to be modulated indirectly by vitamin D3. The current model will provide a foundation for further studies into the effects of micronutrient deficiency on immune response.
Collapse
|
15
|
Leelayuwapan H, Ruchirawat S, Boonyarattanakalin S. Rapid synthesis and immunogenicity of mycobacterial (1→5)-α-d-arabinofuranan. Carbohydr Polym 2018; 206:262-272. [PMID: 30553321 DOI: 10.1016/j.carbpol.2018.10.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 11/18/2022]
Abstract
A rapid synthesis of the α(1→5) arabinofuranan polysaccharides, found on the outer surface of Mycobacterium tuberculosis (Mtb), is achieved by a regio- and stereocontrolled ring opening polymerization of β-d-arabinofuranose-1,2,5-orthobenzoate. The robust polymerization reaction allows the incorporation of an amine linker, which was used to conjugate with protein tetanus toxoid (TT) to further investigate its adjuvant activities. The synthetic arabinan, which is the glycan on the non-reducing end of Mtb lipoarabinomannan (LAM), was evaluated for its immunological properties in vitro and in vivo. Systemic inflammation and the promotion of innate immune response were observed in macrophages treated with the synthetic arabinan as an adjuvant through an increase in the production of TNF-α and IL-12. In vivo evaluation of IFN-γ, IL-2, and TNF-α productions in mice pre-immunized with the synthetic arabinan conjugated TT indicated great enhancements of the immunological responses when compared to that of TT alone.
Collapse
Affiliation(s)
- Haris Leelayuwapan
- Program in Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), PERDO, Bangkok, 10210, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), PERDO, Bangkok, 10210, Thailand; Laboratory of Medicinal Chemistry, Chulabhorn Research Institute (CRI), 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Siwarutt Boonyarattanakalin
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, 12121, Thailand.
| |
Collapse
|
16
|
Cytokine Secretion of Peripheral Blood Mononuclear Cells by Hydnocarpus anthelminthicus Seeds. J Trop Med 2018; 2018:6854835. [PMID: 29973956 PMCID: PMC6008724 DOI: 10.1155/2018/6854835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/28/2018] [Accepted: 05/06/2018] [Indexed: 11/17/2022] Open
Abstract
Background Hydnocarpus anthelminthicus is primarily used as a traditional medicine for the treatment of leprosy. Previous studies demonstrated that the clinical course of leprosy and the susceptibility to mycobacteria are recognized by the immune response of the host. The current study aims to investigate the effect of H. anthelminthicus seed oil and extracts on the secretion of cytokines from PBMCs involved in immune regulation. Methods PBMCs from healthy volunteers were cultured and treated with LPS and H. anthelminthicus seed oil or extracts. Cell viability was detected with WST-1 cell proliferation assay reagent. Proinflammatory cytokines were quantified using ELISA with a specific antibody. Results LPS-treated PBMCs significantly increased IL6 and TNF-α secretion. H. anthelminthicus seed oil had a synergistic effect with LPS on TNF-α secretion. The aqueous extract of H. anthelminthicus seed kernels and hulls significantly induced IL6 and TNF-α secretion. However, the ethanol extract of H. anthelminthicus seed kernels and hulls significantly decreased IL6, IL8, and TNF-α secretion in LPS-treated PBMCs. Conclusions Extracts of H. anthelminthicus seeds demonstrated various effects on the proinflammatory cytokine secretion of PBMCs. The application of these extracts should depend on the immune response of the host, which determines the manifestation of the disease.
Collapse
|
17
|
Gough ME, Graviss EA, May EE. The dynamic immunomodulatory effects of vitamin D 3 during Mycobacterium infection. Innate Immun 2018; 23:506-523. [PMID: 28770668 DOI: 10.1177/1753425917719143] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis ( Mtb), is a highly infectious airborne bacterium. Previous studies have found vitamin D3 to be a key factor in the defense against Mtb infection, through its regulation of the production of immune-related cytokines, chemokines and effector molecules. Mycobacterium smegmatis was used in our study as a surrogate of Mtb. We hypothesized that the continuous presence of vitamin D3, as well as the level of severity of infection would differentially modulate host cell immune response in comparison with control and the vehicle, ethanol. We found that vitamin D3 conditioning promotes increased bacterial clearance during low-level infection, intracellular containment during high-level infection, and minimizes host cytotoxicity. In the presence of vitamin D3 host cell production of cytokines and effector molecules was infection-level dependent, most notably IL-12, which increased during high-level infection and decreased during low-level infection, and NO, which had a rate of change positively correlated to IL-12. Our study provides evidence that vitamin D3 modulation is context-dependent and time-variant, as well as highly correlated to level of infection. This study furthers our mechanistic understanding of the dual role of vitamin D3 as a regulator of bactericidal molecules and protective agent against host cell damage.
Collapse
Affiliation(s)
- Maya E Gough
- 1 Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Edward A Graviss
- 2 Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Elebeoba E May
- 1 Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
18
|
Gough M, May E. An in silico model of the effects of vitamin D3 on mycobacterium infected macrophage. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:1443-1446. [PMID: 28268597 DOI: 10.1109/embc.2016.7590980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mycobacterium tuberculosis is a global health concern, causing over one million deaths a year. Alveolar macrophages, as the primary host cell of this intracellular bacterium, play an important role in the course of disease. Vitamin D3 is known to have a potent effect on macrophage behavior during infection, modulating the production of pro- and anti-inflammatory cytokines and immune effector molecules. In a vitamin D3 deficient host, the immune systems response to infection is greatly impaired. We used a quantitative systems biology approach to model the intracellular effects of vitamin D3 and compared our simulation output to our in vitro model of mycobacterium infection of macrophages in the presence and absence of Vitamin D3. Our in silico model results agreed with the in vitro assay results of interleukin-10, an anti-inflammatory protein whose production is known to be influenced by vitamin D3. This model will provide a platform for further investigation of the effects of vitamin D3 deficiency on host immune response to infection.
Collapse
|
19
|
Awuh JA, Flo TH. Molecular basis of mycobacterial survival in macrophages. Cell Mol Life Sci 2017; 74:1625-1648. [PMID: 27866220 PMCID: PMC11107535 DOI: 10.1007/s00018-016-2422-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/06/2016] [Accepted: 11/14/2016] [Indexed: 12/31/2022]
Abstract
Macrophages play an essential role in the immune system by ingesting and degrading invading pathogens, initiating an inflammatory response and instructing adaptive immune cells, and resolving inflammation to restore homeostasis. More interesting is the fact that some bacteria have evolved to use macrophages as a natural habitat and tools of spread in the host, e.g., Mycobacterium tuberculosis (Mtb) and some non-tuberculous mycobacteria (NTM). Mtb is considered one of humanity's most successful pathogens and is the causal agent of tuberculosis, while NTMs cause opportunistic infections all of which are of significant public health concern. Here, we describe mechanisms by which intracellular pathogens, with an emphasis on mycobacteria, manipulate macrophage functions to circumvent killing and live inside these cells even under considerable immunological pressure. Such macrophage functions include the selective evasion or engagement of pattern recognition receptors, production of cytokines, reactive oxygen and nitrogen species, phagosome maturation, as well as other killing mechanisms like autophagy and cell death. A clear understanding of host responses elicited by a specific pathogen and strategies employed by the microbe to evade or exploit these is of significant importance for the development of effective vaccines and targeted immunotherapy against persistent intracellular infections like tuberculosis.
Collapse
Affiliation(s)
- Jane Atesoh Awuh
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, PB 8905, 7491, Trondheim, Norway
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, PB 8905, 7491, Trondheim, Norway.
| |
Collapse
|
20
|
Witt KC, Castillo-Menendez L, Ding H, Espy N, Zhang S, Kappes JC, Sodroski J. Antigenic characterization of the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor incorporated into nanodiscs. PLoS One 2017; 12:e0170672. [PMID: 28151945 PMCID: PMC5289478 DOI: 10.1371/journal.pone.0170672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023] Open
Abstract
The entry of human immunodeficiency virus (HIV-1) into host cells is mediated by the viral envelope glycoproteins (Envs), which are derived by the proteolytic cleavage of a trimeric gp160 Env precursor. The mature Env trimer is a major target for entry inhibitors and vaccine-induced neutralizing antibodies. Env interstrain variability, conformational flexibility and heavy glycosylation contribute to evasion of the host immune response, and create challenges for structural characterization and vaccine development. Here we investigate variables associated with reconstitution of the HIV-1 Env precursor into nanodiscs, nanoscale lipid bilayer discs enclosed by membrane scaffolding proteins. We identified detergents, as well as lipids similar in composition to the viral lipidome, that allowed efficient formation of Env-nanodiscs (Env-NDs). Env-NDs were created with the full-length Env precursor and with an Env precursor with the majority of the cytoplasmic tail intact. The self-association of Env-NDs was decreased by glutaraldehyde crosslinking. The Env-NDs exhibited an antigenic profile expected for the HIV-1 Env precursor. Env-NDs were recognized by broadly neutralizing antibodies. Of note, neutralizing antibody epitopes in the gp41 membrane-proximal external region and in the gp120:gp41 interface were well exposed on Env-NDs compared with Env expressed on cell surfaces. Most Env epitopes recognized by non-neutralizing antibodies were masked on the Env-NDs. This antigenic profile was stable for several days, exhibiting a considerably longer half-life than that of Env solubilized in detergents. Negative selection with weak neutralizing antibodies could be used to improve the antigenic profile of the Env-NDs. Finally, we show that lipid adjuvants can be incorporated into Env-NDs. These results indicate that Env-NDs represent a potentially useful platform for investigating the structural, functional and antigenic properties of the HIV-1 Env trimer in a membrane context.
Collapse
Affiliation(s)
- Kristen C. Witt
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Luis Castillo-Menendez
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Haitao Ding
- Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Nicole Espy
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Shijian Zhang
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - John C. Kappes
- Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL, United States of America
| | - Joseph Sodroski
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, United States of America
- Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
21
|
MARCO variants are associated with phagocytosis, pulmonary tuberculosis susceptibility and Beijing lineage. Genes Immun 2016; 17:419-425. [PMID: 27853145 PMCID: PMC5133378 DOI: 10.1038/gene.2016.43] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 11/22/2022]
Abstract
Macrophage receptor with collagenous structure (MARCO) has an important role in the phagocytosis of Mycobacterium tuberculosis (M. tuberculosis). We hypothesized that MARCO polymorphisms are associated with phagocytosis, tuberculosis (TB) disease susceptibility and presentation, and infecting lineage. We used a human cellular model to examine how MARCO genotype mediates the immune response; a case–control study to investigate tuberculosis host genetic susceptibility; and a host–pathogen genetic analysis to study host–pathogen interactions. Two MARCO heterozygous (AG) genotypes (single-nucleotide polymorphisms rs2278589 and rs6751745) were associated with impaired phagocytosis of M. tuberculosis trehalose 6,6'-dimycolate-cord factor and β-glucan-coated beads in macrophages. The heterozygous genotypes of rs2278589 and rs6751745 were also associated with increased risk of pulmonary TB (PTB; rs2278589, P=0.001, odds ratio (OR)=1.6; rs6751745, P=0.009, OR=1.4), and with severe chest X-ray abnormalities (P=0.007, OR=1.6). These two genotypes were also associated with the Beijing lineage (rs2278589, P=0.001, OR=1.7; rs6751745, P=0.01, OR=1.5). Together, these results suggest that MARCO polymorphisms may regulate phagocytosis of M. tuberculosis and susceptibility and severity of PTB. They also suggest MARCO genotype and Beijing strains may interact to increase the risk of PTB.
Collapse
|
22
|
Mendoza-Coronel E, Castañón-Arreola M. Comparative evaluation ofin vitrohuman macrophage models for mycobacterial infection study. Pathog Dis 2016; 74:ftw052. [DOI: 10.1093/femspd/ftw052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2016] [Indexed: 01/08/2023] Open
|
23
|
Abstract
Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.
Collapse
|
24
|
Stamm CE, Collins AC, Shiloh MU. Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus. Immunol Rev 2015; 264:204-19. [PMID: 25703561 DOI: 10.1111/imr.12263] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the primary causative agent of human tuberculosis, has killed more people than any other bacterial pathogen in human history and remains one of the most important transmissible diseases worldwide. Because of the long-standing interaction of Mtb with humans, it is no surprise that human mucosal and innate immune cells have evolved multiple mechanisms to detect Mtb during initial contact. To that end, the cell surface of human cells is decorated with numerous pattern recognition receptors for a variety of mycobacterial ligands. Furthermore, once Mtb is ingested into professional phagocytes, other host molecules are engaged to report on the presence of an intracellular pathogen. In this review, we discuss the role of specific mycobacterial products in modulating the host's ability to detect Mtb. In addition, we describe the specific host receptors that mediate the detection of mycobacterial infection and the role of individual receptors in mycobacterial pathogenesis in humans and model organisms.
Collapse
Affiliation(s)
- Chelsea E Stamm
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
25
|
Källenius G, Correia-Neves M, Buteme H, Hamasur B, Svenson SB. Lipoarabinomannan, and its related glycolipids, induce divergent and opposing immune responses to Mycobacterium tuberculosis depending on structural diversity and experimental variations. Tuberculosis (Edinb) 2015; 96:120-30. [PMID: 26586646 DOI: 10.1016/j.tube.2015.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/16/2015] [Indexed: 01/04/2023]
Abstract
Exposure to Mycobacterium tuberculosis (Mtb) may lead to active or latent tuberculosis, or clearance of Mtb, depending essentially on the quality of the host's immune response. This response is initiated through the interaction of Mtb cell wall surface components, mostly glycolipids, with cells of the innate immune system, particularly macrophages (Mφs) and dendritic cells (DCs). The way Mφs and DC alter their cytokine secretome, activate or inhibit different microbicidal mechanisms and present antigens and consequently trigger the T cell-mediated immune response impacts the host immune response against Mtb. Lipoarabinomannan (LAM) is one of the major cell wall components of Mtb. Mannosyl-capped LAM (ManLAM), and its related cell wall-associated types of glycolipids/lipoglycans, namely phosphatidylinositol mannosides (PIMs) and lipomannan (LM), exhibit important and distinct immunomodulatory properties. The structure, internal heterogeneity and abundance of these molecules vary between Mtb strains exhibiting distinct degrees of virulence. Thus ManLAM, LM and PIMs may be considered crucial Mtb-associated virulence factors in the pathogenesis of tuberculosis. Of particular relevance for this review, there is controversy about the specific immunomodulatory properties of these distinct glycolipids, particularly when tested as purified molecules in vitro. In addition to the variability in the glycolipid composition conflicting reports may also result from differences in the protocols used for glycolipid isolation and for in vitro experiments including immune cell types and procedures to generate them. Understanding the immunomodulatory properties of these cell wall glycolipids, how they differ between distinct Mtb strains, and how they influence the degree of Mtb virulence, is of utmost relevance to understand how the host mounts a protective or otherwise pathologic immune response. This is essential for the design of preventive strategies against tuberculosis. Thus, since clarifying the controversy on this matter is crucial we here review, summarize and discuss reported data from in vitro stimulation with the three major Mtb complex cell wall glycolipids (ManLAM, PIMs and LM) in an attempt to conciliate the conflicting findings.
Collapse
Affiliation(s)
- Gunilla Källenius
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden.
| | - Margarida Correia-Neves
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helen Buteme
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden; Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Beston Hamasur
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden
| | - Stefan B Svenson
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden
| |
Collapse
|
26
|
Exposure of Monocytes to Lipoarabinomannan Promotes Their Differentiation into Functionally and Phenotypically Immature Macrophages. J Immunol Res 2015; 2015:984973. [PMID: 26347897 PMCID: PMC4548148 DOI: 10.1155/2015/984973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/15/2015] [Accepted: 06/28/2015] [Indexed: 11/17/2022] Open
Abstract
Lipoarabinomannan (LAM) is a lipid virulence factor secreted by Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis. LAM can be measured in the urine or serum of tuberculosis patients (TB-patients). Circulating monocytes are the precursor cells of alveolar macrophages and might be exposed to LAM in patients with active TB. We speculated that exposing monocytes to LAM could produce phenotypically and functionally immature macrophages. To test our hypothesis, human monocytes were stimulated with LAM (24–120 hours) and various readouts were measured. The study showed that when monocytes were exposed to LAM, the frequency of CD68+, CD33+, and CD86+ macrophages decreased, suggesting that monocyte differentiation into mature macrophages was affected. Regarding functionality markers, TLR2+ and TLR4+ macrophages also decreased, but the percentage of MMR+ expression did not change. LAM-exposed monocytes generated macrophages that were less efficient in producing proinflammatory cytokines such as TNF-α and IFN-γ; however, their phagocytic capacity was not modified. Taken together, these data indicate that LAM exposure influenced monocyte differentiation and produced poorly functional macrophages with a different phenotype. These results may help us understand how mycobacteria can limit the quality of the innate and adaptive immune responses.
Collapse
|
27
|
Biedroń R, Konopiński MK, Marcinkiewicz J, Józefowski S. Oxidation by neutrophils-derived HOCl increases immunogenicity of proteins by converting them into ligands of several endocytic receptors involved in antigen uptake by dendritic cells and macrophages. PLoS One 2015; 10:e0123293. [PMID: 25849867 PMCID: PMC4388828 DOI: 10.1371/journal.pone.0123293] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/26/2015] [Indexed: 11/21/2022] Open
Abstract
The initiation of adaptive immune responses to protein antigens has to be preceded by their uptake by antigen presenting cells and intracellular proteolytic processing. Paradoxically, endocytic receptors involved in antigen uptake do not bind the majority of proteins, which may be the main reason why purified proteins stimulate at most weak immune responses. A shared feature of different types of adjuvants, capable of boosting immunogenicity of protein vaccines, is their ability to induce acute inflammation, characterized by early influx of activated neutrophils. Neutrophils are also rapidly recruited to sites of tissue injury or infection. These cells are the source of potent oxidants, including hypochlorous acid (HOCl), causing oxidation of proteins present in inflammatory foci. We demonstrate that oxidation of proteins by endogenous, neutrophils-derived HOCl increases their immunogenicity. Upon oxidation, different, randomly chosen simple proteins (yeast alcohol dehydrogenase, human and bovine serum albumin) and glycoproteins (human apo-transferrin, ovalbumin) gain the ability to bind with high affinity to several endocytic receptors on antigen presenting cells, which seems to be the major mechanism of their increased immunogenicity. The mannose receptor (CD206), scavenger receptors A (CD204) and CD36 were responsible for the uptake and presentation of HOCl-modified proteins by murine dendritic cells and macrophages. Other scavenger receptors, SREC-I and LOX-1, as well as RAGE were also able to bind HOCl-modified proteins, but they did not contribute significantly to these ligands uptake by dendritic cells because they were either not expressed or exhibited preference for more heavily oxidised proteins. Our results indicate that oxidation by neutrophils-derived HOCl may be a physiological mechanism of conferring immunogenicity on proteins which in their native forms do not bind to endocytic receptors. This mechanism might enable the immune system to detect infections caused by pathogens not recognized by pattern recognition receptors.
Collapse
Affiliation(s)
- Rafał Biedroń
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
| | | | - Janusz Marcinkiewicz
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
| | - Szczepan Józefowski
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
- * E-mail:
| |
Collapse
|
28
|
Yonekawa A, Saijo S, Hoshino Y, Miyake Y, Ishikawa E, Suzukawa M, Inoue H, Tanaka M, Yoneyama M, Oh-Hora M, Akashi K, Yamasaki S. Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria. Immunity 2014; 41:402-413. [PMID: 25176311 DOI: 10.1016/j.immuni.2014.08.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 08/07/2014] [Indexed: 11/15/2022]
Abstract
Mycobacteria possess various immunomodulatory molecules on the cell wall. Mannose-capped lipoarabinomannan (Man-LAM), a major lipoglycan of Mycobacterium tuberculosis, has long been known to have both inhibitory and stimulatory effects on host immunity. However, the direct Man-LAM receptor that explains its pleiotropic activities has not been clearly identified. Here, we report that a C-type lectin receptor Dectin-2 (gene symbol Clec4n) is a direct receptor for Man-LAM. Man-LAM activated bone-marrow-derived dendritic cells (BMDCs) to produce pro- and anti-inflammatory cytokines, whereas it was completely abrogated in Clec4n(-/-) BMDCs. Man-LAM promoted antigen-specific T cell responses through Dectin-2 on DCs. Furthermore, Man-LAM induced experimental autoimmune encephalitis (EAE) as an adjuvant in mice, whereas Clec4n(-/-) mice were resistant. Upon mycobacterial infection, Clec4n(-/-) mice showed augmented lung pathology. These results demonstrate that Dectin-2 contributes to host immunity against mycobacterial infection through the recognition of Man-LAM.
Collapse
Affiliation(s)
- Akiko Yonekawa
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan; PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Yoshihiko Hoshino
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 189-0002, Japan
| | - Yasunobu Miyake
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Eri Ishikawa
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Maho Suzukawa
- Center for Pulmonary Diseases, National Hospital Organization, Tokyo National Hospital, Tokyo 204-8585, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Masato Tanaka
- Laboratory for Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Masatsugu Oh-Hora
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan.
| |
Collapse
|
29
|
Duffy D, Rouilly V, Libri V, Hasan M, Beitz B, David M, Urrutia A, Bisiaux A, Labrie ST, Dubois A, Boneca IG, Delval C, Thomas S, Rogge L, Schmolz M, Quintana-Murci L, Albert ML. Functional analysis via standardized whole-blood stimulation systems defines the boundaries of a healthy immune response to complex stimuli. Immunity 2014; 40:436-50. [PMID: 24656047 DOI: 10.1016/j.immuni.2014.03.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 01/15/2014] [Indexed: 12/24/2022]
Abstract
Standardization of immunophenotyping procedures has become a high priority. We have developed a suite of whole-blood, syringe-based assay systems that can be used to reproducibly assess induced innate or adaptive immune responses. By eliminating preanalytical errors associated with immune monitoring, we have defined the protein signatures induced by (1) medically relevant bacteria, fungi, and viruses; (2) agonists specific for defined host sensors; (3) clinically employed cytokines; and (4) activators of T cell immunity. Our results provide an initial assessment of healthy donor reference values for induced cytokines and chemokines and we report the failure to release interleukin-1α as a common immunological phenotype. The observed naturally occurring variation of the immune response may help to explain differential susceptibility to disease or response to therapeutic intervention. The implementation of a general solution for assessment of functional immune responses will help support harmonization of clinical studies and data sharing.
Collapse
Affiliation(s)
- Darragh Duffy
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France; INSERM U818, 75015 Paris, France; Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Vincent Rouilly
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France; Center for Bioinformatics, Institut Pasteur, 75015 Paris, France
| | - Valentina Libri
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France
| | - Milena Hasan
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France
| | - Benoit Beitz
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France
| | - Mikael David
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France
| | - Alejandra Urrutia
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France; INSERM U818, 75015 Paris, France; Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Aurélie Bisiaux
- INSERM U818, 75015 Paris, France; Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | | | - Annick Dubois
- Center for the Integration of Clinical Research, Institut Pasteur, 75015 Paris, France
| | - Ivo G Boneca
- Laboratory of Biology & Genetics of the Bacterial Cell Wall, Department of Microbiology, Institut Pasteur, 75015 Paris, France; INSERM, Equipe Avenir, 75015 Paris, France
| | - Cécile Delval
- Center for the Integration of Clinical Research, Institut Pasteur, 75015 Paris, France
| | - Stéphanie Thomas
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France; INSERM U818, 75015 Paris, France; Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Lars Rogge
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France; Laboratory of Immunoregulation, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Manfred Schmolz
- Myriad Rules Based Medicine, Inc., 72770 Reutlingen, Germany
| | - Lluis Quintana-Murci
- Laboratory of Human Evolutionary Genetics, Department of Genomes & Genetics, Institut Pasteur, 75015 Paris, France; CNRS URA3012, 75015 Paris, France.
| | - Matthew L Albert
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France; INSERM U818, 75015 Paris, France; Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, 75015 Paris, France; INSERM UMS20, 75015 Paris, France.
| | | |
Collapse
|
30
|
Xu DD, Deng DF, Li X, Wei LL, Li YY, Yang XY, Yu W, Wang C, Jiang TT, Li ZJ, Chen ZL, Zhang X, Liu JY, Ping ZP, Qiu YQ, Li JC. Discovery and identification of serum potential biomarkers for pulmonary tuberculosis using iTRAQ-coupled two-dimensional LC-MS/MS. Proteomics 2014; 14:322-31. [PMID: 24339194 DOI: 10.1002/pmic.201300383] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/22/2013] [Accepted: 11/29/2013] [Indexed: 11/08/2022]
Abstract
Pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis is a chronic disease. Currently, there are no sufficiently validated biomarkers for early diagnosis of TB infection. In this study, a panel of potential serum biomarkers was identified between patients with pulmonary TB and healthy controls by using iTRAQ-coupled 2D LC-MS/MS technique. Among 100 differentially expressed proteins screened, 45 proteins were upregulated (>1.25-fold at p < 0.05) and 55 proteins were downregulated (<0.8-fold at p < 0.05) in the TB serum. Bioinformatics analysis revealed that the differentially expressed proteins were related to the response to stimulus, the metabolic and immune system processes. The significantly differential expression of apolipoprotein CII (APOCII), CD5 antigen-like (CD5L), hyaluronan-binding protein 2 (HABP2), and retinol-binding protein 4 (RBP4) was further confirmed using immunoblotting and ELISA analysis. By forward stepwise multivariate regression analysis, a panel of serum biomarkers including APOCII, CD5L, and RBP4 was obtained to form the disease diagnostic model. The receiver operation characteristic curve of the diagnostic model was 0.98 (sensitivity = 93.42%, specificity = 92.86%). In conclusion, APOCII, CD5L, HABP2, and RBP4 may be potential protein biomarkers of pulmonary TB. Our research provides useful data for early diagnosis of TB.
Collapse
Affiliation(s)
- Dan-Dan Xu
- Institute of Cell Biology, Zhejiang University, Hangzhou, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bowdish DM, Sakamoto K, Lack NA, Hill PC, Sirugo G, Newport MJ, Gordon S, Hill AV, Vannberg FO. Genetic variants of MARCO are associated with susceptibility to pulmonary tuberculosis in a Gambian population. BMC MEDICAL GENETICS 2013; 14:47. [PMID: 23617307 PMCID: PMC3652798 DOI: 10.1186/1471-2350-14-47] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/16/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND The two major class A scavenger receptors are scavenger receptor A (SRA), which is constitutively expressed on most macrophage populations, and macrophage receptor with collagenous structure (MARCO), which is constitutively expressed on a more restricted subset of macrophages, (e.g. alveolar macrophages) but whose expression increases on most macrophages during the course of infection. Although the primary role of SRA appears to be clearance of modified host proteins and lipids, mice defective in expression of either MARCO or SRA are immunocompromised in multiple models of infection and in vitro assays, the scavenger receptors have been demonstrated to bind bacteria and to enhance pro-inflammatory signalling to many bacterial lung pathogens; however their importance in Mycobacterium tuberculosis infection, is less clear. METHODS To determine whether polymorphisms in either SRA or MARCO were associated with tuberculosis, a case-control study of was performed. DNA samples from newly-detected, smear-positive, pulmonary tuberculosis cases were collected from The Gambia. Controls for this study consisted of DNA from cord bloods obtained from routine births at local Gambian health clinics. Informed written consent was obtained from patients or their parents or guardians. Ethical approval was provided by the joint The Gambian Government/MRC Joint Ethics Committee. RESULTS We studied the frequencies of 25 polymorphisms of MSR1 (SRA) and 22 in MARCO in individuals with tuberculosis (n=1284) and matched controls (n=1349). No SNPs within the gene encoding or within 1 kb of the promoter sequence of MSR1 were associated with either susceptibility or resistance to tuberculosis. Three SNPs in MARCO (rs4491733, Mantel-Haenszel 2x2 χ2 = 6.5, p = 0.001, rs12998782, Mantel-Haenszel 2x2 χ2 = 6.59, p = 0.001, rs13389814 Mantel-Haenszel 2x2 χ2 = 6.9, p = 0.0009) were associated with susceptibility to tuberculosis and one (rs7559955, Mantel-Haenszel 2x2 χ2 = 6.9, p = 0.0009) was associated with resistance to tuberculosis. CONCLUSIONS These findings identify MARCO as a potentially important receptor in the host response to tuberculosis.
Collapse
Affiliation(s)
- Dawn Me Bowdish
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Czerkies M, Borzęcka K, Zdioruk MI, Płóciennikowska A, Sobota A, Kwiatkowska K. An interplay between scavenger receptor A and CD14 during activation of J774 cells by high concentrations of LPS. Immunobiology 2013; 218:1217-26. [PMID: 23669238 DOI: 10.1016/j.imbio.2013.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 10/27/2022]
Abstract
Lipopolysaccharide (LPS) activates macrophages by binding to the TLR4/MD-2 complex and triggers two pro-inflammatory signaling pathways: one relies on MyD88 at the plasma membrane, and the other one depends on TRIF in endosomes. When present in high doses, LPS is internalized and undergoes detoxification. We found that the uptake of a high concentration of LPS (1000ng/ml) in macrophage-like J774 cells was upregulated upon inhibition of clathrin- and dynamin-mediated endocytosis which, on the other hand, strongly reduced the production of pro-inflammatory mediators TNF-α and RANTES. The binding and internalization of high amounts of LPS was mediated by scavenger receptor A (SR-A) with participation of CD14 without an engagement of TLR4. Occupation of SR-A by dextran sulfate or anti-SR-A antibodies enhanced LPS-induced production of TNF-α and RANTES by about 70%, with CD14 as a limiting factor. Dextran sulfate also elevated the cell surface levels of TLR4 and CD14, which could have contributed to the upregulation of the pro-inflammatory responses. Silencing of SR-A expression inhibited the LPS-triggered TNF-α production whereas RANTES release was unchanged. These data indicate that SR-A is required for maximal production of TNF-α in cells stimulated with LPS, possibly by modulating the cell surface levels of TLR4 and CD14.
Collapse
Affiliation(s)
- Maciej Czerkies
- Department of Cell Biology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
33
|
Recombinant mycobacterial HSP65 in combination with incomplete Freund's adjuvant induced rat arthritis comparable with that induced by complete Freund's adjuvant. J Immunol Methods 2012; 386:78-84. [DOI: 10.1016/j.jim.2012.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 09/05/2012] [Accepted: 09/05/2012] [Indexed: 11/21/2022]
|
34
|
Driss V, Hermann E, Legrand F, Loiseau S, Delbeke M, Kremer L, Guerardel Y, Dombrowicz D, Capron M. CR3-dependent negative regulation of human eosinophils by Mycobacterium bovis BCG lipoarabinomannan. Immunol Lett 2012; 143:202-7. [DOI: 10.1016/j.imlet.2012.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/16/2012] [Accepted: 02/16/2012] [Indexed: 01/21/2023]
|