1
|
Cardoso KF, de Souza LRA, da Silva Santos BSÁ, de Carvalho KRA, da Silva Messias SG, de Faria Gonçalves AP, Kano FS, Alves PA, da Silva Campos MA, Xavier MP, Garcia CC, Russo RC, Gazzinelli RT, Costa ÉA, da Silva Martins NR, Miyaji EN, de Magalhães Vieira Machado A, Silva Araújo MS. Intranasal influenza-vectored vaccine expressing pneumococcal surface protein A protects against Influenza and Streptococcus pneumoniae infections. NPJ Vaccines 2024; 9:246. [PMID: 39702744 DOI: 10.1038/s41541-024-01033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Streptococcus pneumoniae and influenza A virus (IAV) are significant agents of pneumonia cases and severe respiratory infections globally. Secondary bacterial infections, particularly by Streptococcus pneumoniae, are common in IAV-infected individuals, leading to critical outcomes. Despite reducing mortality, pneumococcal vaccines have high production costs and are serotype specific. The emergence of new circulating serotypes has led to the search for new prevention strategies that provide a broad spectrum of protection. In this context, vaccination using antigens present in all serotypes, such as Pneumococcal Surface Protein A (PspA), can offer broad coverage regardless of serotype. Employing the reverse genetics technique, our research group developed a recombinant influenza A H1N1 virus that expresses PspA (Flu-PspA), through the replacement of neuraminidase by PspA. This virus was evaluated as a bivalent vaccine against infections caused by influenza A and S. pneumoniae in mice. Initially, we evaluated the Flu-PspA virus's ability to infect cells and express PspA in vitro, its capacity to multiply in embryonated chicken eggs, and its safety when inoculated in mice. Subsequently, the protective effect against influenza A and Streptococcus pneumoniae lethal challenge infections in mice was assessed using different immunization protocols. Analysis of the production of antibodies against PspA4 protein and influenza, and the binding capacity of anti-PspA4 antibodies/complement deposition to different strains of S. pneumoniae were also evaluated. Our results demonstrate that the Flu-PspA virus vaccine efficiently induces PspA protein expression in vitro, and that it was able to multiply in embryonated chicken eggs even without exogenous neuraminidase. The Flu-PspA-based bivalent vaccine was demonstrated to be safe, stimulated high titers of anti-PspA and anti-influenza antibodies, and protected mice against homosubtypic and heterosubtypic influenza A and S. pneumoniae challenge. Moreover, an efficient binding of antibodies and complement deposition on the surface of pneumococcal strains ascribes the broad-spectrum vaccine response in vivo. In summary, this innovative approach holds promise for developing a dual-protective vaccine against two major respiratory pathogens.
Collapse
Affiliation(s)
- Kimberly Freitas Cardoso
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Lara Regina Alves de Souza
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | | | | | - Sarah Giarola da Silva Messias
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Ana Paula de Faria Gonçalves
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Flora Satiko Kano
- Grupo de Pesquisa em Biologia Molecular e Imunologia da Malária, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Pedro Augusto Alves
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Marco Antônio da Silva Campos
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Marcelo Pascoal Xavier
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Cristiana Couto Garcia
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Remo Castro Russo
- Laboratório de Imunologia e Mecânica Pulmonar, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Ricardo Tostes Gazzinelli
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Érica Azevedo Costa
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | | | | | | | - Márcio Sobreira Silva Araújo
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil.
| |
Collapse
|
2
|
Prasanna M, Varela Calvino R, Lambert A, Arista Romero M, Pujals S, Trottein F, Camberlein E, Grandjean C, Csaba N. Semisynthetic Pneumococcal Glycoconjugate Nanovaccine. Bioconjug Chem 2023; 34:1563-1575. [PMID: 37694903 PMCID: PMC10515484 DOI: 10.1021/acs.bioconjchem.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Pneumococcal conjugate vaccines offer an excellent safety profile and high protection against the serotypes comprised in the vaccine. However, inclusion of protein antigens fromStreptococcus pneumoniaecombined with potent adjuvants and a suitable delivery system are expected to both extend protection to serotype strains not represented in the formulation and stimulate a broader immune response, thus more effective in young children, elderly, and immunocompromised populations. Along this line, nanoparticle (NP) delivery systems can enhance the immunogenicity of antigens by protecting them from degradation and increasing their uptake by antigen-presenting cells, as well as offering co-delivery with adjuvants. We report herein the encapsulation of a semisynthetic glycoconjugate (GC) composed of a synthetic tetrasaccharide mimicking theS. pneumoniae serotype 14 capsular polysaccharide (CP14) linked to the Pneumococcal surface protein A (PsaA) using chitosan NPs (CNPs). These GC-loaded chitosan nanoparticles (GC-CNPs) were not toxic to human monocyte-derived dendritic cells (MoDCs), showed enhanced uptake, and displayed better immunostimulatory properties in comparison to the naked GC. A comparative study was carried out in mice to evaluate the immune response elicited by the glycoconjugate-administered subcutaneously (SC), where the GC-CNPs displayed 100-fold higher IgG response as compared with the group treated with nonencapsulated GC. Overall, the study demonstrates the potential of this chitosan-based nanovaccine for efficient delivery of glycoconjugate antigens.
Collapse
Affiliation(s)
- Maruthi Prasanna
- Center
for Research in Molecular Medicine and Chronic Diseases, Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela 15706, Spain
- Nantes
Université, CNRS, Unité des Sciences Biologiques et
des Biotechnologies (US2B), UMR 6286, Nantes F-44000, France
- Department
of Biochemistry and Molecular Biology, University
of Santiago de Compostela, Santiago
de Compostela 15706, Spain
| | - Rubén Varela Calvino
- Department
of Biochemistry and Molecular Biology, University
of Santiago de Compostela, Santiago
de Compostela 15706, Spain
| | - Annie Lambert
- Nantes
Université, CNRS, Unité des Sciences Biologiques et
des Biotechnologies (US2B), UMR 6286, Nantes F-44000, France
| | - Maria Arista Romero
- Department
of Biological Chemistry, Institute for Advanced
Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain
| | - Sylvia Pujals
- Department
of Biological Chemistry, Institute for Advanced
Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain
| | - François Trottein
- Univ.
Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019—UMR
9017—CIIL—Center for Infection and Immunity of Lille, Lille F-59000, France
| | - Emilie Camberlein
- Nantes
Université, CNRS, Unité des Sciences Biologiques et
des Biotechnologies (US2B), UMR 6286, Nantes F-44000, France
| | - Cyrille Grandjean
- Nantes
Université, CNRS, Unité des Sciences Biologiques et
des Biotechnologies (US2B), UMR 6286, Nantes F-44000, France
| | - Noemi Csaba
- Center
for Research in Molecular Medicine and Chronic Diseases, Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela 15706, Spain
| |
Collapse
|
3
|
Pneumococcal Vaccines: Past Findings, Present Work, and Future Strategies. Vaccines (Basel) 2021; 9:vaccines9111338. [PMID: 34835269 PMCID: PMC8620834 DOI: 10.3390/vaccines9111338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 01/24/2023] Open
Abstract
The importance of Streptococcus pneumoniae has been well established. These bacteria can colonize infants and adults without symptoms, but in some cases can spread, invade other tissues and cause disease with high morbidity and mortality. The development of pneumococcal conjugate vaccines (PCV) caused an enormous impact in invasive pneumococcal disease and protected unvaccinated people by herd effect. However, serotype replacement is a well-known phenomenon that has occurred after the introduction of the 7-valent pneumococcal conjugate vaccine (PCV7) and has also been reported for other PCVs. Therefore, it is possible that serotype replacement will continue to occur even with higher valence formulations, but the development of serotype-independent vaccines might overcome this problem. Alternative vaccines are under development in order to improve cost effectiveness, either using proteins or the pneumococcal whole cell. These approaches can be used as a stand-alone strategy or together with polysaccharide vaccines. Looking ahead, the next generation of pneumococcal vaccines can be impacted by the new technologies recently approved for human use, such as mRNA vaccines and viral vectors. In this paper, we will review the advantages and disadvantages of the addition of new polysaccharides in the current PCVs, mainly for low- and middle-income countries, and we will also address future perspectives.
Collapse
|
4
|
Saganuwan SA. Application of median lethal concentration (LC 50) of pathogenic microorganisms and their antigens in vaccine development. BMC Res Notes 2020; 13:289. [PMID: 32539814 PMCID: PMC7294769 DOI: 10.1186/s13104-020-05126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/04/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Lack of ideal mathematical models to qualify and quantify both pathogenicity, and virulence is a dreadful setback in development of new antimicrobials and vaccines against resistance pathogenic microorganisms. Hence, the modified arithmetical formula of Reed and Muench has been integrated with other formulas and used to determine bacterial colony forming unit/viral concentration, virulence and immunogenicity. RESULTS Microorganisms' antigens tested are Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa in mice and rat, Edwardsiella ictaluri, Aeromonas hydrophila, Aeromonas veronii in fish, New Castle Disease virus in chicken, Sheep Pox virus, Foot-and-Mouth Disease virus and Hepatitis A virus in vitro, respectively. The LC50s for the pathogens using different routes of administrations are 1.93 × 103(sheep poxvirus) and 1.75 × 1010 for Staphylococcus aureus (ATCC29213) in rat, respectively. Titer index (TI) equals N log10 LC50 and provides protection against lethal dose in graded fashion which translates to protection index. N is the number of vaccine dose that could neutralize the LC50. Hence, parasite inoculum of 103 to 1011 may be used as basis for determination of LC50 and median bacterial concentrations (BC50).Pathogenic dose for immune stimulation should be sought at concentration about LC10.
Collapse
Affiliation(s)
- Saganuwan Alhaji Saganuwan
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Federal University of Agriculture, P.M.B. 2373, Makurdi, Benue, Nigeria.
| |
Collapse
|
5
|
Beitelshees M, Hill A, Li Y, Chen M, Ahmadi MK, Smith RJ, Andreadis ST, Rostami P, Jones CH, Pfeifer BA. Antigen delivery format variation and formulation stability through use of a hybrid vector. Vaccine X 2019; 1:100012. [PMID: 31384734 PMCID: PMC6668244 DOI: 10.1016/j.jvacx.2019.100012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 02/04/2023] Open
Abstract
A hybrid biological-biomaterial antigen delivery vector comprised of a polymeric shell encapsulating an Escherichia coli core was previously developed for in situ antigen production and subsequent delivery. Due to the engineering capacity of the bacterial core, the hybrid vector provides unique opportunities for immunogenicity optimization through varying cellular localization (cytoplasm, periplasm, cellular surface) and type (protein or DNA) of antigen. In this work, three protein-based hybrid vector formats were compared in which the pneumococcal surface protein A (PspA) was localized to the cytoplasm, surface, and periplasmic space of the bacterial core for vaccination against pneumococcal disease. Furthermore, we tested the hybrid vector's capacity as a DNA vaccine against Streptococcus pneumoniae by introducing a plasmid into the bacterial core to facilitate PspA expression in antigen presenting cells (APCs). Through testing these various formulations, we determined that cytoplasmic accumulation of PspA elicited the strongest immune response (antibody production and protection against bacterial challenge) and enabled complete protection at substantially lower doses when compared to vaccination with PspA + adjuvant. We also improved the storage stability of the hybrid vector to retain complete activity after 1 month at 4 °C using an approach in which hybrid vectors suspended in a microbial freeze drying buffer were desiccated. These results demonstrate the flexibility and robustness of the hybrid vector formulation, which has the potential to be a potent vaccine against S. pneumoniae.
Collapse
Key Words
- APCs, antigen presenting cells
- AS, aqueous storage
- CDM, chemically defined bacterial growth medium
- CFA, Complete Freund's Adjuvant
- CHV, cytoplasmic hybrid vector
- CPSs, capsular polysaccharides
- ClyA, cytolysin A
- DNA vaccine
- DS, desiccated storage
- EHV, empty hybrid vector
- IN, intranasal
- IP, intraperitoneal
- LBVs, live bacterial vectors
- LLO, listeriolysin O
- NVT, non-vaccine type
- PAMPs, pathogen-associated molecular patterns
- PCVs, pneumococcal conjugate vaccines
- PHV, periplasmic hybrid vector
- PcpA, pneumococcal choline-binding protein A
- PhtD, histidine triad protein D
- Pneumococcal disease
- Pneumococcal surface protein A (PspA)
- PspA, pneumococcal surface protein A
- SC, subcutaneous
- SHV, surface hybrid vector
- Streptococcus pneumoniae
- Vaccine delivery
- pHV, plasmid hybrid vector
Collapse
Affiliation(s)
- Marie Beitelshees
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Andrew Hill
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Abcombi Biosciences Inc., Buffalo, NY 14260-4200, USA
| | - Yi Li
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Mingfu Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Mahmoud Kamal Ahmadi
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Randall J. Smith
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Pooya Rostami
- Abcombi Biosciences Inc., Buffalo, NY 14260-4200, USA
| | | | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Corresponding author at: Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA.
| |
Collapse
|
6
|
German EL, Al-Hakim B, Mitsi E, Pennington SH, Gritzfeld JF, Hyder-Wright AD, Banyard A, Gordon SB, Collins AM, Ferreira DM. Anti-protein immunoglobulin M responses to pneumococcus are not associated with aging. Pneumonia (Nathan) 2018; 10:5. [PMID: 29992080 PMCID: PMC5987460 DOI: 10.1186/s41479-018-0048-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/10/2018] [Indexed: 11/16/2022] Open
Abstract
Background The incidence of community-acquired pneumonia and lower respiratory tract infection rises considerably in later life. Immunoglobulin M (IgM) antibody levels to pneumococcal capsular polysaccharide are known to decrease with age; however, whether levels of IgM antibody to pneumococcal proteins are subject to the same decline has not yet been investigated. Methods This study measured serum levels and binding capacity of IgM antibody specific to the pneumococcal surface protein A (PspA) and an unencapsulated pneumococcal strain in serum isolated from hospital patients aged < 60 and ≥ 60, with and without lower respiratory tract infection. A group of young healthy volunteers was used as a comparator to represent adults at very low risk of pneumococcal pneumonia. IgM serum antibody levels were measured by enzyme-linked immunosorbent assay (ELISA) and flow cytometry was performed to assess IgM binding capacity. Linear regression and one-way analysis of variance (ANOVA) tests were used to analyse the results. Results Levels and binding capacity of IgM antibody to PspA and the unencapsulated pneumococcal strain were unchanged with age. Conclusions These findings suggest that protein-based pneumococcal vaccines may provide protective immunity in the elderly. Trial registration The LRTI trial (LRTI and control groups) was approved by the National Health Service Research Ethics Committee in October 2013 (12/NW/0713). Recruitment opened in January 2013 and was completed in July 2013. Healthy volunteer samples were taken from the EHPC dose-ranging and reproducibility trial, approved by the same Research Ethics Committee in October 2011 (11/NW/0592). Recruitment for this study ran from October 2011 until December 2012. LRTI trial: (NCT01861184), EHPC dose-ranging and reproducibility trial: (ISRCTN85403723).
Collapse
Affiliation(s)
- Esther L German
- 1Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Bahij Al-Hakim
- 1Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK.,3Present address: Aintree University Hospital, Liverpool, UK
| | - Elena Mitsi
- 1Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Shaun H Pennington
- 1Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jenna F Gritzfeld
- 1Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK.,Present address: Public Health England, Vaccine Evaluation Unit, Manchester, UK
| | | | - Antonia Banyard
- 1Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK.,5Present address: Cancer Research UK Manchester Institute, Manchester, UK
| | - Stephen B Gordon
- 1Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK.,6Present address: Malawi-Liverpool-Wellcome Trust, Blantyre, Malawi
| | - Andrea M Collins
- 1Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Daniela M Ferreira
- 1Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
7
|
Kawaguchiya M, Urushibara N, Aung MS, Morimoto S, Ito M, Kudo K, Kobayashi N. Genetic diversity of pneumococcal surface protein A (PspA) in paediatric isolates of non-conjugate vaccine serotypes in Japan. J Med Microbiol 2018; 67:1130-1138. [PMID: 29927374 DOI: 10.1099/jmm.0.000775] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Among the pneumococcal proteins, pneumococcal surface protein A (PspA) is considered the most promising candidate for a serotype-independent vaccine. This study aimed to investigate the serotype, genetic diversity of PspA, lineage (genotype) and drug resistance traits of pneumococcal isolates from paediatric patients. METHODOLOGY A total of 678 non-invasive pneumococcal isolates obtained from June to November 2016 were analysed. All isolates were characterized for PspA families, serotypes and macrolide resistance genes. Seventy-one representative isolates of non-vaccine serotypes (NVTs) were genetically analysed for the clade-defining region (CDR) of PspA, as well as multi-locus sequence typing (MLST). RESULTS The detection rate of NVTs was 87.9 % (n=596), including dominant NVTs 15A (14.5 %, n=98), 35B (11.8 %, n=80), 15C (9.3 %, n=63) and 23A (9.0 %, n=61). Most isolates (96.6 %) possessed macrolide resistance genes erm(B) and/or mef(A/E). PspA families 1, 2 and 3 were detected in 42.3, 56.6 and 0.6 % of isolates, respectively. Nucleotide sequences of CDR showed high identity (90-100 %) within the same PspA clade, although the CDR identity among different PspA families ranged from 53 to 69 %. All isolates of NVTs 23A, 10A, 34, 24, 22F/22A, 33F, 23B and 38 were from PspA family 1, while NVTs 35B, 15C, 15B and 11A/11D isolates were from family 2. In contrast, genetically distinct PspAs were found in NVTs 6C and 15A. PspA family 3/clade 6 was detected in only NVT serotype 37 isolates assigned to ST447 and ST7970, showing the mucoid phenotype. CONCLUSION The present study revealed the predominance of PspA families 1 and 2 in NVTs, and the presence of family 3 in serotype 37.
Collapse
Affiliation(s)
- Mitsuyo Kawaguchiya
- 1Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Noriko Urushibara
- 1Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Meiji Soe Aung
- 1Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Shigeo Morimoto
- 2Sapporo Clinical Laboratory Inc., Sapporo, Hokkaido, Japan
| | - Masahiko Ito
- 2Sapporo Clinical Laboratory Inc., Sapporo, Hokkaido, Japan
| | - Kenji Kudo
- 2Sapporo Clinical Laboratory Inc., Sapporo, Hokkaido, Japan
| | - Nobumichi Kobayashi
- 1Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
8
|
Liu HX, Chen T, Wen X, Qu W, Liu S, Yan HY, Hou LF, Ping J. Maternal Glucocorticoid Elevation and Associated Fetal Thymocyte Apoptosis are Involved in Immune Disorders of Prenatal Caffeine Exposed Offspring Mice. Sci Rep 2017; 7:13746. [PMID: 29062003 PMCID: PMC5653827 DOI: 10.1038/s41598-017-14103-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/03/2017] [Indexed: 02/03/2023] Open
Abstract
Our previous study showed that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR) and glucocorticoid elevation in the fetus. Researchers suggested that IUGR is a risk factor for T helper cell (Th)1/Th2 deviation. However, whether PCE can induce these immune disorders and the underlying mechanisms of that induction remain unknown. This study aimed to observe the effects of PCE on the Th1/Th2 balance in offspring and further explore the developmental origin mechanisms from the perspective of glucocorticoid overexposure-induced thymocyte apoptosis. An IUGR model was established by caffeine administration from gestational day (GD) 9 to GD 18, and the offspring were immunized on postnatal day (PND) 42. The results show that maternal glucocorticoid overexposure increased fetal thymocyte apoptosis by activating both the Fas-mediated and the Bim-regulated apoptotic pathways. After birth, accelerated thymocyte apoptosis and Th1 suppression were also found in the PCE offspring at PND 14 and PND 49. Moreover, the PCE offspring showed immune disorders after immunization, manifesting as increased IgG1/IgG2a ratio and IL-4 production in the serum. In conclusion, PCE could induce fetal overexposure to maternal glucocorticoids and increase thymocyte apoptosis, which could persist into postnatal life and be implicated in Th1 inhibition and further immune disorders.
Collapse
Affiliation(s)
- Han-Xiao Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Ting Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Xiao Wen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Wen Qu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Sha Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hui-Yi Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Li-Fang Hou
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
9
|
Liu HX, Liu S, Qu W, Yan HY, Wen X, Chen T, Hou LF, Ping J. α7 nAChR mediated Fas demethylation contributes to prenatal nicotine exposure-induced programmed thymocyte apoptosis in mice. Oncotarget 2017; 8:93741-93756. [PMID: 29212186 PMCID: PMC5706832 DOI: 10.18632/oncotarget.21526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/20/2017] [Indexed: 01/19/2023] Open
Abstract
This study aimed to investigate the effects of prenatal nicotine exposure (PNE) on thymocyte apoptosis and postnatal immune impairments in vivo and further explore the epigenetic mechanisms of the pro-apoptotic effect of nicotine in vitro. The results showed that PNE caused immune impairments in offspring on postnatal day 49, manifested as increased IL-4 production and an increased IgG1/IgG2a ratio in serum. Enhanced apoptosis of total and CD4+SP thymocytes was observed both in fetus and in offspring. Further, by exposing thymocytes to 0–100 μM of nicotine in vitro for 48 h, we found that nicotine increased α7 nicotinic acetylcholine receptor (nAChR) expression, activated the Fas apoptotic pathway, and promoted thymocyte apoptosis in concentration-dependent manners. In addition, nicotine could induce Tet methylcytosine dioxygenase (TET) 2 expression and Fas promoter demethylation, which can be abolished by TET2 siRNA transfection. Moreover, the α7 nAChR specific antagonist α-bungarotoxin can abrogate nicotine-induced TET2 increase, and the following Fas demethylation and Fas-mediated apoptosis. In conclusion, our findings showed, for the first time, that α7 nAChR activation could induce TET2-mediated Fas demethylation in thymocytes and results in the upregulation of Fas apoptotic pathway, which provide evidence for elucidating the PNE-induced programmed thymocyte apoptosis.
Collapse
Affiliation(s)
- Han-Xiao Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Sha Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Wen Qu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui-Yi Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiao Wen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Ting Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Li-Fang Hou
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| |
Collapse
|
10
|
Th17-Mediated Cross Protection against Pneumococcal Carriage by Vaccination with a Variable Antigen. Infect Immun 2017; 85:IAI.00281-17. [PMID: 28717032 DOI: 10.1128/iai.00281-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
Serotype-specific protection against Streptococcus pneumoniae is an important limitation of the current polysaccharide-based vaccines. To prevent serotype replacement, reduce transmission, and limit the emergence of new variants, it is essential to induce broad protection and restrict pneumococcal colonization. In this study, we used a prototype vaccine formulation consisting of lipopolysaccharide (LPS)-detoxified outer membrane vesicles (OMVs) from Salmonella enterica serovar Typhimurium displaying the variable N terminus of PspA (α1α2) for intranasal vaccination, which induced strong Th17 immunity associated with a substantial reduction of pneumococcal colonization. Despite the variable nature of this protein, a common major histocompatibility complex class (MHC-II) epitope was identified, based on in silico prediction combined with ex vivo screening, and was essential for interleukin-17 A (IL-17A)-mediated cross-reactivity and associated with cross protection. Based on 1,352 PspA sequences derived from a pneumococcal carriage cohort, this OMV-based vaccine formulation containing a single α1α2 type was estimated to cover 19.1% of strains, illustrating the potential of Th17-mediated cross protection.
Collapse
|
11
|
Bacterial toxin's DNA vaccine serves as a strategy for the treatment of cancer, infectious and autoimmune diseases. Microb Pathog 2016; 100:184-194. [PMID: 27671283 DOI: 10.1016/j.micpath.2016.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/18/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
DNA vaccination -a third generation vaccine-is a modern approach to stimulate humoral and cellular responses against different diseases such as infectious diseases, cancer and autoimmunity. These vaccines are composed of a gene that encodes sequences of a desired protein under control of a proper (eukaryotic or viral) promoter. Immune response following DNA vaccination is influenced by the route and the dose of injection. In addition, antigen presentation following DNA administration has three different mechanisms including antigen presentation by transfected myocytes, transfection of professional antigen presenting cells (APCs) and cross priming. Recently, it has been shown that bacterial toxins and their components can stimulate and enhance immune responses in experimental models. A study demonstrated that DNA fusion vaccine encoding the first domain (DOM) of the Fragment C (FrC) of tetanus neurotoxin (CTN) coupled with tumor antigen sequences is highly immunogenic against colon carcinoma. DNA toxin vaccines against infectious and autoimmune diseases are less studied until now. All in all, this novel approach has shown encouraging results in animal models, but it has to go through adequate clinical trials to ensure its effectiveness in human. However, it has been proven that these vaccines are safe, multifaceted and simple and can be used widely in organisms which may be of advantage to public health in the near future. This paper outlines the mechanism of the action of DNA vaccines and their possible application for targeting infectious diseases, cancer and autoimmunity.
Collapse
|
12
|
Mirza S, Benjamin WH, Coan PA, Hwang SA, Winslett AK, Yother J, Hollingshead SK, Fujihashi K, Briles DE. The effects of differences in pspA alleles and capsular types on the resistance of Streptococcus pneumoniae to killing by apolactoferrin. Microb Pathog 2016; 99:209-219. [PMID: 27569531 DOI: 10.1016/j.micpath.2016.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 08/15/2016] [Accepted: 08/23/2016] [Indexed: 11/18/2022]
Abstract
Pneumococcal surface protein A (PspA) is the only pneumococcal surface protein known to strongly bind lactoferrin on the bacterial surface. In the absence of PspA Streptococcus pneumoniae becomes more susceptible to killing by human apolactoferrin (apo-hLf), the iron-free form of lactoferrin. In the present study we examined diverse strains of S. pneumoniae that differed by 2 logs in their susceptibility to apo-hLf. Among these strains, the amount of apo-hLf that bound to cell surface PspA correlated directly with the resistance of the strain to killing by apo-hLf. Moreover examination of different pspA alleles on shared genetic backgrounds revealed that those PspAs that bound more lactoferrin conferred greater resistance to killing by apo-hLf. The effects of capsule on killing of pneumococci by apo-hLf were generally small, but on one genetic background, however, the lack of capsule was associated with 4-times as much apo-hLf binding and 30-times more resistance to killing by apo-hLf. Overall these finding strongly support the hypothesis that most of the variation in the ability of apo-hLf is dependent on the variation in the binding of apo-hLf to surface PspA and this binding is dependent on variation in PspA as well as variation in capsule which may enhance killing by reducing the binding of apo-hLf to PspA.
Collapse
Affiliation(s)
- Shaper Mirza
- Department of Biology, Lahore University of Management Sciences, Pakistan; Division of Epidemiology, Human Genetics and Environmental Health, School of Public Health, University of Texas, Health Science Center, Brownsville Regional Campus, TX, USA.
| | - William H Benjamin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Patricia A Coan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Shen-An Hwang
- Department of Pathology and Laboratory Medicine, Medical School University of Texas Health Science Center, Houston, TX, USA
| | - Anne-Kathryn Winslett
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Janet Yother
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Susan K Hollingshead
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kohtaro Fujihashi
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Department of Pediatrics Dentistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David E Briles
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
13
|
Elhaik Goldman S, Dotan S, Talias A, Lilo A, Azriel S, Malka I, Portnoi M, Ohayon A, Kafka D, Ellis R, Elkabets M, Porgador A, Levin D, Azhari R, Swiatlo E, Ling E, Feldman G, Tal M, Dagan R, Mizrachi Nebenzahl Y. Streptococcus pneumoniae fructose-1,6-bisphosphate aldolase, a protein vaccine candidate, elicits Th1/Th2/Th17-type cytokine responses in mice. Int J Mol Med 2016; 37:1127-38. [PMID: 26935978 DOI: 10.3892/ijmm.2016.2512] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/08/2016] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) is a major pathogen worldwide. The currently available polysaccharide-based vaccines significantly reduce morbidity and mortality. However, the inherent disadvantages of the currently available polysaccharide-based vaccines have motivated the search for other bacterial immunogens capable of eliciting a protective immune response against S. pneumoniae. Fructose-1,6-bisphosphate aldolase (FBA) is a glycolytic enzyme, which was found to localize to the bacterial surface, where it functions as an adhesin. Previously, immunizing mice with recombinant FBA (rFBA) in the presence of alum elicited a protective immune response against a lethal challenge with S. pneumoniae. Thus, the aim of the present study was to determine the cytokine responses that are indicative of protective immunity following immunization with rFBA. The protective effects against pneumococcal challenge in mice immunized with rFBA with complete Freund's adjuvant (CFA) in the initial immunization and with incomplete Freund's adjuvant (IFA) in booster immunizations surpassed the protective effects observed following immunization with either rFBA + alum or pVACfba. CD4+ T-cells obtained from the rFBA/CFA/IFA/IFA-immunized mice co-cultured with rFBA-pulsed antigen-presenting cells (APCs), exhibited a significantly greater proliferative ability than CD4+ T-cells obtained from the adjuvant-immunized mice co-cultured with rFBA‑pulsed APCs. The levels of the Th1-type cytokines, interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF)-α and IL-12, the Th2-type cytokines, IL-4, IL-5 and IL-10, and the Th17-type cytokine, IL-17A, significantly increased within 72 h of the initiation of co-culture with CD4+ T-cells obtained from the rFBA‑immunized mice, in comparison with the co-cultures with CD4+ T-cells obtained from the adjuvant-immunized mice. Immunizing mice with rFBA resulted in an IgG1/IgG2 ratio of 41, indicating a Th2 response with substantial Th1 involvement. In addition, rabbit and mouse anti-rFBA antisera significantly protected the mice against a lethal S. pneumoniae challenge in comparison with preimmune sera. Our results emphasize the mixed involvement of the Th1, Th2 and Th17 arms of the immune system in response to immunization with pneumococcal rFBA, a potential vaccine candidate.
Collapse
Affiliation(s)
- Shirin Elhaik Goldman
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Shahar Dotan
- NasVax/Protea Vaccine Technologies Ltd., Kiryat Weizmann, Science Park, Ness Ziona 74140, Israel
| | - Amir Talias
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Amit Lilo
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Shalhevet Azriel
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Itay Malka
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Maxim Portnoi
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Ariel Ohayon
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Daniel Kafka
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Ronald Ellis
- NasVax/Protea Vaccine Technologies Ltd., Kiryat Weizmann, Science Park, Ness Ziona 74140, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ditza Levin
- Prof. Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel 21982, Israel
| | - Rosa Azhari
- Prof. Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel 21982, Israel
| | - Edwin Swiatlo
- Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Eduard Ling
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Galia Feldman
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Michael Tal
- NasVax/Protea Vaccine Technologies Ltd., Kiryat Weizmann, Science Park, Ness Ziona 74140, Israel
| | - Ron Dagan
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | | |
Collapse
|
14
|
Kunda NK, Alfagih IM, Miyaji EN, Figueiredo DB, Gonçalves VM, Ferreira DM, Dennison SR, Somavarapu S, Hutcheon GA, Saleem IY. Pulmonary dry powder vaccine of pneumococcal antigen loaded nanoparticles. Int J Pharm 2015; 495:903-12. [DOI: 10.1016/j.ijpharm.2015.09.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 11/16/2022]
|
15
|
Rayner RE, Savill J, Hafner LM, Huygens F. Genotyping Streptococcus pneumoniae. Future Microbiol 2015; 10:653-64. [DOI: 10.2217/fmb.14.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Streptococcus pneumoniae is a potentially deadly human pathogen associated with high morbidity, mortality and global economic burden. The universally used bacterial genotyping methods are multilocus sequence typing and pulsed field gel electrophoresis. However, another highly discriminatory, rapid and less expensive genotyping technique, multilocus variable number of tandem repeat analysis (MLVA), has been developed. Unfortunately, no universal MLVA protocol exists, and some MLVA protocols do not amplify certain loci for all pneumococcal serotypes, leaving genotyping profiles incomplete. A number of other genotyping or characterization methods have been developed and will be discussed. This review examines the various protocols for genotyping S. pneumoniae and highlights the current direction technology and research is heading to understand this bacterium.
Collapse
Affiliation(s)
- Rachael E Rayner
- Institute of Health & Biomedical Innovation (IHBI), 60 Musk Ave, Kelvin Grove, 4059, Queensland, Australia
| | - John Savill
- Public Health Microbiology Laboratory, Queensland Health Forensic & Scientific Services, Coopers Plains, Queensland, Australia
| | - Louise M Hafner
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Flavia Huygens
- Institute of Health & Biomedical Innovation (IHBI), 60 Musk Ave, Kelvin Grove, 4059, Queensland, Australia
| |
Collapse
|
16
|
Wyszyńska A, Kobierecka P, Bardowski J, Jagusztyn-Krynicka EK. Lactic acid bacteria--20 years exploring their potential as live vectors for mucosal vaccination. Appl Microbiol Biotechnol 2015; 99:2967-77. [PMID: 25750046 PMCID: PMC4365182 DOI: 10.1007/s00253-015-6498-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/20/2022]
Abstract
Lactic acid bacteria (LAB) are a diverse group of Gram-positive, nonsporulating, low G + C content bacteria. Many of them have been given generally regarded as safe status. Over the past two decades, intensive genetic and molecular research carried out on LAB, mainly Lactococcus lactis and some species of the Lactobacillus genus, has revealed new, potential biomedical LAB applications, including the use of LAB as adjuvants, immunostimulators, or therapeutic drug delivery systems, or as factories to produce therapeutic molecules. LAB enable immunization via the mucosal route, which increases effectiveness against pathogens that use the mucosa as the major route of entry into the human body. In this review, we concentrate on the encouraging application of Lactococcus and Lactobacillus genera for the development of live mucosal vaccines. First, we present the progress that has recently been made in the field of developing tools for LAB genetic manipulations, which has resulted in the successful expression of many bacterial, parasitic, and viral antigens in LAB strains. Next, we discuss the factors influencing the efficacy of the constructed vaccine prototypes that have been tested in various animal models. Apart from the research focused on an application of live LABs as carriers of foreign antigens, a lot of work has been recently done on the potential usage of nonliving, nonrecombinant L. lactis designated as Gram-positive enhancer matrix (GEM), as a delivery system for mucosal vaccination. The advantages and disadvantages of both strategies are also presented.
Collapse
Affiliation(s)
- Agnieszka Wyszyńska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | | | | | | |
Collapse
|
17
|
Mapping of epitopes recognized by antibodies induced by immunization of mice with PspA and PspC. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:940-8. [PMID: 24807052 DOI: 10.1128/cvi.00239-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pneumococcal surface protein A (PspA) and pneumococcal surface protein C (PspC) are important candidates for an alternative vaccine against pneumococcal infections. Since these antigens show variability, the use of variants that do not afford broad protection may lead to the selection of vaccine escape bacteria. Epitopes capable of inducing antibodies with broad cross-reactivities should thus be the preferred antigens. In this work, experiments using peptide arrays show that most linear epitopes recognized by antibodies induced in mice against different PspAs were located at the initial 44 amino acids of the mature protein and that antibodies against these linear epitopes did not confer protection against a lethal challenge. Conversely, linear epitopes recognized by antibodies to PspC included the consensus sequences involved in the interaction with human factor H and secretory immunoglobulin A (sIgA). Since linear epitopes of PspA were not protective, larger overlapping fragments containing 100 amino acids of PspA of strain Rx1 were constructed (fragments 1 to 7, numbered from the N terminus) to permit the mapping of antibodies with conformational epitopes not represented in the peptide arrays. Antibodies from mice immunized with fragments 1, 2, 4, and 5 were capable of binding onto the surface of pneumococci and mediating protection against a lethal challenge. The fact that immunization of mice with 100-amino-acid fragments located at the more conserved N-terminal region of PspA (fragments 1 and 2) induced protection against a pneumococcal challenge indicates that the induction of antibodies against conformational epitopes present at this region may be important in strategies for inducing broad protection against pneumococci.
Collapse
|
18
|
Haughney SL, Petersen LK, Schoofs AD, Ramer-Tait AE, King JD, Briles DE, Wannemuehler MJ, Narasimhan B. Retention of structure, antigenicity, and biological function of pneumococcal surface protein A (PspA) released from polyanhydride nanoparticles. Acta Biomater 2013; 9:8262-71. [PMID: 23774257 DOI: 10.1016/j.actbio.2013.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/29/2013] [Accepted: 06/03/2013] [Indexed: 02/03/2023]
Abstract
Pneumococcal surface protein A (PspA) is a choline-binding protein which is a virulence factor found on the surface of all Streptococcus pneumoniae strains. Vaccination with PspA has been shown to be protective against a lethal challenge with S. pneumoniae, making it a promising immunogen for use in vaccines. Herein the design of a PspA-based subunit vaccine using polyanhydride nanoparticles as a delivery platform is described. Nanoparticles based on sebacic acid (SA), 1,6-bis-(p-carboxyphenoxy)hexane (CPH) and 1,8-bis-(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG), specifically 50:50 CPTEG:CPH and 20:80 CPH:SA, were used to encapsulate and release PspA. The protein released from the nanoparticle formulations retained its primary and secondary structure as well as its antigenicity. The released PspA was also biologically functional based on its ability to bind to apolactoferrin and prevent its bactericidal activity against Escherichia coli. When the PspA nanoparticle formulations were administered subcutaneously to mice they elicited a high titer and high avidity anti-PspA antibody response. Together these studies provide a framework for the rational design of a vaccine against S. pneumoniae based on polyanhydride nanoparticles.
Collapse
|
19
|
Expression of Streptococcus pneumoniae Virulence-Related Genes in the Nasopharynx of Healthy Children. PLoS One 2013; 8:e67147. [PMID: 23825636 PMCID: PMC3688971 DOI: 10.1371/journal.pone.0067147] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/13/2013] [Indexed: 11/19/2022] Open
Abstract
Colonization and persistence in the human nasopharynx are prerequisites for Streptococcus pneumoniae disease and carriage acquisition, which normally occurs during early childhood. Animal models and in vitro studies (i.e. cell adhesion and cell cytotoxicity assays) have revealed a number of colonization and virulence factors, as well as regulators, implicated in nasopharyngeal colonization and pathogenesis. Expression of genes encoding these factors has never been studied in the human nasopharynx. Therefore, this study analyzed expression of S. pneumoniae virulence-related genes in human nasopharyngeal samples. Our experiments first demonstrate that a density of ≥10(4) CFU/ml of S. pneumoniae cells in the nasopharynx provides enough DNA and RNA to amplify the lytA gene by conventional PCR and to detect the lytA message, respectively. A panel of 21 primers that amplified S. pneumoniae sequences was designed, and their specificity for S. pneumoniae sequences was analyzed in silico and validated against 20 related strains inhabitants of the human upper respiratory tract. These primers were utilized in molecular reactions to find out that all samples contained the genes ply, pavA, lytC, lytA, comD, codY, and mgrA, whereas nanA, nanB, pspA, and rrgB were present in ∼91-98% of the samples. Gene expression studies of these 11 targets revealed that lytC, lytA, pavA and comD were the most highly expressed pneumococcal genes in the nasopharynx whereas the rest showed a moderate to low level of expression. This is the first study to evaluate expression of virulence- and, colonization-related genes in the nasopharynx of healthy children and establishes the foundation for future gene expression studies during human pneumococcal disease.
Collapse
|