1
|
Yu H, Gu X, Wang D, Wang Z. Brucella infection and Toll-like receptors. Front Cell Infect Microbiol 2024; 14:1342684. [PMID: 38533384 PMCID: PMC10963510 DOI: 10.3389/fcimb.2024.1342684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/17/2024] [Indexed: 03/28/2024] Open
Abstract
Brucella consists of gram-negative bacteria that have the ability to invade and replicate in professional and non-professional phagocytes, and its prolonged persistence in the host leads to brucellosis, a serious zoonosis. Toll-like receptors (TLRs) are the best-known sensors of microorganisms implicated in the regulation of innate and adaptive immunity. In particular, TLRs are transmembrane proteins with a typical structure of an extracellular leucine-rich repeat (LRR) region and an intracellular Toll/interleukin-1 receptor (TIR) domain. In this review, we discuss Brucella infection and the aspects of host immune responses induced by pathogens. Furthermore, we summarize the roles of TLRs in Brucella infection, with substantial emphasis on the molecular insights into its mechanisms of action.
Collapse
Affiliation(s)
- Hui Yu
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Xinyi Gu
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Danfeng Wang
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| |
Collapse
|
2
|
Dawood AS, Elrashedy A, Nayel M, Salama A, Guo A, Zhao G, Algharib SA, Zaghawa A, Zubair M, Elsify A, Mousa W, Luo W. Brucellae as resilient intracellular pathogens: epidemiology, host-pathogen interaction, recent genomics and proteomics approaches, and future perspectives. Front Vet Sci 2023; 10:1255239. [PMID: 37876633 PMCID: PMC10591102 DOI: 10.3389/fvets.2023.1255239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Brucellosis is considered one of the most hazardous zoonotic diseases all over the world. It causes formidable economic losses in developed and developing countries. Despite the significant attempts to get rid of Brucella pathogens in many parts of the world, the disease continues to spread widely. Recently, many attempts proved to be effective for the prevention and control of highly contagious bovine brucellosis, which could be followed by others to achieve a prosperous future without rampant Brucella pathogens. In this study, the updated view for worldwide Brucella distribution, possible predisposing factors for emerging Brucella pathogens, immune response and different types of Brucella vaccines, genomics and proteomics approaches incorporated recently in the field of brucellosis, and future perspectives for prevention and control of bovine brucellosis have been discussed comprehensively. So, the current study will be used as a guide for researchers in planning their future work, which will pave the way for a new world without these highly contagious pathogens that have been infecting and threatening the health of humans and terrestrial animals.
Collapse
Affiliation(s)
- Ali Sobhy Dawood
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Alyaa Elrashedy
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mohamed Nayel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Akram Salama
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Samah Attia Algharib
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues (HZAU), Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ahmed Zaghawa
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Muhammed Zubair
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ahmed Elsify
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Walid Mousa
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| |
Collapse
|
3
|
Ali A, Waris A, Khan MA, Asim M, Khan AU, Khan S, Zeb J. Recent advancement, immune responses, and mechanism of action of various vaccines against intracellular bacterial infections. Life Sci 2023; 314:121332. [PMID: 36584914 DOI: 10.1016/j.lfs.2022.121332] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Emerging and re-emerging bacterial infections are a serious threat to human and animal health. Extracellular bacteria are free-living, while facultative intracellular bacteria replicate inside eukaryotic host cells. Many serious human illnesses are now known to be caused by intracellular bacteria such as Salmonella enterica, Escherichia coli, Staphylococcus aureus, Rickettsia massiliae, Chlamydia species, Brucella abortus, Mycobacterium tuberculosis and Listeria monocytogenes, which result in substantial morbidity and mortality. Pathogens like Mycobacterium, Brucella, MRSA, Shigella, Listeria, and Salmonella can infiltrate and persist in mammalian host cells, particularly macrophages, where they proliferate and establish a repository, resulting in chronic and recurrent infections. The current treatment for these bacteria involves the application of narrow-spectrum antibiotics. FDA-approved vaccines against obligate intracellular bacterial infections are lacking. The development of vaccines against intracellular pathogenic bacteria are more difficult because host defense against these bacteria requires the activation of the cell-mediated pathway of the immune system, such as CD8+ T and CD4+ T. However, different types of vaccines, including live, attenuated, subunit, killed whole cell, nano-based and DNA vaccines are currently in clinical trials. Substantial development has been made in various vaccine strategies against intracellular pathogenic bacteria. This review focuses on the mechanism of intracellular bacterial infection, host immune response, and recent advancements in vaccine development strategies against various obligate intracellular bacterial infections.
Collapse
Affiliation(s)
- Asmat Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong.
| | - Muhammad Ajmal Khan
- Division of Life Sciences, Center for Cancer Research and State Key Laboratory of Molecular Neurosciences, The Hong Kong University of Science and Technology, Hong Kong
| | - Muhammad Asim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Atta Ullah Khan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China
| | - Sahrish Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
4
|
Hassanzadeh P, Atyabi F, Dinarvand R. Nanobionics: From plant empowering to the infectious disease treatment. J Control Release 2022; 349:890-901. [PMID: 35901860 DOI: 10.1016/j.jconrel.2022.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Infectious diseases (ID) are serious threats against the global health and socio-economic conditions. Vaccination usually plays a key role in disease prevention, however, insufficient efficiency or immunogenicity may be quite challenging. Using the advanced vectors for delivery of vaccines with suitable efficiency, safety, and immune-modulatory activity, and tunable characteristics could be helpful, but there are no systematic reviews confirming the capabilities of the vaccine delivery systems for covering various types of pathogens. Furthermore, high rates of the infections, transmission, and fatal ratio and diversity of the pathogens and infection mechanisms may negatively influence vaccine effectiveness. The absence of highly-effective antibiotics against the resistant strains of bacteria and longevity of antibiotic testing have provoked increasing needs towards the application of more accurate and specific theranostic strategies including the nanotechnology-based ones. Nanobionics which is based on the charge storage and transport in the molecular structures, could be of key value in the molecular diagnostic tests and highly-specific electro-analytical methods or devices. Such devices based on the early disease diagnostics might be of critical significance against various types of diseases. This article highlights the significance of nanobionics against ID.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran; Sasan Hospital, Tehran 14159-83391, Iran.
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| |
Collapse
|
5
|
Muñoz PM, Conde-Álvarez R, Andrés-Barranco S, de Miguel MJ, Zúñiga-Ripa A, Aragón-Aranda B, Salvador-Bescós M, Martínez-Gómez E, Iriarte M, Barberán M, Vizcaíno N, Moriyón I, Blasco JM. A Brucella melitensis H38ΔwbkF rough mutant protects against Brucella ovis in rams. Vet Res 2022; 53:16. [PMID: 35236406 PMCID: PMC8889640 DOI: 10.1186/s13567-022-01034-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 01/05/2023] Open
Abstract
Brucella melitensis and Brucella ovis are gram-negative pathogens of sheep that cause severe economic losses and, although B. ovis is non-zoonotic, B. melitensis is the main cause of human brucellosis. B. melitensis carries a smooth (S) lipopolysaccharide (LPS) with an N-formyl-perosamine O-polysaccharide (O-PS) that is absent in the rough LPS of B. ovis. Their control and eradication require vaccination, but B. melitensis Rev 1, the only vaccine available, triggers anti-O-PS antibodies that interfere in the S-brucellae serodiagnosis. Since eradication and serological surveillance of the zoonotic species are priorities, Rev 1 is banned once B. melitensis is eradicated or where it never existed, hampering B. ovis control and eradication. To develop a B. ovis specific vaccine, we investigated three Brucella live vaccine candidates lacking N-formyl-perosamine O-PS: Bov::CAΔwadB (CO2-independent B. ovis with truncated LPS core oligosaccharide); Rev1::wbdRΔwbkC (carrying N-acetylated O-PS); and H38ΔwbkF (B. melitensis rough mutant with intact LPS core). After confirming their attenuation and protection against B. ovis in mice, were tested in rams for efficacy. H38ΔwbkF yielded similar protection to Rev 1 against B. ovis but Bov::CAΔwadB and Rev1::wbdRΔwbkC conferred no or poor protection, respectively. All H38ΔwbkF vaccinated rams developed a protracted antibody response in ELISA and immunoprecipitation B. ovis diagnostic tests. In contrast, all remained negative in Rose Bengal and complement fixation tests used routinely for B. melitensis diagnosis, though some became positive in S-LPS ELISA owing to LPS core epitope reactivity. Thus, H38ΔwbkF is an interesting candidate for the immunoprophylaxis of B. ovis in B. melitensis-free areas.
Collapse
Affiliation(s)
- Pilar M Muñoz
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain.
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain.
| | - Raquel Conde-Álvarez
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Sara Andrés-Barranco
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - María-Jesús de Miguel
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Amaia Zúñiga-Ripa
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Beatriz Aragón-Aranda
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Miriam Salvador-Bescós
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Estrella Martínez-Gómez
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, GENYO Centre for Genomics and Oncological Research, Pfizer-University of Granada-Junta de Andalucía, Granada, Spain
| | - Maite Iriarte
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | | | - Nieves Vizcaíno
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Ignacio Moriyón
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - José M Blasco
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| |
Collapse
|
6
|
Antibiogram Screening and Detection of Virulence-Associated Genes in Brucella Species Acquired from Cattle in South Africa's Eastern Cape Province. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052813. [PMID: 35270507 PMCID: PMC8909984 DOI: 10.3390/ijerph19052813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/04/2022]
Abstract
Brucellosis is a widespread zoonotic illness, and it poses serious public health and economic risks. The purpose of this investigation is to look at the antimicrobial susceptibility of unpasteurized milk, blood, and lymph node specimens from cattle, goats, and sheep, as well as to identify virulence-associated genes. In this investigation, a total of 123 isolates were examined. The activity of 15 antimicrobials against Brucella pathogens were assessed using the Kirby−Bauer disk diffusion technique. Nine virulence factors were detected with polymerase chain reaction analysis. Five antibiotics were 100% effective against Brucella isolates. A high level of resistance (100%) was documented with streptomycin, penicillin, and seven more antibiotics. Doxycycline resistance was found in 12% of goat isolates, and tetracycline resistance was found in 21% and 44% of goat and sheep isolates, respectively. Multiple antibiotic resistance (MAR) index >0.2 was found in 38.2% (47/123) of Brucella isolates. VecC and BetB, two B. abortus genes, were confirmed to be comparable. The findings of this study suggests that Brucella spp. are reservoirs of antibiotic resistance in the Eastern Cape Province. As such, they represent a potential pool of antibiotic genes that might be transferred to other pathogens in the community, and thus continue to pose a healthcare hazard.
Collapse
|
7
|
Pan C, Yue H, Zhu L, Ma GH, Wang HL. Prophylactic vaccine delivery systems against epidemic infectious diseases. Adv Drug Deliv Rev 2021; 176:113867. [PMID: 34280513 PMCID: PMC8285224 DOI: 10.1016/j.addr.2021.113867] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 07/11/2021] [Indexed: 01/04/2023]
Abstract
Prophylactic vaccines have evolved from traditional whole-cell vaccines to safer subunit vaccines. However, subunit vaccines still face problems, such as poor immunogenicity and low efficiency, while traditional adjuvants are usually unable to meet specific response needs. Advanced delivery vectors are important to overcome these barriers; they have favorable safety and effectiveness, tunable properties, precise location, and immunomodulatory capabilities. Nevertheless, there has been no systematic summary of the delivery systems to cover a wide range of infectious pathogens. We herein summarized and compared the delivery systems for major or epidemic infectious diseases caused by bacteria, viruses, fungi, and parasites. We also included the newly licensed vaccines (e.g., COVID-19 vaccines) and those close to licensure. Furthermore, we highlighted advanced delivery systems with high efficiency, cross-protection, or long-term protection against epidemic pathogens, and we put forward prospects and thoughts on the development of future prophylactic vaccines.
Collapse
Affiliation(s)
- Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China
| | - Guang-Hui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Heng-Liang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China.
| |
Collapse
|
8
|
Synthesis and immunogenicity of Brucella monovalent neoglycoconjugate. Carbohydr Res 2020; 499:108196. [PMID: 33243427 DOI: 10.1016/j.carres.2020.108196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 11/22/2022]
Abstract
Brucellosis is a highly infectious zoonotic disease caused by Brucella. It is necessary to control and eliminate brucellosis. The cell wall O-polysaccharides of pathogenic Brucella species are homopolymers of the rare sugar 4,6-dideoxy-4-formamido-α-d-mannopyranose. Herein, one neoglycoconjugate was successfully synthesized based on disaccharide [Rha4NFo(1 → 2)Rha4NFo] as epitope. Disaccharide specific antibodies were detected by ELISA and the immune protective effect was further evaluated with PBS as control. The result showed that the synthetic neoglycoconjugate can produce moderate immune responses in mice and significantly decreased splenic Brucella M5 burden comparing with control group. The chemically defined antigen identified the A antigenic determinant and provided a structural basis for understanding the fine specificity of polyclonal antibodies that bind the A antigen. The neoglycoconjugate shows the potential in detection reagent or vaccine development for brucellosis.
Collapse
|
9
|
Afshari H, Maleki M, Salouti M. Immunological effects of two new nanovaccines against Brucella based on OPS and LPS antigens conjugated with PLGA nanoparticles. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Aragón-Aranda B, de Miguel MJ, Lázaro-Antón L, Salvador-Bescós M, Zúñiga-Ripa A, Moriyón I, Iriarte M, Muñoz PM, Conde-Álvarez R. Development of attenuated live vaccine candidates against swine brucellosis in a non-zoonotic B. suis biovar 2 background. Vet Res 2020; 51:92. [PMID: 32703299 PMCID: PMC7376850 DOI: 10.1186/s13567-020-00815-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Brucella is a genus of gram-negative bacteria that cause brucellosis. B. abortus and B. melitensis infect domestic ruminants while B. suis (biovars 1-3) infect swine, and all these bacteria but B. suis biovar 2 are zoonotic. Live attenuated B. abortus S19 and B. melitensis Rev1 are effective vaccines in domestic ruminants, though both can infect humans. However, there is no swine brucellosis vaccine. Here, we investigated the potential use as vaccines of B. suis biovar 2 rough (R) lipopolysaccharide (LPS) mutants totally lacking O-chain (Bs2ΔwbkF) or only producing internal O-chain precursors (Bs2Δwzm) and mutants with a smooth (S) LPS defective in the core lateral branch (Bs2ΔwadB and Bs2ΔwadD). We also investigated mutants in the pyruvate phosphate dikinase (Bs2ΔppdK) and phosphoenolpyruvate carboxykinase (Bs2ΔpckA) genes encoding enzymes bridging phosphoenolpyruvate and the tricarboxylic acid cycle. When tested in the OIE mouse model at the recommended R or S vaccine doses (108 and 105 CFU, respectively), CFU/spleen of all LPS mutants were reduced with respect to the wild type and decreased faster for the R than for the S mutants. At those doses, protection against B. suis was similar for Bs2ΔwbkF, Bs2Δwzm, Bs2ΔwadB and the Rev1 control (105 CFU). As described before for B. abortus, B. suis biovar 2 carried a disabled pckA so that a double mutant Bs2ΔppdKΔpckA had the same metabolic phenotype as Bs2ΔppdK and ppdK mutation was enough to generate attenuation. At 105 CFU, Bs2ΔppdK also conferred the same protection as Rev1. As compared to other B. suis vaccine candidates described before, the mutants described here simultaneously carry irreversible deletions easy to identify as vaccine markers, lack antibiotic-resistance markers and were obtained in a non-zoonotic background. Since R vaccines should not elicit antibodies to the S-LPS and wzm mutants carry immunogenic O-chain precursors and did not improve Bs2ΔwbkF, the latter seems a better R vaccine candidate than Bs2Δwzm. However, taking into account that all R vaccines interfere in ELISA and other widely used assays, whether Bs2ΔwbkF is advantageous over Bs2ΔwadB or Bs2ΔppdK requires experiments in the natural host.
Collapse
Affiliation(s)
- Beatriz Aragón-Aranda
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Dpto. de Microbiología y Parasitología, Universidad de Navarra, c/Irunlarrea 1, 31008, Pamplona, Spain
| | - María Jesús de Miguel
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Leticia Lázaro-Antón
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Dpto. de Microbiología y Parasitología, Universidad de Navarra, c/Irunlarrea 1, 31008, Pamplona, Spain
| | - Miriam Salvador-Bescós
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Dpto. de Microbiología y Parasitología, Universidad de Navarra, c/Irunlarrea 1, 31008, Pamplona, Spain
| | - Amaia Zúñiga-Ripa
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Dpto. de Microbiología y Parasitología, Universidad de Navarra, c/Irunlarrea 1, 31008, Pamplona, Spain
| | - Ignacio Moriyón
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Dpto. de Microbiología y Parasitología, Universidad de Navarra, c/Irunlarrea 1, 31008, Pamplona, Spain
| | - Maite Iriarte
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Dpto. de Microbiología y Parasitología, Universidad de Navarra, c/Irunlarrea 1, 31008, Pamplona, Spain
| | - Pilar M Muñoz
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain. .,Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain.
| | - Raquel Conde-Álvarez
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Dpto. de Microbiología y Parasitología, Universidad de Navarra, c/Irunlarrea 1, 31008, Pamplona, Spain.
| |
Collapse
|
11
|
Application of an O-Linked Glycosylation System in Yersinia enterocolitica Serotype O:9 to Generate a New Candidate Vaccine against Brucella abortus. Microorganisms 2020; 8:microorganisms8030436. [PMID: 32244903 PMCID: PMC7143757 DOI: 10.3390/microorganisms8030436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Brucellosis is a major zoonotic public health threat worldwide, causing veterinary morbidity and major economic losses in endemic regions. However, no efficacious brucellosis vaccine is yet available, and live attenuated vaccines commonly used in animals can cause human infection. N- and O-linked glycosylation systems have been successfully developed and exploited for the production of successful bioconjugate vaccines. Here, we applied an O-linked glycosylation system to a low-pathogenicity bacterium, Yersinia enterocolitica serotype O:9 (Y. enterocolitica O:9), which has repeating units of O-antigen polysaccharide (OPS) identical to that of Brucella abortus (B. abortus), to develop a bioconjugate vaccine against Brucella. The glycoprotein we produced was recognized by both anti-B. abortus and anti-Y. enterocolitica O:9 monoclonal antibodies. Three doses of bioconjugate vaccine-elicited B. abortus OPS-specific serum IgG in mice, significantly reducing bacterial loads in the spleen following infection with the B. abortus hypovirulent smooth strain A19. This candidate vaccine mitigated B. abortus infection and prevented severe tissue damage, thereby protecting against lethal challenge with A19. Overall, the results indicated that the bioconjugate vaccine elicited a strong immune response and provided significant protection against brucellosis. The described vaccine preparation strategy is safe and avoids large-scale culture of the highly pathogenic B. abortus.
Collapse
|
12
|
Clostridium perfringens epsilon toxin vaccine candidate lacking toxicity to cells expressing myelin and lymphocyte protein. NPJ Vaccines 2019; 4:32. [PMID: 31372245 PMCID: PMC6667452 DOI: 10.1038/s41541-019-0128-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
A variant form of Clostridium perfringens epsilon toxin (Y30A-Y196A) with mutations, which shows reduced binding to Madin–Darby canine kidney (MDCK) cells and reduced toxicity in mice, has been proposed as the next-generation enterotoxaemia vaccine. Here we show that, unexpectedly, the Y30A-Y196A variant does not show a reduction in toxicity towards Chinese hamster ovary (CHO) cells engineered to express the putative receptor for the toxin (myelin and lymphocyte protein; MAL). The further addition of mutations to residues in a second putative receptor binding site of the Y30A-Y196A variant further reduces toxicity, and we selected Y30A-Y196A-A168F for further study. Compared to Y30A-Y196A, Y30A-Y196A-A168F showed more than a 3-fold reduction in toxicity towards MDCK cells, more than a 4-fold reduction in toxicity towards mice and at least 200-fold reduction in toxicity towards CHO cells expressing sheep MAL. The immunisation of rabbits or sheep with Y30A-Y196A-A168F induced high levels of neutralising antibodies against epsilon toxin, which persisted for at least 1 year. Y30A-Y196A-A168F is a candidate for development as a next-generation enterotoxaemia vaccine. Cells expressing myelin and lymphocyte protein (MAL), the putative receptor for Clostridium perfringens’ epsilon toxin, can be sensitive to otherwise attenuated mutants of the toxin. Here, the team led by Richard Titball at United Kingdom’s University of Exeter found that a previous variant exhibits differential toxic effects when cells express sheep or human MAL. To circumvent this, Titball’s team applied site-directed mutagenesis of the receptor binding site to develop a new variant with enhanced reduction in toxicity towards MAL-expressing cells and able to induce high levels of neutralising antibodies upon immunisation of sheep. These findings suggests that testing genetic toxoids in cells expressing MAL from the target species might be relevant for enterotoxaemia vaccine development and warrant further studies into the role of MAL in epsilon toxin-mediated pathogenesis.
Collapse
|
13
|
Masjedian Jezi F, Razavi S, Mirnejad R, Zamani K. Immunogenic and protective antigens of Brucella as vaccine candidates. Comp Immunol Microbiol Infect Dis 2019; 65:29-36. [PMID: 31300122 DOI: 10.1016/j.cimid.2019.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 01/18/2023]
Abstract
Brucella is an intracellular pathogen that causes abortion in domestic animals and undulant fever in humans. Due to the lack of a human vaccine against brucellosis, animal vaccines play an important role in the management of animal and human brucellosis for decades. Strain 19, RB51 and Rev1 are the approved Brucella spp. vaccine strains that are most commonly used to protect livestock against infection and abortion. However, due to some disadvantages of these vaccines, numerous studies have been conducted for the development of effective vaccines that could also be used in other susceptible animals. In this review, we compare different aspects of immunogenic antigens that have been a candidate for the brucellosis vaccine.
Collapse
Affiliation(s)
- Faramarz Masjedian Jezi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, I
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, I
| | - Reza Mirnejad
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khosrow Zamani
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, I; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Gheibi A, Khanahmad H, Kashfi K, Sarmadi M, Khorramizadeh MR. Development of new generation of vaccines for Brucella abortus. Heliyon 2018; 4:e01079. [PMID: 30603712 PMCID: PMC6307385 DOI: 10.1016/j.heliyon.2018.e01079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/18/2023] Open
Abstract
Brucella abortus is a Gram-negative facultative and intracellular bacteria, it causes bovine brucellosis, a zoonotic disease that is responsible for considerable economic loss to owners of domesticated animals and can cause problems in otherwise healthy humans. There are a few available live attenuated vaccines for animal immunization against brucellosis; however, these have significant side effects and offer insufficient protective efficacy. Thus, the need for more research into the Molecular pathobiology and immunological properties of B. abortus that would lead to the development of better and safer vaccines. In this paper we have reviewed the main aspects of the pathology and the responsive immunological mechanisms, we have also covered current and new prospective vaccines against B. abortus.
Collapse
Affiliation(s)
- Azam Gheibi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA
| | - Mahdieh Sarmadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Salvador-Bescós M, Gil-Ramírez Y, Zúñiga-Ripa A, Martínez-Gómez E, de Miguel MJ, Muñoz PM, Cloeckaert A, Zygmunt MS, Moriyón I, Iriarte M, Conde-Álvarez R. WadD, a New Brucella Lipopolysaccharide Core Glycosyltransferase Identified by Genomic Search and Phenotypic Characterization. Front Microbiol 2018; 9:2293. [PMID: 30319590 PMCID: PMC6171495 DOI: 10.3389/fmicb.2018.02293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/07/2018] [Indexed: 01/20/2023] Open
Abstract
Brucellosis, an infectious disease caused by Brucella, is one of the most extended bacterial zoonosis in the world and an important cause of economic losses and human suffering. The lipopolysaccharide (LPS) of Brucella plays a major role in virulence as it impairs normal recognition by the innate immune system and delays the immune response. The LPS core is a branched structure involved in resistance to complement and polycationic peptides, and mutants in glycosyltransferases required for the synthesis of the lateral branch not linked to the O-polysaccharide (O-PS) are attenuated and have been proposed as vaccine candidates. For this reason, the complete understanding of the genes involved in the synthesis of this LPS section is of particular interest. The chemical structure of the Brucella LPS core suggests that, in addition to the already identified WadB and WadC glycosyltransferases, others could be implicated in the synthesis of this lateral branch. To clarify this point, we identified and constructed mutants in 11 ORFs encoding putative glycosyltransferases in B. abortus. Four of these ORFs, regulated by the virulence regulator MucR (involved in LPS synthesis) or the BvrR/BvrS system (implicated in the synthesis of surface components), were not required for the synthesis of a complete LPS neither for virulence or interaction with polycationic peptides and/or complement. Among the other seven ORFs, six seemed not to be required for the synthesis of the core LPS since the corresponding mutants kept the O-PS and reacted as the wild type with polyclonal sera. Interestingly, mutant in ORF BAB1_0953 (renamed wadD) lost reactivity against antibodies that recognize the core section while kept the O-PS. This suggests that WadD is a new glycosyltransferase adding one or more sugars to the core lateral branch. WadD mutants were more sensitive than the parental strain to components of the innate immune system and played a role in chronic stages of infection. These results corroborate and extend previous work indicating that the Brucella LPS core is a branched structure that constitutes a steric impairment preventing the elements of the innate immune system to fight against Brucella.
Collapse
Affiliation(s)
- Miriam Salvador-Bescós
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Yolanda Gil-Ramírez
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Amaia Zúñiga-Ripa
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Estrella Martínez-Gómez
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - María J de Miguel
- Unidad de Tecnología en Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón - IA2 (CITA - Universidad de Zaragoza), Zaragoza, Spain
| | - Pilar M Muñoz
- Unidad de Tecnología en Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón - IA2 (CITA - Universidad de Zaragoza), Zaragoza, Spain
| | - Axel Cloeckaert
- Institut National de la Recherche Agronomique, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Michel S Zygmunt
- Institut National de la Recherche Agronomique, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Ignacio Moriyón
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Maite Iriarte
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Raquel Conde-Álvarez
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
16
|
Zhao Y, Hanniffy S, Arce-Gorvel V, Conde-Alvarez R, Oh S, Moriyón I, Mémet S, Gorvel JP. Immunomodulatory properties of Brucella melitensis lipopolysaccharide determinants on mouse dendritic cells in vitro and in vivo. Virulence 2018; 9:465-479. [PMID: 28968180 PMCID: PMC5955181 DOI: 10.1080/21505594.2017.1386831] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The lipopolysaccharide (LPS) is a major virulence factor of Brucella, a facultative intracellular pathogenic Gram-negative bacterium. Brucella LPS exhibits a low toxicity and its atypical structure was postulated to delay the host immune response, favouring the establishment of chronic disease. Here we carried out an in-depth in vitro and in vivo characterisation of the immunomodulatory effects of Brucella LPS on different dendritic cell (DC) subpopulations. By using LPSs from bacteria that share some of Brucella LPS structural features, we demonstrated that the core component of B. melitensis wild-type (Bm-wt) LPS accounts for the low activation potential of Brucella LPS in mouse GM-CSF-derived (GM-) DCs. Contrary to the accepted dogma considering Brucella LPS a poor TLR4 agonist and DC activator, Bm-wt LPS selectively induced expression of surface activation markers and cytokine secretion from Flt3-Ligand-derived (FL-) DCs in a TLR4-dependent manner. It also primed in vitro T cell proliferation by FL-DCs. In contrast, modified LPS with a defective core purified from Brucella carrying a mutated wadC gene (Bm-wadC), efficiently potentiated mouse and human DC activation and T cell proliferation in vitro. In vivo, Bm-wt LPS promoted scant activation of splenic DC subsets and limited recruitment of monocyte- DC like cells in the spleen, conversely to Bm-wadC LPS. Bm-wadC live bacteria drove high cytokine secretion levels in sera of infected mice. Altogether, these results illustrate the immunomodulatory properties of Brucella LPS and the enhanced DC activation ability of the wadC mutation with potential for vaccine development targeting Brucella core LPS structure.
Collapse
Affiliation(s)
- Yun Zhao
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| | - Sean Hanniffy
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| | - Vilma Arce-Gorvel
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| | - Raquel Conde-Alvarez
- b Departamento de Microbiología y Parasitología , Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra , c/Irunlarrea 1, Pamplona , Spain
| | - SangKon Oh
- c Baylor Institute for Immunology Research , 3434 Live Oak St., Dallas , TX , U.S.A
| | - Ignacio Moriyón
- b Departamento de Microbiología y Parasitología , Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra , c/Irunlarrea 1, Pamplona , Spain
| | - Sylvie Mémet
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| | - Jean-Pierre Gorvel
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| |
Collapse
|
17
|
Pérez-Etayo L, de Miguel MJ, Conde-Álvarez R, Muñoz PM, Khames M, Iriarte M, Moriyón I, Zúñiga-Ripa A. The CO 2-dependence of Brucella ovis and Brucella abortus biovars is caused by defective carbonic anhydrases. Vet Res 2018; 49:85. [PMID: 30185220 PMCID: PMC6126018 DOI: 10.1186/s13567-018-0583-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
Brucella bacteria cause brucellosis, a major zoonosis whose control requires efficient diagnosis and vaccines. Identification of classical Brucella spp. has traditionally relied on phenotypic characterization, including surface antigens and 5–10% CO2 necessity for growth (CO2-dependence), a trait of Brucella ovis and most Brucella abortus biovars 1–4 strains. Although molecular tests are replacing phenotypic methods, CO2-dependence remains of interest as it conditions isolation and propagation and reflects Brucella metabolism, an area of active research. Here, we investigated the connection of CO2-dependence and carbonic anhydrases (CA), the enzymes catalyzing the hydration of CO2 to the bicarbonate used by anaplerotic and biosynthetic carboxylases. Based on the previous demonstration that B. suis carries two functional CAs (CAI and CAII), we analyzed the CA sequences of CO2-dependent and -independent brucellae and spontaneous mutants. The comparisons strongly suggested that CAII is not functional in CO2-dependent B. abortus and B. ovis, and that a modified CAII sequence explains the CO2-independent phenotype of spontaneous mutants. Then, by mutagenesis and heterologous plasmid complementation and chromosomal insertion we proved that CAI alone is enough to support CO2-independent growth of B. suis in rich media but not of B. abortus in rich media or B. suis in minimal media. Finally, we also found that insertion of a heterologous active CAII into B. ovis reverted the CO2-dependence but did not alter its virulence in the mouse model. These results allow a better understanding of central aspects of Brucella metabolism and, in the case of B. ovis, provide tools for large-scale production of diagnostic antigens and vaccines.
Collapse
Affiliation(s)
- Lara Pérez-Etayo
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología-IDISNA, Universidad de Navarra, 31008, Pamplona, Spain
| | - María Jesús de Miguel
- Unidad de Producción y Sanidad Animal del Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
| | - Raquel Conde-Álvarez
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología-IDISNA, Universidad de Navarra, 31008, Pamplona, Spain
| | - Pilar M Muñoz
- Unidad de Producción y Sanidad Animal del Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
| | - Mammar Khames
- Department of Biology, University of Medea, 26000, Medea, Algeria.,National Veterinary High School, Algiers, Algeria
| | - Maite Iriarte
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología-IDISNA, Universidad de Navarra, 31008, Pamplona, Spain
| | - Ignacio Moriyón
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología-IDISNA, Universidad de Navarra, 31008, Pamplona, Spain
| | - Amaia Zúñiga-Ripa
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología-IDISNA, Universidad de Navarra, 31008, Pamplona, Spain.
| |
Collapse
|
18
|
Affiliation(s)
- Judith A Smith
- a University of Madison School of Medicine and Public Health , Madison WI
| |
Collapse
|
19
|
Vaccine development targeting lipopolysaccharide structure modification. Microbes Infect 2017; 20:455-460. [PMID: 29233768 DOI: 10.1016/j.micinf.2017.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023]
Abstract
Vaccines are one of the most important methods for preventing infectious disease. Structural modification of lipopolysaccharide (LPS) provides a strategy for the development of live attenuated vaccines, either by altering the immunogenicity or by attenuating virulence of the bacteria. This review summarizes various approaches that utilize LPS mutants as whole-cell vaccines.
Collapse
|
20
|
Casabuono AC, Czibener C, Del Giudice MG, Valguarnera E, Ugalde JE, Couto AS. New Features in the Lipid A Structure of Brucella suis and Brucella abortus Lipopolysaccharide. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2716-2723. [PMID: 28924631 DOI: 10.1007/s13361-017-1805-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/18/2017] [Accepted: 08/26/2017] [Indexed: 06/07/2023]
Abstract
Brucellaceae are Gram-negative bacteria that cause brucellosis, one of the most distributed worldwide zoonosis, transmitted to humans by contact with either infected animals or their products. The lipopolysaccharide exposed on the cell surface has been intensively studied and is considered a major virulence factor of Brucella. In the last years, structural studies allowed the determination of new structures in the core oligosaccharide and the O-antigen of this lipopolysaccharide. In this work, we have reinvestigated the lipid A structure isolated from B. suis and B. abortus lipopolysaccharides. A detailed study by MALDI-TOF mass spectrometry in the positive and negative ion modes of the lipid A moieties purified from both species was performed. Interestingly, a new feature was detected: the presence of a pyrophosphorylethanolamine residue substituting the backbone. LID-MS/MS analysis of some of the detected ions allowed assurance that the Lipid A structure composed by the diGlcN3N disaccharide, mainly hexa-acylated and penta-acylated, bearing one phosphate and one pyrophosphorylethanolamine residue. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Adriana C Casabuono
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica - Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Intendente Güiraldes 2160, C1428GA, Buenos Aires, Argentina
| | - Cecilia Czibener
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-INTECH, CONICET, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Mariela G Del Giudice
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-INTECH, CONICET, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Ezequiel Valguarnera
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-INTECH, CONICET, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Juan E Ugalde
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-INTECH, CONICET, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Alicia S Couto
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica - Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Intendente Güiraldes 2160, C1428GA, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Zhang J, Yin S, Yi D, Zhang H, Li Z, Guo F, Chen C, Fang W, Wang J. The Brucella melitensis M5-90ΔmanB live vaccine candidate is safer than M5-90 and confers protection against wild-type challenge in BALB/c mice. Microb Pathog 2017; 112:148-155. [PMID: 28916316 DOI: 10.1016/j.micpath.2017.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/13/2017] [Accepted: 09/11/2017] [Indexed: 11/30/2022]
Abstract
Brucellosis is a globally distributed zoonotic disease that causes animal and human diseases. Although effective, the current Brucella vaccines (strain M5-90 or others) have several drawbacks. The first is their residual virulence for animals and humans and the second is their inability to differentiate natural infection from that caused by vaccination. In the present study, Brucella melitensis M5-90 manB mutant (M5-90ΔmanB) was generated to overcome these drawbacks. M5-90ΔmanB showed significantly reduced survival in macrophages and mice, and induced strong protective immunity in BALB/c mice. It elicited anti-Brucella-specific IgG1 and IgG2a subtype responses and induced the secretion of gamma interferon (IFN-γ) and interleukin-4(IL-4). Results of immune assays showed, M5-90ΔmanB immunization induced the secretion of IFN-γ in goats, and serum samples from goats inoculated with M5-90ΔmanB were negative by Bengal Plate Test (RBPT) and Standard Tube Agglutination Test (STAT). Further, the ManB antigen also allows serological assays differentiate infections caused by wild strains from infections by vaccination. These results show that M5-90ΔmanB is a suitable attenuated vaccine candidate against virulent Brucella melitensis 16 M (16 M) infection.
Collapse
Affiliation(s)
- Junbo Zhang
- College of Agroforestry Engineering and Planning (Cultural and Technological Industry Innovation Research Center), Tongren University, Tongren 554300, Guizhou, China; College of Animal Science and Technology, Zhejiang University, Hangzhou 3100204, Zhejiang, China
| | - Shuanghong Yin
- College of One Health, Tongren University, Tongren 554300, Guizhou, China
| | - Dewu Yi
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Hong Zhang
- College of One Health, Tongren University, Tongren 554300, Guizhou, China
| | - Zhiqiang Li
- College of Biotechnology and Food, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Fei Guo
- College of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Weihuan Fang
- College of Animal Science and Technology, Zhejiang University, Hangzhou 3100204, Zhejiang, China.
| | - Jiafu Wang
- College of Agroforestry Engineering and Planning (Cultural and Technological Industry Innovation Research Center), Tongren University, Tongren 554300, Guizhou, China
| |
Collapse
|
22
|
Willett JW, Herrou J, Czyz DM, Cheng JX, Crosson S. Brucella abortus ΔrpoE1 confers protective immunity against wild type challenge in a mouse model of brucellosis. Vaccine 2016; 34:5073-5081. [PMID: 27591954 DOI: 10.1016/j.vaccine.2016.08.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 11/28/2022]
Abstract
The Brucella abortus general stress response (GSR) system regulates activity of the alternative sigma factor, σ(E1), which controls transcription of approximately 100 genes and is required for persistence in a BALB/c mouse chronic infection model. We evaluated the host response to infection by a B. abortus strain lacking σ(E1) (ΔrpoE1), and identified pathological and immunological features that distinguish ΔrpoE1-infected mice from wild-type (WT), and that correspond with clearance of ΔrpoE1 from the host. ΔrpoE1 infection was indistinguishable from WT in terms of splenic bacterial burden, inflammation and histopathology up to 6weeks post-infection. However, Brucella-specific serum IgG levels in ΔrpoE1-infected mice were 5 times higher than WT by 4weeks post-infection, and remained significantly higher throughout the course of a 12-week infection. Total IgG and Brucella-specific IgG levels peaked strongly in ΔrpoE1-infected mice at 6weeks, which correlated with reduced splenomegaly and bacterial burden relative to WT-infected mice. Given the difference in immune response to infection with wild-type and ΔrpoE1, we tested whether ΔrpoE1 confers protective immunity to wild-type challenge. Mice immunized with ΔrpoE1 completely resisted WT infection and had significantly higher serum titers of Brucella-specific IgG, IgG2a and IFN-γ after WT challenge relative to age-matched naïve mice. We conclude that immunization of BALB/c mice with the B. abortus GSR pathway mutant, ΔrpoE1, elicits an adaptive immune response that confers significant protective immunity against WT infection.
Collapse
Affiliation(s)
- Jonathan W Willett
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Howard Taylor Ricketts Laboratory, University of Chicago, Argonne National Laboratory, Argonne, IL, USA
| | - Julien Herrou
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Howard Taylor Ricketts Laboratory, University of Chicago, Argonne National Laboratory, Argonne, IL, USA
| | - Daniel M Czyz
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Howard Taylor Ricketts Laboratory, University of Chicago, Argonne National Laboratory, Argonne, IL, USA
| | - Jason X Cheng
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Howard Taylor Ricketts Laboratory, University of Chicago, Argonne National Laboratory, Argonne, IL, USA.,Department of Microbiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
23
|
Fontana C, Conde-Álvarez R, Ståhle J, Holst O, Iriarte M, Zhao Y, Arce-Gorvel V, Hanniffy S, Gorvel JP, Moriyón I, Widmalm G. Structural Studies of Lipopolysaccharide-defective Mutants from Brucella melitensis Identify a Core Oligosaccharide Critical in Virulence. J Biol Chem 2016; 291:7727-41. [PMID: 26867577 PMCID: PMC4817197 DOI: 10.1074/jbc.m115.701540] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Indexed: 11/07/2022] Open
Abstract
The structures of the lipooligosaccharides from Brucella melitensis mutants affected in the WbkD and ManBcore proteins have been fully characterized using NMR spectroscopy. The results revealed that disruption of wbkD gives rise to a rough lipopolysaccharide (R-LPS) with a complete core structure (β-d-Glcp-(1→4)-α-Kdop-(2→4)[β-d-GlcpN-(1→6)-β-d-GlcpN-(1→4)[β-d-GlcpN-(1→6)]-β-d-GlcpN-(1→3)-α-d-Manp-(1→5)]-α-Kdop-(2→6)-β-d-GlcpN3N4P-(1→6)-α-d-GlcpN3N1P), in addition to components lacking one of the terminal β-d-GlcpN and/or the β-d-Glcp residues (48 and 17%, respectively). These structures were identical to those of the R-LPS from B. melitensis EP, a strain simultaneously expressing both smooth and R-LPS, also studied herein. In contrast, disruption of manBcore gives rise to a deep-rough pentasaccharide core (β-d-Glcp-(1→4)-α-Kdop-(2→4)-α-Kdop-(2→6)-β-d-GlcpN3N4P-(1→6)-α-d-GlcpN3N1P) as the major component (63%), as well as a minor tetrasaccharide component lacking the terminal β-d-Glcp residue (37%). These results are in agreement with the predicted functions of the WbkD (glycosyltransferase involved in the biosynthesis of the O-antigen) and ManBcore proteins (phosphomannomutase involved in the biosynthesis of a mannosyl precursor needed for the biosynthesis of the core and O-antigen). We also report that deletion of B. melitensis wadC removes the core oligosaccharide branch not linked to the O-antigen causing an increase in overall negative charge of the remaining LPS inner section. This is in agreement with the mannosyltransferase role predicted for WadC and the lack of GlcpN residues in the defective core oligosaccharide. Despite carrying the O-antigen essential in B. melitensis virulence, the core deficiency in the wadC mutant structure resulted in a more efficient detection by innate immunity and attenuation, proving the role of the β-d-GlcpN-(1→6)-β-d-GlcpN-(1→4)[β-d-GlcpN-(1→6)]-β-d-GlcpN-(1→3)-α-d-Manp-(1→5) structure in virulence.
Collapse
Affiliation(s)
- Carolina Fontana
- From the Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Raquel Conde-Álvarez
- the Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Jonas Ståhle
- From the Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Otto Holst
- the Division of Structural Biochemistry, Leibniz-Center for Medicine and Biosciences, Priority Area Asthma and Allergy, Research Center Borstel, Airway Research Center North, Member of the German Center for Lung Research, D-23845 Borstel, Germany
| | - Maite Iriarte
- the Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Yun Zhao
- the Centre d'Immunologie de Marseille-Luminy Aix-Marseille University, UM2 Marseille, France
| | - Vilma Arce-Gorvel
- the Centre d'Immunologie de Marseille-Luminy Aix-Marseille University, UM2 Marseille, France, INSERM, U1104 Marseille, France, and CNRS, UMR7280 Marseille, France
| | - Seán Hanniffy
- the Centre d'Immunologie de Marseille-Luminy Aix-Marseille University, UM2 Marseille, France, INSERM, U1104 Marseille, France, and CNRS, UMR7280 Marseille, France
| | - Jean-Pierre Gorvel
- the Centre d'Immunologie de Marseille-Luminy Aix-Marseille University, UM2 Marseille, France, INSERM, U1104 Marseille, France, and CNRS, UMR7280 Marseille, France
| | - Ignacio Moriyón
- the Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Göran Widmalm
- From the Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden,
| |
Collapse
|
24
|
Shang W, Xiao Z, Yu Z, Wei N, Zhao G, Zhang Q, Wei M, Wang X, Wang PG, Li T. Chemical synthesis of the outer core oligosaccharide of Escherichia coli R3 and immunological evaluation. Org Biomol Chem 2015; 13:4321-30. [PMID: 25764373 DOI: 10.1039/c5ob00177c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Lipopolysaccharides (LPS), major virulence determinants in Gram-negative bacteria, are responsible for many pathophysiological responses and can elicit strong immune responses. In order to better understand the role of LPS in host-pathogen interactions and elucidate the immunogenic properties of LPS outer core oligosaccharides, an all α-linked Escherichia coli R3 outer core pentasaccharide was first synthesized with a propyl amino linker at the reducing end. This oligosaccharide was also covalently conjugated to a carrier protein (CRM197) via the reducing end propyl amino linker. Immunological analysis demonstrated that this glycoconjugate can elicit specific anti-pentasaccharide antibodies with in vitro bactericidal activity. These findings will contribute to the further exploration of this pentasaccharide antigen as a vaccine candidate.
Collapse
Affiliation(s)
- Wenjing Shang
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Soler-Lloréns P, Gil-Ramírez Y, Zabalza-Baranguá A, Iriarte M, Conde-Álvarez R, Zúñiga-Ripa A, San Román B, Zygmunt MS, Vizcaíno N, Cloeckaert A, Grilló MJ, Moriyón I, López-Goñi I. Mutants in the lipopolysaccharide of Brucella ovis are attenuated and protect against B. ovis infection in mice. Vet Res 2014; 45:72. [PMID: 25029920 PMCID: PMC4107470 DOI: 10.1186/s13567-014-0072-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/13/2014] [Indexed: 11/18/2022] Open
Abstract
Brucella spp. are Gram-negative bacteria that behave as facultative intracellular parasites of a variety of mammals. This genus includes smooth (S) and rough (R) species that carry S and R lipopolysaccharides (LPS), respectively. S-LPS is a virulence factor, and mutants affected in the S-LPS O-polysaccharide (R mutants), core oligosaccharide or both show attenuation. However, B. ovis is naturally R and is virulent in sheep. We studied the role of B. ovis LPS in virulence by mutating the orthologues of wadA, wadB and wadC, three genes known to encode LPS core glycosyltransferases in S brucellae. When mapped with antibodies to outer membrane proteins (Omps) and R-LPS, wadB and wadC mutants displayed defects in LPS structure and outer membrane topology but inactivation of wadA had little or no effect. Consistent with these observations, the wadB and wadC but not the wadA mutants were attenuated in mice. When tested as vaccines, the wadB and wadC mutants protected mice against B. ovis challenge. The results demonstrate that the LPS core is a structure essential for survival in vivo not only of S brucellae but also of a naturally R Brucella pathogenic species, and they confirm our previous hypothesis that the Brucella LPS core is a target for vaccine development. Since vaccine B. melitensis Rev 1 is S and thus interferes in serological testing for S brucellae, wadB mutant represents a candidate vaccine to be evaluated against B. ovis infection of sheep suitable for areas free of B. melitensis.
Collapse
Affiliation(s)
- Pedro Soler-Lloréns
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| | - Yolanda Gil-Ramírez
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| | - Ana Zabalza-Baranguá
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Pamplona, 31006, Spain
| | - Maite Iriarte
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| | - Raquel Conde-Álvarez
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| | - Amaia Zúñiga-Ripa
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| | - Beatriz San Román
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Pamplona, 31006, Spain
| | - Michel S Zygmunt
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, F-37380, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, F-37000, France
| | - Nieves Vizcaíno
- Departamento de Microbiología y Genética, Universidad de Salamanca, and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Axel Cloeckaert
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, F-37380, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, F-37000, France
| | - María-Jesús Grilló
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Pamplona, 31006, Spain
| | - Ignacio Moriyón
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| | - Ignacio López-Goñi
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| |
Collapse
|
26
|
Gil-Ramírez Y, Conde-Álvarez R, Palacios-Chaves L, Zúñiga-Ripa A, Grilló MJ, Arce-Gorvel V, Hanniffy S, Moriyón I, Iriarte M. The identification of wadB, a new glycosyltransferase gene, confirms the branched structure and the role in virulence of the lipopolysaccharide core of Brucella abortus. Microb Pathog 2014; 73:53-9. [PMID: 24927935 DOI: 10.1016/j.micpath.2014.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 05/28/2014] [Accepted: 06/03/2014] [Indexed: 12/20/2022]
Abstract
Brucellosis is a worldwide extended zoonosis caused by Brucella spp. These gram-negative bacteria are not readily detected by innate immunity, a virulence-related property largely linked to their surface lipopolysaccharide (LPS). The role of the LPS lipid A and O-polysaccharide in virulence is well known. Moreover, mutation of the glycosyltransferase gene wadC of Brucella abortus, although not affecting O-polysaccharide assembly onto the lipid-A core section causes a core oligosaccharide defect that increases recognition by innate immunity. Here, we report on a second gene (wadB) encoding a LPS core glycosyltransferase not involved in the assembly of the O-polysaccharide-linked core section. As compared to wild-type B. abortus, a wadB mutant was sensitive to bactericidal peptides and non-immune serum, and was attenuated in mice and dendritic cells. These observations show that as WadC, WadB is also involved in the assembly of a branch of Brucella LPS core and support the concept that this LPS section is a virulence-related structure.
Collapse
Affiliation(s)
- Yolanda Gil-Ramírez
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical, Universidad de Navarra, 31008 Pamplona, Spain.
| | - Raquel Conde-Álvarez
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical, Universidad de Navarra, 31008 Pamplona, Spain.
| | - Leyre Palacios-Chaves
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical, Universidad de Navarra, 31008 Pamplona, Spain.
| | - Amaia Zúñiga-Ripa
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical, Universidad de Navarra, 31008 Pamplona, Spain.
| | - María-Jesús Grilló
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), 31006 Pamplona, Spain.
| | - Vilma Arce-Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Centre d'Immunologie de Marseille-Luminy, 13288 Marseille, France; INSERM U1104, 13288 Marseille, France; CNRS UMR7280, 13288 Marseille, France.
| | - Sean Hanniffy
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Centre d'Immunologie de Marseille-Luminy, 13288 Marseille, France; INSERM U1104, 13288 Marseille, France; CNRS UMR7280, 13288 Marseille, France.
| | - Ignacio Moriyón
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical, Universidad de Navarra, 31008 Pamplona, Spain.
| | - Maite Iriarte
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical, Universidad de Navarra, 31008 Pamplona, Spain.
| |
Collapse
|
27
|
Kubler-Kielb J, Vinogradov E. Reinvestigation of the structure of Brucella O-antigens. Carbohydr Res 2013; 378:144-7. [PMID: 23664729 PMCID: PMC3744595 DOI: 10.1016/j.carres.2013.03.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 03/22/2013] [Accepted: 03/23/2013] [Indexed: 01/07/2023]
Abstract
O-Specific polysaccharides of Brucella contain two antigenic determinants, called A and M. Most of the strains express epitope A with a small amount of epitope M, whereas Brucella melitensis strain 16 M expresses longer polymer consisting mostly of M-type epitopes. Proposed explanation was that epitope A is defined by 1-2-linked homopolymer of N-formylperosamine (Rha4NFo), while epitope M is a pentasaccharide with four 2- and one 3-substituted Rha4NFo. We reinvestigated both types of structures by 2D NMR and showed that M-epitope is a tetrasaccharide, missing one of the 2-linked Rha4NFo as compared to the previously proposed structure. Polysaccharide from B. melitensis 16 M contains a fragment of 1-2-linked polymer, capped with M-type polymer. Other strains contain one or two M-type units at the non-reducing end of the 1-2-linked O-chain.
Collapse
Affiliation(s)
- Joanna Kubler-Kielb
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|