1
|
Yu L, Yongbo W, Shengjun Y, Jia T, Ya X, Guoyang L, Linna M. Research of recombinant influenza A virus as a vector for Mycoplasma pneumoniae P1a and P30a. Immun Inflamm Dis 2024; 12:e70021. [PMID: 39291404 PMCID: PMC11408921 DOI: 10.1002/iid3.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Mycoplasma pneumoniae (MP) is a common respiratory pathogen affecting the longevity of the elderly and the health of children. However, the human vaccine against MP has not been successfully developed till now due to the poor immunogenicity and side effects of MP inactivated or attenuated vaccine. Therefore, it is necessary to develop a MP genetic engineering vaccine with influenza virus strain as vector. METHODS In this study, the major antigen genes P1a of MP adhesion factor P1(3862-4554 bases) and P30a of P30(49-822 bases) were inserted into the nonstructural protein (NS) gene of Influenza A virus strain A/Puerto Rio/8/34(H1N1), PR8 for short, to construct the recombinant vectors NS-P1a or NS-P30a. The recombinant pHW2000 plasmids containing NS-P1a or NS-P30a were cotransfected with the rest 7 fragments of PR8 into HEK293T cells. After inoculating chicken embryos, the recombinant influenza viruses rFLU-P1a and rFLU-P30a were rescued. RT-PCR and sequencing were used to identify the recombinant viruses. The hemagglutination titers of rFLU-P1a and rFLU-P30a were determined after five successive generations in chicken embryos so as to indicate the genetic stability of the recombinant viruses. The morphology of recombinant influenza viruses was observed under electron microscopy. RESULTS P1a or P30a was designed to be inserted into the modified NS gene sequence separately and synthesized successfully. RT-PCR identification of the recombinant viruses rFLU-P1a and rFLU-P30a showed that P1a (693 bp), P30a (774 bp), NS-P1a (1992bp) and NS-P30a (2073 bp) bands were found, and the sequencing results were correct. After five successive generations, each virus generation has a certain hemagglutination titer (from 1:32 to 1:64), and the band of P1a or P30a can be seen in the corresponding positions. The virus particles under the electron microscope appeared as spheres or long strips connected by several particles, revealing a complete viral membrane structure composed of virus lipid bilayer, hemagglutinin, neuraminidase, and matrix proteins. CONCLUSION The recombinant viruses rFLU-P1a and rFLU-P30a which carried the advantaged immune regions of the P1 and P30 genes in MP were successfully constructed and identified. And the genetic stability of rFLU-P1a or rFLU-P30a was relatively high. The typical and complete morphology of influenza virus was observed under the electron microscope. Our research provided a foundation for the further development of MP vaccines for human.
Collapse
Affiliation(s)
- Liang Yu
- Department of Clinical LaboratoryThe First People's Hospital of Yunnan ProvinceKunmingChina
| | - Wang Yongbo
- Department of Clinical LaboratoryThe First People's Hospital of Yunnan ProvinceKunmingChina
| | - Yang Shengjun
- Department of Clinical LaboratoryThe First People's Hospital of Yunnan ProvinceKunmingChina
| | - Tan Jia
- Department of Clinical LaboratoryThe First People's Hospital of Yunnan ProvinceKunmingChina
| | - Xu Ya
- Department of Clinical LaboratoryThe First People's Hospital of Yunnan ProvinceKunmingChina
| | - Liao Guoyang
- The Fifth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunmingChina
| | - Ma Linna
- Department of Medical Laboratory TechniqueKunming Medical University Haiyuan CollegeKunmingChina
| |
Collapse
|
2
|
Georgakopoulou VE, Lempesis IG, Sklapani P, Trakas N, Spandidos DA. Exploring the pathogenetic mechanisms of Mycoplasmapneumoniae (Review). Exp Ther Med 2024; 28:271. [PMID: 38765654 PMCID: PMC11097136 DOI: 10.3892/etm.2024.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Mycoplasmas, the smallest self-replicating prokaryotes without a cell wall, are the most prevalent and extensively studied species in humans. They significantly contribute to chronic respiratory tract illnesses and pneumonia, with children and adolescents being particularly vulnerable. Mycoplasma pneumoniae (M. pneumoniae) infections typically tend to be self-limiting and mild but can progress to severe or even life-threatening conditions in certain individuals. Extrapulmonary effects often occur without pneumonia, and both intrapulmonary and extrapulmonary complications operate through separate pathological mechanisms. The indirect immune-mediated damage of the immune system, vascular blockages brought on by vasculitis or thrombosis and direct harm from invasion or locally induced inflammatory cytokines are potential causes of extrapulmonary manifestations due to M. pneumoniae. Proteins associated with adhesion serve as the primary factor crucial for the pathogenicity of M. pneumoniae, relying on a specialized polarized terminal attachment organelle. The type and density of these host receptors significantly impact the adhesion and movement of M. pneumoniae, subsequently influencing the pathogenic mechanism and infection outcomes. Adjacent proteins are crucial for the proper assembly of the attachment organelle, with variations in the genetic domains of P1, P40 and P90 surfaces contributing to the variability of clinical symptoms and offering new avenues for developing vaccines against M. pneumoniae infections. M. pneumoniae causes oxidative stress within respiratory tract epithelial cells by adhering to host cells and releasing hydrogen peroxide and superoxide radicals. This oxidative stress enhances the vulnerability of host cells to harm induced by oxygen molecules. The lack of superoxide dismutase and catalase of bacteria allows it to hinder the catalase activity of the host cell, leading to the reduced breakdown of peroxides. Lung macrophages play a significant role in managing M. pneumoniae infection, identifying it via Toll-like receptor 2 and initiating the myeloid differentiation primary response gene 88-nuclear factor κΒ signaling cascade. However, the precise mechanisms enabling M. pneumoniae to evade intracellular host defenses remain unknown, necessitating further exploration of the pathways involved in intracellular survival. The present comprehensive review delves into the pathogenesis of M. pneumoniae infection within the pulmonary system and into extrapulmonary areas, outlining its impact.
Collapse
Affiliation(s)
- Vasiliki Epameinondas Georgakopoulou
- Department of Pathophysiology, Laiko General Hospital, National and Kapodisttrian University of Athens, 11527 Athens, Greece
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, 11527 Athens, Greece
| | - Ioannis G. Lempesis
- Department of Pathophysiology, Laiko General Hospital, National and Kapodisttrian University of Athens, 11527 Athens, Greece
| | - Pagona Sklapani
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
3
|
Dawood A, Algharib SA, Zhao G, Zhu T, Qi M, Delai K, Hao Z, Marawan MA, Shirani I, Guo A. Mycoplasmas as Host Pantropic and Specific Pathogens: Clinical Implications, Gene Transfer, Virulence Factors, and Future Perspectives. Front Cell Infect Microbiol 2022; 12:855731. [PMID: 35646746 PMCID: PMC9137434 DOI: 10.3389/fcimb.2022.855731] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Mycoplasmas as economically important and pantropic pathogens can cause similar clinical diseases in different hosts by eluding host defense and establishing their niches despite their limited metabolic capacities. Besides, enormous undiscovered virulence has a fundamental role in the pathogenesis of pathogenic mycoplasmas. On the other hand, they are host-specific pathogens with some highly pathogenic members that can colonize a vast number of habitats. Reshuffling mycoplasmas genetic information and evolving rapidly is a way to avoid their host's immune system. However, currently, only a few control measures exist against some mycoplasmosis which are far from satisfaction. This review aimed to provide an updated insight into the state of mycoplasmas as pathogens by summarizing and analyzing the comprehensive progress, current challenge, and future perspectives of mycoplasmas. It covers clinical implications of mycoplasmas in humans and domestic and wild animals, virulence-related factors, the process of gene transfer and its crucial prospects, the current application and future perspectives of nanotechnology for diagnosing and curing mycoplasmosis, Mycoplasma vaccination, and protective immunity. Several questions remain unanswered and are recommended to pay close attention to. The findings would be helpful to develop new strategies for basic and applied research on mycoplasmas and facilitate the control of mycoplasmosis for humans and various species of animals.
Collapse
Affiliation(s)
- Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
- Hubei Hongshan Laboratory, Wuhan, China
| | - Samah Attia Algharib
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, HZAU, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Mingpu Qi
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Kong Delai
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Infectious Diseases, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad, Afghanistan
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Yoshikawa E, Tamiya S, Inoue Y, Suzuki K, Yoshioka Y. Vaccine using community-acquired respiratory distress syndrome toxin as an antigen against Mycoplasma pneumoniae in mice. Biochem Biophys Res Commun 2022; 594:81-87. [PMID: 35078111 DOI: 10.1016/j.bbrc.2022.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 11/02/2022]
Abstract
Mycoplasma pneumoniae (Mp) is one of the most common causes of bacterial community-acquired pneumonia in humans. Because of the frequent epidemics and the emergence of antibiotic-resistant Mp, vaccines for Mp are urgently needed to ameliorate the pneumonia and secondary complications. The community-acquired respiratory distress syndrome (CARDS) toxin produced by Mp is a pathogenic factor that induces severe inflammatory responses in lung. Although blocking CARDS toxin is expected to mitigate the severity of Mp pneumonia, the potential of CARDS toxin as a vaccine antigen has not been assessed. Here, we examined the effectiveness of vaccine using recombinant CARDS toxin (rCARDS toxin) as an antigen in mice. Immunization with rCARDS toxin induced both rCARDS toxin- and Mp-specific antibody responses, indicating that CARDS toxin is located on the surface of Mp. In addition, immunization with rCARDS toxin decreased not only lung injury, neutrophil infiltration, and the production of inflammatory cytokines but also the persistence of Mp in lung after Mp challenge. Furthermore, we elucidated that the CARDS toxin on the surface of Mp facilitates the adherence of Mp to epithelial cells. In conclusion, we have demonstrated the potential of rCARDS toxin as a vaccine antigen to ameliorate Mp pneumonia by suppressing the inflammatory responses induced by Mp and the persistence of Mp in lung. These data support the development of novel vaccines for Mp pneumonia.
Collapse
Affiliation(s)
- Eisuke Yoshikawa
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeyuki Tamiya
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Inoue
- The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koichiro Suzuki
- The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
Vilela Rodrigues TC, Jaiswal AK, Lemes MR, da Silva MV, Sales-Campos H, Alcântara LCJ, Tosta SFDO, Kato RB, Alzahrani KJ, Barh D, Azevedo VADC, Tiwari S, Soares SDC. An immunoinformatics-based designed multi-epitope candidate vaccine (mpme-VAC/STV-1) against Mycoplasma pneumoniae. Comput Biol Med 2021; 142:105194. [PMID: 35007945 DOI: 10.1016/j.compbiomed.2021.105194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Pneumonia is a serious global health problem that accounts for over one million deaths annually. Among the main microorganisms causing pneumonia, Mycoplasma pneumoniae is one of the most common ones for which a vaccine is immediately required. In this context, a multi-epitope vaccine against this pathogen could be the best option that can induce effective immune response avoiding any serious adverse reactions. In this study, using an immunoinformatics approach we have designed a multi-epitope vaccine (mpme-VAC/STV-1) against M. pneumoniae. Our designed mpme-VAC/STV-1 is constructed using CTL (cytotoxic T lymphocyte), HTL (Helper T lymphocyte), and B-cell epitopes. These epitopes are selected from the core proteins of 88 M. pneumoniae genomes that were previously identified through reverse vaccinology approaches. The epitopes were filtered according to their immunogenicity, population coverage, and several other criteria. Sixteen CTL/B- and thirteen HTL/B- epitopes that belong to 5 core proteins were combined together through peptide linkers to develop the mpme-VAC/STV-1. The heat-labile enterotoxin from E. coli was used as an adjuvant. The designed mpme-VAC/STV-1 is predicted to be stable, non-toxic, non-allergenic, non-host homologous, and with required antigenic and immunogenic properties. Docking and molecular dynamic simulation of mpme-VAC/STV-1 shows that it can stimulate TLR2 pathway mediated immunogenic reactions. In silico cloning of mpme-VAC/STV-1 in an expression vector also shows positive results. Finally, the mpme-VAC/STV-1 also shows promising efficacy in immune simulation tests. Therefore, our constructed mpme-VAC/STV-1 could be a safe and effective multi-epitope vaccine for immunization against pneumonia. However, it requires further experimental and clinical validations.
Collapse
Affiliation(s)
- Thaís Cristina Vilela Rodrigues
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Arun Kumar Jaiswal
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcela Rezende Lemes
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Science and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, 38025-180, MG, Brazil
| | - Marcos Vinícius da Silva
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Science and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, 38025-180, MG, Brazil
| | - Helioswilton Sales-Campos
- Institute of Tropical Pathology and Public Health, Federal University of Goias (UFG), Goiânia, 74605-050, GO, Goiás, Brazil
| | | | - Sthephane Fraga de Oliveira Tosta
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Bentes Kato
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Debmalya Barh
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, 721172, India
| | - Vasco Ariston de Carvalho Azevedo
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sandeep Tiwari
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Siomar de Castro Soares
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Science and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, 38025-180, MG, Brazil.
| |
Collapse
|
6
|
Mycoplasma pneumoniae Infections: Pathogenesis and Vaccine Development. Pathogens 2021; 10:pathogens10020119. [PMID: 33503845 PMCID: PMC7911756 DOI: 10.3390/pathogens10020119] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mycoplasma pneumoniae is a major causative agent of community-acquired pneumonia which can lead to both acute upper and lower respiratory tract inflammation, and extrapulmonary syndromes. Refractory pneumonia caused by M. pneumonia can be life-threatening, especially in infants and the elderly. Here, based on a comprehensive review of the scientific literature related to the respective area, we summarize the virulence factors of M. pneumoniae and the major pathogenic mechanisms mediated by the pathogen: adhesion to host cells, direct cytotoxicity against host cells, inflammatory response-induced immune injury, and immune evasion. The increasing rate of macrolide-resistant strains and the harmful side effects of other sensitive antibiotics (e.g., respiratory quinolones and tetracyclines) in young children make it difficult to treat, and increase the health risk or re-infections. Hence, there is an urgent need for development of an effective vaccine to prevent M. pneumoniae infections in children. Various types of M. pneumoniae vaccines have been reported, including whole-cell vaccines (inactivated and live-attenuated vaccines), subunit vaccines (involving M. pneumoniae protein P1, protein P30, protein P116 and CARDS toxin) and DNA vaccines. This narrative review summarizes the key pathogenic mechanisms underlying M. pneumoniae infection and highlights the relevant vaccines that have been developed and their reported effectiveness.
Collapse
|
7
|
Widjaja M, Berry IJ, Jarocki VM, Padula MP, Dumke R, Djordjevic SP. Cell surface processing of the P1 adhesin of Mycoplasma pneumoniae identifies novel domains that bind host molecules. Sci Rep 2020; 10:6384. [PMID: 32286369 PMCID: PMC7156367 DOI: 10.1038/s41598-020-63136-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Mycoplasma pneumoniae is a genome reduced pathogen and causative agent of community acquired pneumonia. The major cellular adhesin, P1, localises to the tip of the attachment organelle forming a complex with P40 and P90, two cleavage fragments derived by processing Mpn142, and other molecules with adhesive and mobility functions. LC-MS/MS analysis of M. pneumoniae M129 proteins derived from whole cell lysates and eluents from affinity matrices coupled with chemically diverse host molecules identified 22 proteoforms of P1. Terminomics was used to characterise 17 cleavage events many of which were independently verified by the identification of semi-tryptic peptides in our proteome studies and by immunoblotting. One cleavage event released 1597TSAAKPGAPRPPVPPKPGAPKPPVQPPKKPA1627 from the C-terminus of P1 and this peptide was shown to bind to a range of host molecules. A smaller synthetic peptide comprising the C-terminal 15 amino acids, 1613PGAPKPPVQPPKKPA1627, selectively bound cytoskeletal intermediate filament proteins cytokeratin 7, cytokeratin 8, cytokeratin 18, and vimentin from a native A549 cell lysate. Collectively, our data suggests that ectodomain shedding occurs on the surface of M. pneumoniae where it may alter the functional diversity of P1, Mpn142 and other surface proteins such as elongation factor Tu via a mechanism similar to that described in Mycoplasma hyopneumoniae.
Collapse
Affiliation(s)
- Michael Widjaja
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Iain James Berry
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Veronica Maria Jarocki
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Matthew Paul Padula
- Proteomics Core Facility and School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Roger Dumke
- Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Institut für Medizinische Mikrobiologie und Hygiene, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Steven Philip Djordjevic
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia. .,Proteomics Core Facility and School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
8
|
Toll-Like Receptor 2 (TLR2) and TLR4 Mediate the IgA Immune Response Induced by Mycoplasma hyopneumoniae. Infect Immun 2019; 88:IAI.00697-19. [PMID: 31611272 PMCID: PMC6921651 DOI: 10.1128/iai.00697-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022] Open
Abstract
IgA plays an important role in mucosal immunity against infectious pathogens; however, the molecular mechanism of IgA secretion in response to infection remains largely unknown, particularly in Mycoplasma spp. In this study, we found that the levels of IgA in the peripheral blood serum, bronchoalveolar lavage fluid, nasal mucosa, trachea, hilar lymph nodes, and lung tissues of pigs increased significantly after infection with Mycoplasma hyopneumoniae. IgA plays an important role in mucosal immunity against infectious pathogens; however, the molecular mechanism of IgA secretion in response to infection remains largely unknown, particularly in Mycoplasma spp. In this study, we found that the levels of IgA in the peripheral blood serum, bronchoalveolar lavage fluid, nasal mucosa, trachea, hilar lymph nodes, and lung tissues of pigs increased significantly after infection with Mycoplasma hyopneumoniae. Furthermore, IgA and CD11c were detected in the lungs and hilar lymph nodes by immunohistochemical analysis, and colocalization of these two markers indicates that CD11c+ cells play an important role in IgA mucosal immunity induced by M. hyopneumoniae. To investigate the regulatory mechanism of IgA, we separated mouse dendritic cells (DCs) from different tissues and mouse macrophages from the lungs and then cultured mouse B cells together with either DCs or macrophages in vitro. In the mouse lung-DC/B (LDC/B) cell coculture, IgA secretion was increased significantly after the addition of whole-cell lysates of M. hyopneumoniae. The expression of both Toll-like receptor 2 (TLR2) and TLR4 was also upregulated, as determined by mRNA and protein expression analyses, whereas no obvious change in the expression of TLR3 and TLR7 was detected. Moreover, the IgA level decreased to the same as the control group when TLR2 or TLR4 was inhibited instead of TLR8 or TLR7/9. In conclusion, M. hyopneumoniae can stimulate the response of IgA through TLR2 and TLR4 in a mouse LDC/B cell coculture model, and the coculture model is an ideal tool for studying the IgA response mechanism, particularly that with Mycoplasma spp.
Collapse
|
9
|
Antibodies to Protein but Not Glycolipid Structures Are Important for Host Defense against Mycoplasma pneumoniae. Infect Immun 2019; 87:IAI.00663-18. [PMID: 30396892 DOI: 10.1128/iai.00663-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/28/2018] [Indexed: 11/20/2022] Open
Abstract
Antibody responses to Mycoplasma pneumoniae correlate with pulmonary M. pneumoniae clearance. However, M. pneumoniae-specific IgG antibodies can cross-react with the myelin glycolipid galactocerebroside (GalC) and cause neurological disorders. We assessed whether antiglycolipid antibody formation is part of the physiological immune response to M. pneumoniae We show that antibodies against M. pneumoniae proteins and glycolipids arise in serum of M. pneumoniae-infected children and mice. Although antibodies to M. pneumoniae glycolipids were mainly IgG, anti-GalC antibodies were only IgM. B-1a cells, shown to aid in protection against pathogen-derived glycolipids, are lacking in Bruton tyrosine kinase (Btk)-deficient mice. M. pneumoniae-infected Btk-deficient mice developed M. pneumoniae-specific IgG responses to M. pneumoniae proteins but not to M. pneumoniae glycolipids, including GalC. The equal recovery from M. pneumoniae infection in Btk-deficient and wild-type mice suggests that pulmonary M. pneumoniae clearance is predominantly mediated by IgG reactive with M. pneumoniae proteins and that M. pneumoniae glycolipid-specific IgG or IgM is not essential. These data will guide the development of M. pneumoniae-targeting vaccines that avoid the induction of neurotoxic antibodies.
Collapse
|
10
|
Kumar S. Mycoplasma pneumoniae: A significant but underrated pathogen in paediatric community-acquired lower respiratory tract infections. Indian J Med Res 2018; 147:23-31. [PMID: 29749357 PMCID: PMC5967212 DOI: 10.4103/ijmr.ijmr_1582_16] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Lower respiratory tract infections are considered a common cause responsible for morbidity and mortality among children, and Mycoplasma pneumoniae is identified to be responsible for up to 40 per cent of community-acquired pneumonia in children greater than five years of age. Extrapulmonary manifestations have been reported either due to spread of infection or autoimmune mechanisms. Infection by M. pneumoniae has high incidence and clinical importance but is still an underrated disease. Most widely used serologic methods are enzyme immunoassays for detection of immunoglobulin M (IgM), IgG and IgA antibodies to M. pneumoniae, though other methods such as particle agglutination assays and immunofluorescence methods are also used. Detection of M. pneumoniae by nucleic acid amplification techniques provides fast, sensitive and specific results. Utilization of polymerase chain reaction (PCR) has improved the diagnosis of M. pneumoniae infections. Besides PCR, other alternative amplification techniques include (i) nucleic acid sequence-based amplification, (ii) Qβ replicase amplification, (iii) strand displacement amplification, (iv) transcription-mediated amplification, and (v) ligase chain reaction. Macrolides are used as the first-line treatment in childhood for M. pneumoniae infections; however, emergence of macrolide-resistant M. pneumoniae is a cause of concern. Development of a safe vaccine is important that gives protective immunity and would be a major step in reducing M. pneumoniae infections.
Collapse
Affiliation(s)
- Surinder Kumar
- Department of Microbiology, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
11
|
He J, Liu M, Ye Z, Tan T, Liu X, You X, Zeng Y, Wu Y. Insights into the pathogenesis of Mycoplasma pneumoniae (Review). Mol Med Rep 2016; 14:4030-4036. [PMID: 27667580 PMCID: PMC5101875 DOI: 10.3892/mmr.2016.5765] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 08/25/2016] [Indexed: 11/08/2022] Open
Abstract
Mycoplasma are the smallest prokaryotic microbes present in nature. These wall-less, malleable organisms can pass through cell filters, and grow and propagate under cell-free conditions in vitro. Of the pathogenic Mycoplasma Mycoplasma pneumoniae has been examined the most. In addition to primary atypical pneumonia and community-acquired pneumonia with predominantly respiratory symptoms, M. pneumoniae can also induce autoimmune hemolytic anemia and other diseases in the blood, cardiovascular system, gastrointestinal tract and skin, and can induce pericarditis, myocarditis, nephritis and meningitis. The pathogenesis of M. pneumoniae infection is complex and remains to be fully elucidated. The present review aimed to summarize several direct damage mechanisms, including adhesion damage, destruction of membrane fusion, nutrition depletion, invasive damage, toxic damage, inflammatory damage and immune damage. Further investigations are required for determining the detailed pathogenesis of M. pneumoniae.
Collapse
Affiliation(s)
- Jun He
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Mihua Liu
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhufeng Ye
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Tianping Tan
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xinghui Liu
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoxing You
- Pathogenic Biology Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yanhua Zeng
- Pathogenic Biology Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yimou Wu
- Pathogenic Biology Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
12
|
Jiang F, He J, Navarro-Alvarez N, Xu J, Li X, Li P, Wu W. Elongation Factor Tu and Heat Shock Protein 70 Are Membrane-Associated Proteins from Mycoplasma ovipneumoniae Capable of Inducing Strong Immune Response in Mice. PLoS One 2016; 11:e0161170. [PMID: 27537186 PMCID: PMC4990256 DOI: 10.1371/journal.pone.0161170] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/01/2016] [Indexed: 12/02/2022] Open
Abstract
Chronic non-progressive pneumonia, a disease that has become a worldwide epidemic has caused considerable loss to sheep industry. Mycoplasma ovipneumoniae (M. ovipneumoniae) is the causative agent of interstitial pneumonia in sheep, goat and bighorn. We here have identified by immunogold and immunoblotting that elongation factor Tu (EF-Tu) and heat shock protein 70 (HSP 70) are membrane-associated proteins on M. ovipneumonaiea. We have evaluated the humoral and cellular immune responses in vivo by immunizing BALB/c mice with both purified recombinant proteins rEF-Tu and rHSP70. The sera of both rEF-Tu and rHSP70 treated BALB/c mice demonstrated increased levels of IgG, IFN-γ, TNF-α, IL-12(p70), IL-4, IL-5 and IL-6. In addition, ELISPOT assay showed significant increase in IFN-γ+ secreting lymphocytes in the rHSP70 group when compared to other groups. Collectively our study reveals that rHSP70 induces a significantly better cellular immune response in mice, and may act as a Th1 cytokine-like adjuvant in immune response induction. Finally, growth inhibition test (GIT) of M. ovipneumoniae strain Y98 showed that sera from rHSP70 or rEF-Tu-immunized mice inhibited in vitro growth of M. ovipneumoniae. Our data strongly suggest that EF-Tu and HSP70 of M. ovipneumoniae are membrane-associated proteins capable of inducing antibody production, and cytokine secretion. Therefore, these two proteins may be potential candidates for vaccine development against M. ovipneumoniae infection in sheep.
Collapse
Affiliation(s)
- Fei Jiang
- Laboratory of Rapid Diagnostic Technology for Animal Disease, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Jinyan He
- Laboratory of Rapid Diagnostic Technology for Animal Disease, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Nalu Navarro-Alvarez
- Center For Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, United States of America
| | - Jian Xu
- Laboratory of Rapid Diagnostic Technology for Animal Disease, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Xia Li
- Laboratory of Rapid Diagnostic Technology for Animal Disease, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Peng Li
- Laboratory of Rapid Diagnostic Technology for Animal Disease, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Wenxue Wu
- Laboratory of Rapid Diagnostic Technology for Animal Disease, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
- * E-mail:
| |
Collapse
|
13
|
Parrott GL, Kinjo T, Fujita J. A Compendium for Mycoplasma pneumoniae. Front Microbiol 2016; 7:513. [PMID: 27148202 PMCID: PMC4828434 DOI: 10.3389/fmicb.2016.00513] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/29/2016] [Indexed: 12/11/2022] Open
Abstract
Historically, atypical pneumonia was a term used to describe an unusual presentation of pneumonia. Currently, it is used to describe the multitude of symptoms juxtaposing the classic symptoms found in cases of pneumococcal pneumonia. Specifically, atypical pneumonia is a syndrome resulting from a relatively common group of pathogens including Chlamydophila sp., and Mycoplasma pneumoniae. The incidence of M. pneumoniae pneumonia in adults is less than the burden experienced by children. Transmission rates among families indicate children may act as a reservoir and maintain contagiousness over a long period of time ranging from months to years. In adults, M. pneumoniae typically produces a mild, “walking” pneumonia and is considered to be one of the causes of persistent cough in patients. M. pneumoniae has also been shown to trigger the exacerbation of other lung diseases. It has been repeatedly detected in patients with bronchitis, asthma, chronic obstructive pulmonary disorder, and cystic fibrosis. Recent advances in technology allow for the rapid diagnosis of M. pneumoniae through the use of polymerase chain reaction or rapid antigen tests. With this, more effort has been afforded to identify the causative etiologic agent in all cases of pneumonia. However, previous practices, including the overprescribing of macrolide treatment in China and Japan, have created increased incidence of macrolide-resistant M. pneumoniae. Reports from these countries indicate that >85% of M. pneumoniae pneumonia pediatric cases are macrolide-resistant. Despite its extensively studied past, the smallest bacterial species still inspires some of the largest questions. The developments in microbiology, diagnostic features and techniques, epidemiology, treatment and vaccines, and upper respiratory conditions associated with M. pneumoniae in adult populations are included within this review.
Collapse
Affiliation(s)
- Gretchen L Parrott
- Department of Infectious Diseases, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus Nishihara, Japan
| | - Takeshi Kinjo
- Department of Infectious Diseases, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus Nishihara, Japan
| | - Jiro Fujita
- Department of Infectious Diseases, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus Nishihara, Japan
| |
Collapse
|
14
|
Meyer Sauteur PM, Unger WWJ, Nadal D, Berger C, Vink C, van Rossum AMC. Infection with and Carriage of Mycoplasma pneumoniae in Children. Front Microbiol 2016; 7:329. [PMID: 27047456 PMCID: PMC4803743 DOI: 10.3389/fmicb.2016.00329] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/02/2016] [Indexed: 12/18/2022] Open
Abstract
“Atypical” pneumonia was described as a distinct and mild form of community-acquired pneumonia (CAP) already before Mycoplasma pneumoniae had been discovered and recognized as its cause. M. pneumoniae is detected in CAP patients most frequently among school-aged children from 5 to 15 years of age, with a decline after adolescence and tapering off in adulthood. Detection rates by polymerase chain reaction (PCR) or serology in children with CAP admitted to the hospital amount 4–39%. Although the infection is generally mild and self-limiting, patients of every age can develop severe or extrapulmonary disease. Recent studies indicate that high rates of healthy children carry M. pneumoniae in the upper respiratory tract and that current diagnostic PCR or serology cannot discriminate between M. pneumoniae infection and carriage. Further, symptoms and radiologic features are not specific for M. pneumoniae infection. Thus, patients may be unnecessarily treated with antimicrobials against M. pneumoniae. Macrolides are the first-line antibiotics for this entity in children younger than 8 years of age. Overall macrolides are extensively used worldwide, and this has led to the emergence of macrolide-resistant M. pneumoniae, which may be associated with severe clinical features and more extrapulmonary complications. This review focuses on the characteristics of M. pneumoniae infections in children, and exemplifies that simple clinical decision rules may help identifying children at high risk for CAP due to M. pneumoniae. This may aid physicians in prescribing appropriate first-line antibiotics, since current diagnostic tests for M. pneumoniae infection are not reliably predictive.
Collapse
Affiliation(s)
- Patrick M Meyer Sauteur
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Erasmus MC-Sophia Children's Hospital, University Medical CenterRotterdam, Netherlands; Laboratory of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Erasmus MC-Sophia Children's Hospital, University Medical CenterRotterdam, Netherlands; Division of Infectious Diseases and Hospital Epidemiology, and Children's Research Center, University Children's Hospital of ZurichZurich, Switzerland
| | - Wendy W J Unger
- Laboratory of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Netherlands
| | - David Nadal
- Division of Infectious Diseases and Hospital Epidemiology, and Children's Research Center, University Children's Hospital of Zurich Zurich, Switzerland
| | - Christoph Berger
- Division of Infectious Diseases and Hospital Epidemiology, and Children's Research Center, University Children's Hospital of Zurich Zurich, Switzerland
| | - Cornelis Vink
- Erasmus University College, Erasmus University Rotterdam, Netherlands
| | - Annemarie M C van Rossum
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Netherlands
| |
Collapse
|
15
|
Dumke R, Jacobs E. Antibody Response to Mycoplasma pneumoniae: Protection of Host and Influence on Outbreaks? Front Microbiol 2016; 7:39. [PMID: 26858711 PMCID: PMC4726802 DOI: 10.3389/fmicb.2016.00039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/11/2016] [Indexed: 12/18/2022] Open
Abstract
In humans of all ages, the cell wall-less and genome-reduced species Mycoplasma pneumoniae can cause infections of the upper and lower respiratory tract. The well-documented occurrence of major peaks in the incidence of community-acquired pneumonia cases reported world-wide, the multifaceted clinical manifestations of infection and the increasing number of resistant strains provide reasons for ongoing interest in the pathogenesis of mycoplasmal disease. The results of recent studies have provided insights into the interaction of the limited virulence factors of the bacterium with its host. In addition, the availability of complete M. pneumoniae genomes from patient isolates and the development of proteomic methods for investigation of mycoplasmas have not only allowed characterization of sequence divergences between strains but have also shown the importance of proteins and protein parts for induction of the immune reaction after infection. This review focuses on selected aspects of the humoral host immune response as a factor that might influence the clinical course of infections, subsequent protection in cases of re-infections and changes of epidemiological pattern of infections. The characterization of antibodies directed to defined antigens and approaches to promote their induction in the respiratory mucosa are also preconditions for the development of a vaccine to protect risk populations from severe disease due to M. pneumoniae.
Collapse
Affiliation(s)
- Roger Dumke
- Institute of Medical Microbiology and Hygiene, Technische Universitaet Dresden Dresden, Germany
| | - Enno Jacobs
- Institute of Medical Microbiology and Hygiene, Technische Universitaet Dresden Dresden, Germany
| |
Collapse
|
16
|
Evaluation of recombinant Mycoplasma hyopneumoniae P97/P102 paralogs formulated with selected adjuvants as vaccines against mycoplasmal pneumonia in pigs. Vaccine 2014; 32:4333-41. [PMID: 24930717 DOI: 10.1016/j.vaccine.2014.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/14/2014] [Accepted: 06/02/2014] [Indexed: 01/15/2023]
Abstract
Pig responses to recombinant subunit vaccines containing fragments of eight multifunctional adhesins of the Mycoplasma hyopneumoniae (Mhp) P97/P102 paralog family formulated with Alhydrogel(®) or Montanide™ Gel01 were compared with a commercial bacterin following experimental challenge. Pigs, vaccinated intramuscularly at 9, 12 and 15 weeks of age with either of the recombinant formulations (n=10 per group) or Suvaxyn(®) M. hyo (n=12), were challenged with Mhp strain Hillcrest at 17 weeks of age. Unvaccinated, challenged pigs (n=12) served as a control group. Coughing was assessed daily. Antigen-specific antibody responses were monitored by ELISA in serum and tracheobronchial lavage fluid (TBLF), while TBLF was also assayed for cytokine responses (ELISA) and bacterial load (qPCR). At slaughter, gross and histopathology of lungs were quantified and damage to epithelial cilia in the porcine trachea was evaluated by scanning electron microscopy. Suvaxyn(®) M. hyo administration induced significant serological responses against Mhp strain 232 whole cell lysates (wcl) and recombinant antigen F3P216, but not against the remaining vaccine subunit antigens. Alhydrogel(®) and Montanide™ Gel01-adjuvanted antigen induced significant antigen-specific IgG responses, with the latter adjuvant eliciting comparable Mhp strain 232 wcl specific IgG responses to Suvaxyn(®) M. hyo. No significant post-vaccination antigen-specific mucosal responses were detected with the recombinant vaccinates. Suvaxyn(®) M. hyo was superior in reducing clinical signs, lung lesion severity and bacterial load but the recombinant formulations offered comparable protection against cilial damage. Lower IL-1β, TNF-α and IL-6 responses after challenge were associated with reduced lung lesion severity in Suvaxyn(®) M. hyo vaccinates, while elevated pathology scores in recombinant vaccinates corresponded to cytokine levels that were similarly elevated as in unvaccinated pigs. This study highlights the need for continued research into protective antigens and vaccination strategies that will prevent Mhp colonisation and establishment of infection.
Collapse
|
17
|
|