1
|
Liu XY, Xie W, Zhou HY, Zhang HQ, Jin YS. A comprehensive overview on antiviral effects of baicalein and its glucuronide derivative baicalin. JOURNAL OF INTEGRATIVE MEDICINE 2024:S2095-4964(24)00390-X. [PMID: 39368944 DOI: 10.1016/j.joim.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/07/2024] [Indexed: 10/07/2024]
Abstract
Natural product-based antiviral candidates have received significant attention. However, there is a lack of sufficient research in the field of antivirals to effectively combat patterns of drug resistance. Baicalein and its glucuronide derivative baicalin are two main components extracted from Scutellaria baicalensis Georgi. They have proven to be effective against a broad range of viruses by directly killing virus particles, protecting infected cells, and targeting viral antigens on their surface, among other mechanisms. As natural products, they both possess the advantage of lower toxicity, enhanced therapeutic efficacy, and even antagonistic effects against drug-resistant viral strains. Baicalein and baicalin exhibit promising potential as potent pharmacophore scaffolds, demonstrating their antiviral properties. However, to date, no review on the antiviral effects of baicalein and baicalin has been published. This review summarizes the recent research progress on antiviral effects of baicalein and baicalin against various types of viruses both in vitro and in vivo with a focus on the dosages and underlying mechanisms. The aim is to provide a basis for the rational development and utilization of baicalein and baicalin, as well as to promote antiviral drug research. Please cite this article as: Liu XY, Xie W, Zhou HY, Zhang HQ, Jin YS. A comprehensive overview on antiviral effects of baicalein and its glucuronide derivative baicalin. J Integr Med. 2024; Epub ahead of print.
Collapse
Affiliation(s)
- Xin-Yang Liu
- School of Basic Medicine, Naval Medical University, Shanghai 200433, China
| | - Wei Xie
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - He-Yang Zhou
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Hui-Qing Zhang
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China.
| | - Yong-Sheng Jin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Mandal MK, Domb AJ. Antimicrobial Activities of Natural Bioactive Polyphenols. Pharmaceutics 2024; 16:718. [PMID: 38931842 PMCID: PMC11206801 DOI: 10.3390/pharmaceutics16060718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Secondary metabolites, polyphenols, are widespread in the entire kingdom of plants. They contain one or more hydroxyl groups that have a variety of biological functions in the natural environment. These uses include polyphenols in food, beauty products, dietary supplements, and medicinal products and have grown rapidly during the past 20 years. Antimicrobial polyphenols are described together with their sources, classes, and subclasses. Polyphenols are found in different sources, such as dark chocolate, olive oil, red wine, almonds, cashews, walnuts, berries, green tea, apples, artichokes, mushrooms, etc. Examples of benefits are antiallergic, antioxidant, anticancer agents, anti-inflammatory, antihypertensive, and antimicrobe properties. From these sources, different classes of polyphenols are helpful for the growth of internal functional systems of the human body, providing healthy fats, vitamins, and minerals, lowering the risk of cardiovascular diseases, improving brain health, and rebooting our cellular microbiome health by mitochondrial uncoupling. Among the various health benefits of polyphenols (curcumin, naringenin, quercetin, catechin, etc.) primarily different antimicrobial activities are discussed along with possible future applications. For polyphenols and antimicrobial agents to be proven safe, adverse health impacts must be substantiated by reliable scientific research as well as in vitro and in vivo clinical data. Future research may be influenced by this evaluation.
Collapse
Affiliation(s)
| | - Abraham J. Domb
- The Alex Grass Center for Drug Design & Synthesis and the Center for Cannabis Research, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| |
Collapse
|
3
|
Ma C, Mei C, Liu J, Li H, Jiao M, Hu H, Zhang Y, Xiong J, He Y, Wei W, Yang H, Chen H. Effect of baicalin on eradicating biofilms of bovine milk derived Acinetobacter lwoffii. BMC Vet Res 2024; 20:212. [PMID: 38764041 PMCID: PMC11103975 DOI: 10.1186/s12917-024-04015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Acinetobacter lwoffii (A.lwoffii) is a serious zoonotic pathogen that has been identified as a cause of infections such as meningitis, bacteremia and pneumonia. In recent years, the infection rate and detection rate of A.lwoffii is increasing, especially in the breeding industry. Due to the presence of biofilms, it is difficult to eradicate and has become a potential super drug-resistant bacteria. Therefore, eradication of preformed biofilm is an alternative therapeutic action to control A.lwoffii infection. The present study aimed to clarify that baicalin could eradicate A.lwoffii biofilm in dairy cows, and to explore the mechanism of baicalin eradicating A.lwoffii. RESULTS The results showed that compared to the control group, the 4 MIC of baicalin significantly eradicated the preformed biofilm, and the effect was stable at this concentration, the number of viable bacteria in the biofilm was decreased by 0.67 Log10CFU/mL. The total fluorescence intensity of biofilm bacteria decreased significantly, with a reduction rate of 67.0%. There were 833 differentially expressed genes (367 up-regulated and 466 down-regulated), whose functions mainly focused on oxidative phosphorylation, biofilm regulation system and trehalose synthesis. Molecular docking analysis predicted 11 groups of target proteins that were well combined with baicalin, and the content of trehalose decreased significantly after the biofilm of A.lwoffii was treated with baicalin. CONCLUSIONS The present study evaluated the antibiofilm potential of baicalin against A.lwoffii. Baicalin revealed strong antibiofilm potential against A.lwoffii. Baicalin induced biofilm eradication may be related to oxidative phosphorylation and TCSs. Moreover, the decrease of trehalose content may be related to biofilm eradication.
Collapse
Affiliation(s)
- Chengjun Ma
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Cui Mei
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - JingJing Liu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Hui Li
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Min Jiao
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Huiming Hu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Yang Zhang
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Jing Xiong
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Yuzhang He
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Wei Wei
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Hongzao Yang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China.
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
4
|
Shen C, Luo Z, Zhan P, Deng F, Zhang P, Shen B, Hu J. Antifungal activity and potential mechanism of action of Huangqin decoction against Trichophyton rubrum. J Med Microbiol 2024; 73. [PMID: 38348868 DOI: 10.1099/jmm.0.001805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Introduction. Trichophyton rubrum is a major causative agent of superficial dermatomycoses such as onychomycosis and tinea pedis. Huangqin decoction (HQD), as a classical traditional Chinese medicine formula, was found to inhibit the growth of common clinical dermatophytes such as T. rubrum in our previous drug susceptibility experiments.Hypothesis/Gap Statement. The antifungal activity and potential mechanism of HQD against T. rubrum have not yet been investigated.Aim. The aim of this study was to investigate the antifungal activity and explore the potential mechanism of action of HQD against T. rubrum.Methodology. The present study was performed to evaluate the antifungal activity of HQD against T. rubrum by determination of minimal inhibitory concentrations (MICs), minimal fungicidal concentrations (MFCs), mycelial growth, biomass, spore germination and structural damage, and explore its preliminary anti-dermatophyte mechanisms by sorbitol and ergosterol assay, HPLC-based ergosterol test, enzyme-linked immunosorbent assay and mitochondrial enzyme activity test.Results. HQD was able to inhibit the growth of T. rubrum significantly, with an MIC of 3.125 mg ml-1 and an MFC of 12.5 mg ml-1. It also significantly inhibited the hyphal growth, conidia germination and biomass growth of T. rubrum in a dose-dependent manner, and induced structural damage in different degrees for T. rubrum cells. HQD showed no effect on cell wall integrity, but was able to damage the cell membrane of T. rubrum by interfering with ergosterol biosynthesis, involving the reduction of squalene epoxidase (SE) and sterol 14α-demethylase P450 (CYP51) activities, and also affect the malate dehydrogenase (MDH), succinate dehydrogenase (SDH) and ATPase activities of mitochondria.Conclusion. These results revealed that HQD had significant anti-dermatophyte activity, which was associated with destroying the cell membrane and affecting the enzyme activities of mitochondria.
Collapse
Affiliation(s)
- Chengying Shen
- Department of Pharmacy, Jiangxi Provincial People's Hospital (the First Affiliated Hospital of Nanchang Medical College), Nanchang, PR China
| | - Zhong Luo
- School of Pharmacy, Nanochang University, Nanchang, PR China
| | - Ping Zhan
- Department of Dermatology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Fengyi Deng
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital (the First Affiliated Hospital of Nanchang Medical College), Nanchang, PR China
| | - Pei Zhang
- Department of Pharmacy, Jiangxi Provincial People's Hospital (the First Affiliated Hospital of Nanchang Medical College), Nanchang, PR China
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Jianxin Hu
- Department of Pharmacy, Jiangxi Provincial People's Hospital (the First Affiliated Hospital of Nanchang Medical College), Nanchang, PR China
| |
Collapse
|
5
|
Wang T, Pan M, Bao M, Bu Q, Yang R, Yang Y, Shao J, Wang C, Li N. Ethyl caffeate combined with fluconazole exhibits efficacy against azole-resistant oropharyngeal candidiasis via the EFGR/JNK/c-JUN signaling pathway. Med Mycol 2023; 61:myad114. [PMID: 37947257 DOI: 10.1093/mmy/myad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/09/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Ethyl caffeate (EC) is a phenylpropanoid compound derived from Elephantopus scaber. In our previous work, EC was investigated to have a strong synergistic antifungal effect against azole-resistant strains of Candida albicans when combined with fluconazole (FLU). However, the protective effect and mechanism of EC + FLU on oropharyngeal candidiasis (OPC) caused by drug-resistant strains of C. albicans have not been investigated. This study aimed to investigate the protective effect and mechanism of EC combined with FLU against C. albicans-resistant strains that lead to OPC. An OPC mouse model revealed that EC + FLU treatment reduced fungal load and massive hyphal invasion of tongue tissues, and ameliorated the integrity of the tongue mucosa. Periodic acid-Schiff staining results showed more structural integrity of the tongue tissues and reduced inflammatory cell infiltration after EC + FLU treatment. Phosphorylation of EGFR (epidermal growth factor receptor) and other proteins in the EFGR/JNK (c-Jun N-terminal kinase)/c-JUN (transcription factor Jun) signaling pathway was significantly downregulated by EC + FLU. EGFR and S100A9 mRNA expression were also reduced. The above results were verified in FaDu cells. ELISA results showed that the concentration of inflammatory factors in the cell supernatant was significantly reduced after EC combined with FLU treatment. Molecular docking revealed that EC exhibited high binding energy to EGFR. In conclusion, EC enhances the susceptibility of azole-resistant C. albicans to FLU, and the underlying mechanism is related to the inhibition of the EGFR/JNK/c-JUN signaling pathway. This result suggests that EC has potential to be developed as an antifungal sensitizer to treat OPC caused by azole-resistant C. albicans.
Collapse
Affiliation(s)
- Tianming Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meshan Road, Hefei 230032, China
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Min Pan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Mengyuan Bao
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Qingru Bu
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Ruotong Yang
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Yue Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Jing Shao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Changzhong Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Ning Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meshan Road, Hefei 230032, China
| |
Collapse
|
6
|
Jeong E, Kim W, Son S, Yang S, Gwon D, Hong J, Cho Y, Jang CY, Steinegger M, Lim YW, Kang KB. Qualitative metabolomics-based characterization of a phenolic UDP-xylosyltransferase with a broad substrate spectrum from Lentinus brumalis. Proc Natl Acad Sci U S A 2023; 120:e2301007120. [PMID: 37399371 PMCID: PMC10334773 DOI: 10.1073/pnas.2301007120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023] Open
Abstract
Wood-decaying fungi are the major decomposers of plant litter. Heavy sequencing efforts on genomes of wood-decaying fungi have recently been made due to the interest in their lignocellulolytic enzymes; however, most parts of their proteomes remain uncharted. We hypothesized that wood-decaying fungi would possess promiscuous enzymes for detoxifying antifungal phytochemicals remaining in the dead plant bodies, which can be useful biocatalysts. We designed a computational mass spectrometry-based untargeted metabolomics pipeline for the phenotyping of biotransformation and applied it to 264 fungal cultures supplemented with antifungal plant phenolics. The analysis identified the occurrence of diverse reactivities by the tested fungal species. Among those, we focused on O-xylosylation of multiple phenolics by one of the species tested, Lentinus brumalis. By integrating the metabolic phenotyping results with publicly available genome sequences and transcriptome analysis, a UDP-glycosyltransferase designated UGT66A1 was identified and validated as an enzyme catalyzing O-xylosylation with broad substrate specificity. We anticipate that our analytical workflow will accelerate the further characterization of fungal enzymes as promising biocatalysts.
Collapse
Affiliation(s)
- Eunah Jeong
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon57922, Korea
| | - Seungju Son
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
| | - Sungyeon Yang
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
| | - Dasom Gwon
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Jihee Hong
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Yoonhee Cho
- School of Biological Sciences, Seoul National University, Seoul08826, Korea
| | - Chang-Young Jang
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Martin Steinegger
- School of Biological Sciences, Seoul National University, Seoul08826, Korea
- Artificial Intelligence Institute, Seoul National University, Seoul08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul08826, Korea
| | - Young Woon Lim
- School of Biological Sciences, Seoul National University, Seoul08826, Korea
- Institute of Microbiology, Seoul National University, Seoul08826, Korea
| | - Kyo Bin Kang
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| |
Collapse
|
7
|
Zhou X, Zeng M, Huang F, Qin G, Song Z, Liu F. The potential role of plant secondary metabolites on antifungal and immunomodulatory effect. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12601-5. [PMID: 37272939 DOI: 10.1007/s00253-023-12601-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
With the widespread use of antibiotic drugs worldwide and the global increase in the number of immunodeficient patients, fungal infections have become a serious threat to global public health security. Moreover, the evolution of fungal resistance to existing antifungal drugs is on the rise. To address these issues, the development of new antifungal drugs or fungal inhibitors needs to be targeted urgently. Plant secondary metabolites are characterized by a wide variety of chemical structures, low price, high availability, high antimicrobial activity, and few side effects. Therefore, plant secondary metabolites may be important resources for the identification and development of novel antifungal drugs. However, there are few studies to summarize those contents. In this review, the antifungal modes of action of plant secondary metabolites toward different types of fungi and fungal infections are covered, as well as highlighting immunomodulatory effects on the human body. This review of the literature should lay the foundation for research into new antifungal drugs and the discovery of new targets. KEY POINTS: • Immunocompromised patients who are infected the drug-resistant fungi are increasing. • Plant secondary metabolites toward various fungal targets are covered. • Plant secondary metabolites with immunomodulatory effect are verified in vivo.
Collapse
Affiliation(s)
- Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Meng Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
8
|
Pang C, Chen J, Liu S, Cao Y, Miao H. In vitro antifungal activity of Shikonin against Candida albicans by inducing cellular apoptosis and necrosis. Mol Biol Rep 2023; 50:1079-1087. [PMID: 36385666 DOI: 10.1007/s11033-022-08093-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Our previous studies showed that Shikonin (SK) had a strong anti-Candida albican (C. albicans) activity, especially against some fluconazole-resistant strains, which is probably due to the oxidative damage of SK to C. albicans. METHODS AND RESULTS In this study, we expanded the antifungal spectrum and evaluate the toxicity of SK. The results indicated that SK also exhibited potent invitro antifungal activities against other pathogenic fungi such as other Candida, Aspergillus, Cryptococcus, and Dermatophytes, but did not display apparent toxicity to the mammalian cells, suggesting that SK is safe to be a potential antifungal drug. Furtherly, we analyze the exact mechanism of SK against C. albicans. We found that SK could induce a series of apoptosis characteristics, including phosphatidylserine externalization, chromatin condensation and fragmentation, decreased cytochrome c oxidase activity as well as caspase activation. CONCLUSIONS In summary, this study highlighted the antifungal activity and mechanism of SK against C. albicans, providing a potential therapeutic strategy for C. albicans infection.
Collapse
Affiliation(s)
- Chong Pang
- School of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Jianshuang Chen
- School of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Shuangyan Liu
- School of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Yingying Cao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Hao Miao
- School of Basic Medicine, Chengde Medical University, Chengde, Hebei, China.
| |
Collapse
|
9
|
Zhong H, Han L, Lu RY, Wang Y. Antifungal and Immunomodulatory Ingredients from Traditional Chinese Medicine. Antibiotics (Basel) 2022; 12:antibiotics12010048. [PMID: 36671249 PMCID: PMC9855100 DOI: 10.3390/antibiotics12010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Fungal infections have become a growing public health challenge due to the clinical transmission of pathogenic fungi. The currently available antifungal drugs leave very limited choices for clinical physicians to deal with such situation, not to mention the long-standing problems of emerging drug resistance, side effects and heavy economic burdens imposed to patients. Therefore, new antifungal drugs are urgently needed. Screening drugs from natural products and using synthetic biology strategies are very promising for antifungal drug development. Chinese medicine is a vast library of natural products of biologically active molecules. According to traditional Chinese medicine (TCM) theory, preparations used to treat fungal diseases usually have antifungal and immunomodulatory functions. This suggests that if antifungal drugs are used in combination with immunomodulatory drugs, better results may be achieved. Studies have shown that the active components of TCM have strong antifungal or immunomodulatory effects and have broad application prospects. In this paper, the latest research progress of antifungal and immunomodulatory components of TCM is reviewed and discussed, hoping to provide inspiration for the design of novel antifungal compounds and to open up new horizons for antifungal treatment strategies.
Collapse
Affiliation(s)
- Hua Zhong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lei Han
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Ren-Yi Lu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Correspondence:
| |
Collapse
|
10
|
Ma W, Zhao L, Johnson ET, Xie Y, Zhang M. Natural food flavour (E)-2-hexenal, a potential antifungal agent, induces mitochondria-mediated apoptosis in Aspergillus flavus conidia via a ROS-dependent pathway. Int J Food Microbiol 2022; 370:109633. [PMID: 35313251 DOI: 10.1016/j.ijfoodmicro.2022.109633] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/19/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022]
Abstract
Natural food flavour (E)-2-hexenal, a green leaf volatile, exhibits potent antifungal activity on Aspergillus flavus, but its antifungal mechanism has not been fully elucidated. In this study, we evaluated (E)-2-hexenal-induced apoptosis in A. flavus conidia and explored the underlying mechanisms of action. Evidence of apoptosis in A. flavus conidia were investigated by methods including fluorescent staining, flow cytometry, confocal laser scanning microscope, and spectral analysis. Results indicated that 4.0 μL/mL (minimum fungicidal concentration, MFC) of (E)-2-hexenal application induced early markers of apoptotic cell death in A. flavus conidia with a rate of 38.4% after 6 h exposure. Meanwhile, typical hallmarks of apoptosis, such as decreased mitochondrial membrane potential (MMP), activated metacaspase activity, fragmented DNA, mitochondrial permeability transition pore (MPTP) opening and cytochrome c (Cyt C) release from mitochondria to the cytosol were also confirmed. Furthermore, intracellular ATP levels were reduced by 63.3 ± 3.6% and reactive oxygen species (ROS) positive cells increased by 31.1 ± 3.1% during A. flavus apoptosis induced by (E)-2-hexenal. l-Cysteine (Cys), an antioxidant, could strongly block the excess ROS generation caused by (E)-2-hexenal, which correspondingly resulted in a significant inhibition of MPTP opening and decrease of apoptosis in A. flavus, indicating that ROS palys a pivotal role in (E)-2-hexenal-induced apoptosis. These results suggest that (E)-2-hexenal exerts its antifungal effect on A. flavus conidia via a ROS-dependent mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Weibin Ma
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Luling Zhao
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Eric T Johnson
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop BioProtection Research Unit, 1815 N. University St., Peoria, IL 61604, USA
| | - Yanli Xie
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Mingming Zhang
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
11
|
Qian W, Li X, Liu Q, Lu J, Wang T, Zhang Q. Antifungal and Antibiofilm Efficacy of Paeonol Treatment Against Biofilms Comprising Candida albicans and/or Cryptococcus neoformans. Front Cell Infect Microbiol 2022; 12:884793. [PMID: 35669114 PMCID: PMC9163411 DOI: 10.3389/fcimb.2022.884793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Fungal populations are commonly found in natural environments and present enormous health care challenges, due to increased resistance to antifungal agents. Paeonol exhibits antifungal activities; nevertheless, the antifungal and antibiofilm activities of paeonol against Candida albicans and Cryptococcus neoformans remain largely unexplored. Here, we aimed to evaluate the antifungal and antibiofilm activities of paeonol against C. albicans and/or C. neoformans (i.e., against mono- or dual-species). The minimum inhibitory concentrations (MICs) of paeonol for mono-species comprising C. albicans or C. neoformans were 250 μg ml−1, whereas the MIC values of paeonol for dual-species were 500 μg ml−1. Paeonol disrupted cell membrane integrity and increased the influx of gatifloxacin into cells of mono- and dual-species cells, indicating an antifungal mode of action. Moreover, paeonol at 8 times the MIC damaged mono- and dual-species cells within C. albicans and C. neoformans biofilms, as it did planktonic cells. In particular, at 4 and 8 mg ml−1, paeonol efficiently dispersed preformed 48-h biofilms formed by mono- and dual-species cells, respectively. Paeonol inhibited effectively the yeast-to-hyphal-form transition of C. albicans and impaired capsule and melanin production of C. neoformans. The addition of 10 MIC paeonol to the medium did not shorten the lifespan of C. elegans, and 2 MIC paeonol could effectively protect the growth of C. albicans and C. neoformans-infected C. elegans. Furthermore, RNA sequencing was employed to examine the transcript profiling of C. albicans and C. neoformans biofilm cells in response to 1/2 MIC paeonol. RNA sequencing data revealed that paeonol treatment impaired biofilm formation of C. albicans by presumably downregulating the expression level of initial filamentation, adhesion, and growth-related genes, as well as biofilm biosynthesis genes, whereas paeonol inhibited biofilm formation of C. neoformans by presumably upregulating the expression level of ergosterol biosynthesis-related genes. Together, the findings of this study indicate that paeonol can be explored as a candidate antifungal agent for combating serious single and mixed infections caused by C. albicans and C. neoformans.
Collapse
Affiliation(s)
- Weidong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Xinchen Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Qiming Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Jiaxing Lu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Ting Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
- *Correspondence: Ting Wang, ; Qian Zhang,
| | - Qian Zhang
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- *Correspondence: Ting Wang, ; Qian Zhang,
| |
Collapse
|
12
|
Han Z, Tan X, Sun J, Wang T, Yan G, Wang C, Ma K. Systems pharmacology and transcriptomics reveal the mechanisms of Sanhuang decoction enema in the treatment of ulcerative colitis with additional Candida albicans infection. Chin Med 2021; 16:75. [PMID: 34376226 PMCID: PMC8353752 DOI: 10.1186/s13020-021-00487-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/02/2021] [Indexed: 01/16/2023] Open
Abstract
Background Ulcerative colitis (UC) is an important inflammatory phenotype in bowel disease (IBD), which is caused by multiple potential factors, including fungal dysbiosis. Candida albicans (C. albicans) was confirmed to be an important factor promoting the occurrence and development of UC. Sanhuang decoction (SHD) has been used for UC therapy in China for thousand of years, although its core active constituents and pharmacological mechanism remain undefined. Methods In this work, a murine model of UC with C. albicans colonization was established with dextran sodium sulfate (DSS) and C. albicans intragastric administration. The major bioactive constituents and potential mechanism of SHD against UC with fungal dysbiosis were comprehensively examined by combining systems pharmacology and in vivo transcriptomics. Results SHD attenuated C. albicans burden, reduced DAI, increased mucosal integrity and relived systemic inflammation in UC mice. Systems pharmacology analysis identified 9 core bioactive ingredients and 45 hub targets of SHD against UC. Transcriptomics analysis confirmed 370 differentially expressed genes (DEGs) after SHD treatment, which were mainly enriched in inflammatory and immune response related signaling pathways. Toll-like receptor and PI3K-Akt signaling pathway were screened out as the candidate targets involved in the action of SHD on fungal dysbiosis-associated UC, which were consistent with the findings in systems pharmacology. The expression of TLR4, IL-1β, NF-κB, PI3K and Akt proteins were stimulated by C. albicans, and partially reversed by SHD in UC mice. Conclusion These findings suggested SHD could be a candidate for the treatment of fungal dysbiosis-associated UC via TLR4-NF-κB and PI3K-Akt signaling pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00487-2.
Collapse
Affiliation(s)
- Zhijun Han
- College of Integrated Chinese and Western Medicine, College of Life Science, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaofen Tan
- College of Integrated Chinese and Western Medicine, College of Life Science, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Juan Sun
- Anhui Provincial Key Laboratory of New Manufacturing Technology for Chinese Medicinal Decoction Pieces, Anhui University of Chinese Medicine, Hefei, 230012, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Tianming Wang
- College of Integrated Chinese and Western Medicine, College of Life Science, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.,Anhui Provincial Key Laboratory of New Manufacturing Technology for Chinese Medicinal Decoction Pieces, Anhui University of Chinese Medicine, Hefei, 230012, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Guiming Yan
- College of Integrated Chinese and Western Medicine, College of Life Science, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.,Anhui Provincial Key Laboratory of New Manufacturing Technology for Chinese Medicinal Decoction Pieces, Anhui University of Chinese Medicine, Hefei, 230012, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Changzhong Wang
- College of Integrated Chinese and Western Medicine, College of Life Science, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.,Anhui Provincial Key Laboratory of New Manufacturing Technology for Chinese Medicinal Decoction Pieces, Anhui University of Chinese Medicine, Hefei, 230012, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Kelong Ma
- College of Integrated Chinese and Western Medicine, College of Life Science, Anhui University of Chinese Medicine, Hefei, 230012, China. .,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China. .,Anhui Provincial Key Laboratory of New Manufacturing Technology for Chinese Medicinal Decoction Pieces, Anhui University of Chinese Medicine, Hefei, 230012, China. .,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
13
|
Transdermal Delivery Systems of Natural Products Applied to Skin Therapy and Care. Molecules 2020; 25:molecules25215051. [PMID: 33143260 PMCID: PMC7662758 DOI: 10.3390/molecules25215051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022] Open
Abstract
Natural products are favored because of their non-toxicity, low irritants, and market reacceptance. We collected examples, according to ancient wisdom, of natural products to be applied in transdermal delivery. A transdermal delivery system, including different types of agents, such as ointments, patches, and gels, has long been used for skin concerns. In recent years, many novel transdermal applications, such as nanoemulsions, liposomes, lipid nanoparticles, and microneedles, have been reported. Nanosized drug delivery systems are widely applied in natural product deliveries. Nanosized materials notably enhance bioavailability and solubility, and are reported to improve the transdermal permeation of many substances compared with conventional topical formulations. Natural products have been made into nanosized biomaterials in order to enhance the penetration effect. Before introducing the novel transdermal applications of natural products, we present traditional methods within this article. The descriptions of novel transdermal applications are classified into three parts: liposomes, emulsions, and lipid nanoparticles. Each section describes cases that are related to promising natural product transdermal use. Finally, we summarize the outcomes of various studies on novel transdermal agents applied to skin treatments.
Collapse
|
14
|
Lee JE, Seo SM, Huh MJ, Lee SC, Park IK. Reactive oxygen species mediated-antifungal activity of cinnamon bark (Cinnamomum verum) and lemongrass (Cymbopogon citratus) essential oils and their constituents against two phytopathogenic fungi. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104644. [PMID: 32711777 DOI: 10.1016/j.pestbp.2020.104644] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 05/09/2023]
Abstract
To find new and safe type of control agents against phytopathogenic fungi, the fumigant antifungal activity of 10 plant essential oils and constituents identified in cinnamon bark (Cinnamomum verum) and lemongrass (Cymbopogon citratus) essential oils was investigated against two phytopathogenic fungi, Raffaelea quercus-mongolicae and Rhizoctonia solani. Among plant essential oils, cinnamon bark and lemongrass essential oils showed 100% inhibition of R. quercus-mongolicae and R. solani at 5 mg/paper disc, respectively. Among test constituents, salicylaldehyde, eugenol, and hydrocinnamaldehyde showed 100% inhibition of growth of R. quercus-mongolicae at 2.5 mg/paper disc. Neral, geraniol, geranial, trans-cinnamaldehyde, methyl cinnamate, isoeugenol, and methyl eugenol exhibited >80% inhibition of growth of R. quercus-mongolicae at 2.5 mg/paper disc. Neral, geranial, trans-cinnamaldehyde, hydrocinnamaldehyde, and salicylaldehyde showed 100% inhibition of growth of R. solani at 2.5 mg/paper disc. A fumigant antifungal bioassay of artificial blends of the constituents identified in cinnamon bark and lemongrass essential oils indicated that trans-cinnamaldehyde and geranial were major contributors to the fumigant antifungal activity of the artificial blend. Confocal laser scanning microscopy images of fungi treated with cinnamon bark and lemongrass essential oils, trans-cinnamaldehyde, neral, and geranial revealed the reactive oxygen species (ROS) generation and cell membrane disruption.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Forest Insect Pests and Diseases Division, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Seon-Mi Seo
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Jung Huh
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Chan Lee
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Kwon Park
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
15
|
Guevara-Lora I, Bras G, Karkowska-Kuleta J, González-González M, Ceballos K, Sidlo W, Rapala-Kozik M. Plant-Derived Substances in the Fight Against Infections Caused by Candida Species. Int J Mol Sci 2020; 21:ijms21176131. [PMID: 32854425 PMCID: PMC7504544 DOI: 10.3390/ijms21176131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Yeast-like fungi from the Candida genus are predominantly harmless commensals that colonize human skin and mucosal surfaces, but under conditions of impaired host immune system change into dangerous pathogens. The pathogenicity of these fungi is typically accompanied by increased adhesion and formation of complex biofilms, making candidal infections challenging to treat. Although a variety of antifungal drugs have been developed that preferably attack the fungal cell wall and plasma membrane, these pathogens have acquired novel defense mechanisms that make them resistant to standard treatment. This causes an increase in the incidence of candidiasis and enforces the urgent need for an intensified search for new specifics that could be helpful, alone or synergistically with traditional drugs, for controlling Candida pathogenicity. Currently, numerous reports have indicated the effectiveness of plant metabolites as potent antifungal agents. These substances have been shown to inhibit growth and to alter the virulence of different Candida species in both the planktonic and hyphal form and during the biofilm formation. This review focuses on the most recent findings that provide evidence of decreasing candidal pathogenicity by different substances of plant origin, with a special emphasis on the mechanisms of their action. This is a particularly important issue in the light of the currently increasing frequency of emerging Candida strains and species resistant to standard antifungal treatment.
Collapse
Affiliation(s)
- Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (I.G.-L.); (K.C.)
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
| | - Miriam González-González
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30–387 Krakow, Poland
| | - Kinga Ceballos
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (I.G.-L.); (K.C.)
| | - Wiktoria Sidlo
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
- Correspondence:
| |
Collapse
|
16
|
Su S, Li X, Yang X, Li Y, Chen X, Sun S, Jia S. Histone acetylation/deacetylation in Candida albicans and their potential as antifungal targets. Future Microbiol 2020; 15:1075-1090. [PMID: 32854542 DOI: 10.2217/fmb-2019-0343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, the incidence of invasive fungal infections has significantly increased. Candida albicans (C. albicans) is the most common opportunistic fungal pathogen that infects humans. The limited number of available antifungal agents and the emergence of drug resistance pose difficulties to treatment, thus new antifungals are urgently needed. Through their functions in DNA replication, DNA repair and transcription, histone acetyltransferases (HATs) and histone deacetylases (HDACs) perform essential functions relating to growth, virulence, drug resistance and stress responses of C. albicans. Here, we summarize the physiological and pathological functions of HATs/HDACs, potential antifungal targets and underlying antifungal compounds that impact histone acetylation and deacetylation. We anticipate this review will stimulate the identification of new HAT/HDAC-related antifungal targets and antifungal agents.
Collapse
Affiliation(s)
- Shan Su
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Xiuyun Li
- Department of Pharmacy, Qilu Children’s Hospital, Shandong University, Jinan 250022, China
| | - Xinmei Yang
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, People’s Republic of China
| | - Yiman Li
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Xueqi Chen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Shujuan Sun
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, People’s Republic of China
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, People’s Republic of China
| | - Shuang Jia
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, People’s Republic of China
| |
Collapse
|
17
|
Guo L, Liu J, Zhang Y, Fu S, Qiu Y, Ye C, Liu Y, Wu Z, Hou Y, Hu CAA. The Effect of Baicalin on the Expression Profiles of Long Non-Coding RNAs and mRNAs in Porcine Aortic Vascular Endothelial Cells Infected with Haemophilus parasuis. DNA Cell Biol 2020; 39:801-815. [PMID: 32096672 DOI: 10.1089/dna.2019.5340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Haemophilus parasuis can elicit serious inflammatory responses, which contribute to huge economic losses to the swine industry. However, the pathogenic mechanisms underlying inflammation-related damage induced by H. parasuis remain unclear. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) have important functions in the regulation of autoimmune disorders. Baicalin has been shown to have anti-inflammatory, anti-microbial, and anti-oxidant activities. In this study, we investigated whether lncRNAs were involved in the vascular injury or inflammation triggered by H. parasuis and whether baicalin regulated the lncRNA profiles of porcine aortic vascular endothelial cells (PAVECs) infected with H. parasuis. The results showed that the lncRNA and mRNA expression profiles of PAVECs were changed by H. parasuis. Important functions of lncRNAs and mRNAs were predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that the targets of differentially expressed lncRNAs of H. parasuis infected PAVECs were mainly involved in the tumor necrosis factor (TNF) signaling pathway, apoptosis, and N-glycan biosynthesis; whereas nicotinate and nicotinamide metabolism, the cytosolic DNA-sensing pathway, the TNF signaling pathway, and the nuclear factor (NF)-kappa B signaling pathway were enriched in PAVECs pretreated with baicalin. In addition, top hub genes and lncRNAs were identified and validated by quantitative polymerase chain reaction. CCL5, GBP1, and SAMHD1 were significantly upregulated after H. parasuis infection, whereas they were significantly downregulated with baicalin pretreatment. LncRNA ALDBSSCT0000001677, ALDBSSCT0000001353, MSTRG.10724.2, and ALDBSSCT0000010434 had the same expression pattern. Collectively, these data suggested that baicalin could modify changes to the lncRNAs profiles or regulate lncRNAs that participate in inflammation-related signaling pathways, thereby alleviating tissue damage or inflammatory responses induced by H. parasuis. To our best knowledge, this is the first article of H. parasuis stimulating changes to the lncRNA profiles of PAVECs and the capability of baicalin to regulate lncRNA changes in PAVECs infected with H. parasuis, which might provide a novel therapeutic target for the control of H. parasuis infection.
Collapse
Affiliation(s)
- Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Jun Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Yunfei Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Chien-An Andy Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
18
|
Nanoparticle-Mediated Dual Targeting: An Approach for Enhanced Baicalin Delivery to the Liver. Pharmaceutics 2020; 12:pharmaceutics12020107. [PMID: 32013203 PMCID: PMC7076551 DOI: 10.3390/pharmaceutics12020107] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 01/13/2023] Open
Abstract
In this study, water-soluble chitosan lactate (CL) was reacted with lactobionic acid (LA), a disaccharide with remarkable affinity to hepatic asialoglycoprotein (ASGP) receptors, to form dual liver-targeting LA-modified-CL polymer for site-specific drug delivery to the liver. The synthesized polymer was used to encapsulate baicalin (BA), a promising bioactive flavonoid with pH-dependent solubility, into ultrahigh drug-loaded nanoparticles (NPs) via the ionic gelation method. The successful chemical conjugation of LA with CL was tested and the formulated drug-loaded LA-modified-CL-NPs were assessed in terms of particle size (PS), encapsulation efficiency (EE) and zeta potential (ZP) using full factorial design. The in vivo biodistribution and pharmacokinetics of the designed NPs were assessed using 99mTc-radiolabeled BA following oral administration to mice and results were compared to 99mTc-BA-loaded-LA-free-NPs and 99mTc-BA solution as controls. Results showed that the chemical modification of CL with LA was successfully achieved and the method of preparation of the optimized NPs was very efficient in encapsulating BA into nearly spherical particles with an extremely high EE exceeding 90%. The optimized BA-loaded-LA-modified-CL-NPs showed an average PS of 490 nm, EE of 93.7% and ZP of 48.1 mV. Oral administration of 99mTc-BA-loaded-LA-modified-CL-NPs showed a remarkable increase in BA delivery to the liver over 99mTc-BA-loaded-LA-free-CL-NPs and 99mTc-BA oral solution. The mean area under the curve (AUC0-24) estimates from liver data were determined to be 11-fold and 26-fold higher from 99mTc-BA-loaded-LA-modified-CL-NPs relative to 99mTc-BA-loaded-LA-free-CL-NPs and 99mTc-BA solution respectively. In conclusion, the outcome of this study highlights the great potential of using LA-modified-CL-NPs for the ultrahigh encapsulation of therapeutic molecules with pH-dependent/poor water-solubility and for targeting the liver.
Collapse
|
19
|
Felice MR, Giuffrè L, El Aamri L, Hafidi M, Criseo G, Romeo O, Scordino F. Looking for New Antifungal Drugs from Flavonoids: Impact of the Genetic Diversity of Candida albicans on the in-vitro Response. Curr Med Chem 2019; 26:5108-5123. [PMID: 29278204 DOI: 10.2174/0929867325666171226102700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/15/2017] [Accepted: 11/06/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND In an era in which antimicrobial resistance is increasing at an alarming pace, it is very important to find new antimicrobial agents effective against pathogenic microrganisms resistant to traditional treatments. Among the notable breakthroughs in the past years of research in natural-drug discovery, there is the identification and testing of flavonoids, a group of plant-derived substances capable of promoting many beneficial effects on humans. These compounds show different biological activities such as inhibition of neuroinflammation and tumor growth as well as antimicrobial activity against many microbial pathogens. METHODS We undertook a review of protocols and standard strains used in studies reporting the inhibitory effects of flavonoids against Candida albicans by focusing our attention on genetic characterization of the strains examined. Moreover, using the C. albicans MLST-database, we performed a phylogenetic analysis showing the genetic variation occurring in this species. RESULTS Today, we have enough information to estimate genetic diversity within microbial species and recent data revealed that most of fungal pathogens show complex population structures in which not a single isolate can be designated as representative of the entire taxon. This is especially true for the highly divergent fungal pathogen C. albicans, in which the assumption that one or few "standard strains" can represent the whole species is overly unrealistic and should be laid to rest. CONCLUSION The goal of this article is to shed light on the extent of genetic variation in C. albicans and how this phenomenon can largely influence the activity of flavonoids against this species.
Collapse
Affiliation(s)
- Maria Rosa Felice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Letterio Giuffrè
- Department of Veterinary Sciences, Division of Animal Production, University of Messina, Messina, Italy
| | - Lamya El Aamri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Biology, Moulay Ismail University, Faculty of Sciences, Zitoune Meknes, Morocco
| | - Majida Hafidi
- Department of Biology, Moulay Ismail University, Faculty of Sciences, Zitoune Meknes, Morocco
| | - Giuseppe Criseo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Scientific Institute for Research, Hospitalization and Health Care (IRCCS) - Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Fabio Scordino
- Scientific Institute for Research, Hospitalization and Health Care (IRCCS) - Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| |
Collapse
|
20
|
Xin X, Zhang M, Li XF, Zhao G. Biocatalytic Synthesis of Lipophilic Baicalin Derivatives as Antimicrobial Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11684-11693. [PMID: 31564105 DOI: 10.1021/acs.jafc.9b04667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Enzymatic acylation is commonly used to increase the lipophilicity of flavonoids. However, the absence of primary hydroxyl groups makes it challenging to acylate baicalin using traditional acylation methods. In this study, an enzymatic esterification strategy was developed to introduce fatty-acid chains into baicalin at its carboxyl group, hence successfully synthesizing a new series of baicalin ester derivatives in nonaqueous media. Under the optimal reaction conditions, up to 95% conversion of baicalin was achieved. Antimicrobial evaluation of the baicalin ester derivatives indicated a corresponding increase to that of C log P values, with a cutoff effect at C log P = 5.2. Baicalin ester derivatives with C log P values of 4.9-5.2 exhibited the most potent antimicrobial activity. Interestingly, the introduction of medium-length fatty alcohol chains not only increased lipophilicity but also endowed them with membrane-disrupting properties. This study, therefore, provides an understanding of the esterification of flavonoid glycosides and a prospective application of the ester derivatives.
Collapse
|
21
|
Li X, Wu X, Gao Y, Hao L. Synergistic Effects and Mechanisms of Combined Treatment With Harmine Hydrochloride and Azoles for Resistant Candida albicans. Front Microbiol 2019; 10:2295. [PMID: 31749766 PMCID: PMC6843067 DOI: 10.3389/fmicb.2019.02295] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Several studies have demonstrated the significant antiviral, antimicrobial, antiplasmodial, antioxidative, antifungal, antimutagenic, and antitumor properties of harmine hydrochloride (HMH). The main objective of the present study was to investigate the antifungal effects and underlying mechanisms of HMH when combined with azoles to determine whether such combinations act in a synergistic manner. As a result, we found that HMH exhibits synergistic antifungal effects in combination with azoles against resistant Candida albicans (C. albicans) planktonic cells, as well as resistant C. albicans biofilm in the early stage. Antifungal potential of HMH with fluconazole was also explored in vivo using an invertebrate model. Our results suggest that HMH combined with azoles is synergistic against resistant C. albicans in vitro and in vivo. No synergy is seen with azole sensitive C. albicans strains nor with other Candida species. Such synergistic mechanisms on resistance C. albicans are involved in increasing intracellular azoles, inhibiting hyphal growth, disturbing cytosolic calcium concentration, and inducing apoptosis of resistant C. albicans cells.
Collapse
Affiliation(s)
- Xiuyun Li
- Department of Pharmacy, Qilu Children's Hospital, Shandong University, Jinan, China
| | - Xuexin Wu
- Department of Pharmacy, Qilu Children's Hospital, Shandong University, Jinan, China
| | - Yan Gao
- Department of Pharmacy, Qilu Children's Hospital, Shandong University, Jinan, China
| | - Lina Hao
- Department of Pharmacy, Qilu Children's Hospital, Shandong University, Jinan, China
| |
Collapse
|
22
|
Fumigant Antifungal Activity via Reactive Oxygen Species of Thymus vulgaris and Satureja hortensis Essential Oils and Constituents against Raffaelea quercus-mongolicae and Rhizoctonia solani. Biomolecules 2019; 9:biom9100561. [PMID: 31623331 PMCID: PMC6843575 DOI: 10.3390/biom9100561] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/15/2023] Open
Abstract
In this study, the fumigant antifungal activity of 10 Lamiaceae plant essential oils was evaluated against two phytopathogenic fungi, Raffaelea quercus-mongolicae, and Rhizoctonia solani. Among the tested essential oils, thyme white (Thymus vulgaris) and summer savory (Satureja hortensis) essential oils exhibited the strongest fumigant antifungal activity against the phytopathogenic fungi. We analyzed the chemical composition of two active essential oils and tested the fumigant antifungal activities of the identified compounds. Among the tested compounds, thymol and carvacrol had potent fumigant antifungal activity. We observed reactive oxygen species (ROS) generation in two fungi treated with thymol and carvacrol. Confocal laser scanning microscopy images of fungi stained with propidium iodide showed that thymol and carvacrol disrupted fungal cell membranes. Our results indicated that ROS generated by thymol and carvacrol damaged the cell membrane of R. querqus-mongolicae and R. solani, causing cell death.
Collapse
|
23
|
Jin YS. Recent advances in natural antifungal flavonoids and their derivatives. Bioorg Med Chem Lett 2019; 29:126589. [DOI: 10.1016/j.bmcl.2019.07.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 11/24/2022]
|
24
|
Guan CP, Luo HX, Fang HE, Zhou XZ. Global Transcriptome Changes of Biofilm-Forming Staphylococcus epidermidis Responding to Total Alkaloids of Sophorea alopecuroides. Pol J Microbiol 2019; 67:223-226. [PMID: 30015461 PMCID: PMC7256688 DOI: 10.21307/pjm-2018-024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2017] [Indexed: 01/29/2023] Open
Abstract
Transcriptome changes of biofilm-forming Staphylococcus epidermidis response to total alkaloids of Sophorea alopecuroides was observed. Bioinformatic analyses were further used to compare the differential gene expression between control and the treated samples. It was found that 282 genes were differentially expressed, with 92 up-regulated and 190 down-regulated. These involved down-regulation of the sulfur metabolism pathway. It was suggested that inhibitory effects on Staphylococcus epidermidis and its biofilm formation of the total alkaloids of S. alopecuroides was mainly due to the regulation of the sulfur metabolism pathways of S. epidermidis.
Collapse
Affiliation(s)
- Cui-Ping Guan
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources in Western China, Ningxia University,Yinchuan, Ningxia,China
| | - Hui-Xia Luo
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources in Western China, Ningxia University,Yinchuan, Ningxia,China
| | - H E Fang
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources in Western China, Ningxia University,Yinchuan, Ningxia,China
| | - Xue-Zhang Zhou
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources in Western China, Ningxia University,Yinchuan, Ningxia,China
| |
Collapse
|
25
|
Giordani C, Simonetti G, Natsagdorj D, Choijamts G, Ghirga F, Calcaterra A, Quaglio D, De Angelis G, Toniolo C, Pasqua G. Antifungal activity of Mongolian medicinal plant extracts. Nat Prod Res 2019; 34:449-455. [PMID: 31135192 DOI: 10.1080/14786419.2019.1610960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The in vitro antifungal activity of extracts obtained from 14 medicinal plants of the mongolian flora were investigated by measuring their minimal inhibitory concentration (MIC) against fungi cause of cutaneous diseases such as Candida species, dermatophytes and Malassezia furfur. Among the species examined, Stellaria dichotoma L., Scutellaria scordifolia L. Aquilegia sibirica Fisch. Et Schrenk. and Hyoscyamus niger L. extracts demonstrated antifungal activity against all studied fungi. In particular, S. scordifolia L. methanol extract, obtained at room temperature, showed the best activity against Candida spp., Malassezia furfur and dermatophytes with GMMIC50 values of 22 µg/mL, 64 µg/mL and 32 µg/mL, respectively. The flavones, luteolin and apigenin, identified in S. scordifolia extracts, and rutin identified in S. dichotoma and Hyoscyamus niger L. extracts, could be responsible of the observed antifungal activity.
Collapse
Affiliation(s)
- Cristiano Giordani
- Grupo Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Instituto de Fisica, Universidad de Antioquia, Medellin, Colombia
| | - Giovanna Simonetti
- Department of Public Health and Infectious Diseases, Sapienza Università di Roma, Rome, Italy
| | | | - Gotov Choijamts
- Otoch Manramba University of Mongolia, Ulaanbaatar, Mongolia
| | - Francesca Ghirga
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs "Department of Excellence 2018-2022", Sapienza Università di Roma, Rome, Italy
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs "Department of Excellence 2018-2022", Sapienza Università di Roma, Rome, Italy
| | - Giulia De Angelis
- Department of Environmental Biology, Sapienza Università di Roma, Rome, Italy
| | - Chiara Toniolo
- Department of Environmental Biology, Sapienza Università di Roma, Rome, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
26
|
Periplanetasin-4, a novel antimicrobial peptide from the cockroach, inhibits communications between mitochondria and vacuoles. Biochem J 2019; 476:1267-1284. [DOI: 10.1042/bcj20180933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022]
Abstract
Abstract
Communications between various organelle–organelles play an essential role in cell survival. The cross-talk between mitochondria and vacuoles comes up with the vital roles of the intercompartmental process. In this study, we found a couple of cell death features, membrane damage, and apoptosis using antimicrobial peptide from American Cockroach. Periplanetasin-4 (LRHKVYGYCVLGP-NH2) is a 13-mer peptide derived from Periplaneta americana and exhibits phosphatidylserine exposure and caspase activation without DNA fragmentation. Apoptotic features without DNA damage provide evidence that this peptide did not interact with DNA directly and exhibited dysfunction of mitochondria and vacuoles. Superoxide radicals were generated from mitochondria and converted to hydrogen peroxide. Despite the enhancement of catalase and total glutathione contents, oxidative damage disrupted intracellular contents. Periplanetasin-4 induced cell death associated with the production of superoxide radicals, calcium uptake in mitochondria and disorder of vacuoles, such as increased permeability and alkalization. While calcium movement from vacuoles to the mitochondria occurred, the cross-talk with these organelles proceeded and the inherent functionality was impaired. To sum up, periplanetasin-4 stimulates superoxide signal along with undermining the mitochondrial functions and interfering in communication with vacuoles.
Collapse
|
27
|
Huang G, Huang Q, Wei Y, Wang Y, Du H. Multiple roles and diverse regulation of the Ras/cAMP/protein kinase A pathway in Candida albicans. Mol Microbiol 2018; 111:6-16. [PMID: 30299574 DOI: 10.1111/mmi.14148] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2018] [Indexed: 01/15/2023]
Abstract
Candida albicans is a major fungal pathogen of humans, causing both superficial and life-threatening systemic infections in immunocompromised people. The conserved Ras/cAMP/PKA pathway plays a key role in regulating multiple traits important for the virulence of C. albicans such as cell growth, yeast-hyphal transition, white-opaque switching, sexual reproduction and biofilm development. Diverse external signals influence cell physiology by activating this signaling pathway. The key components of the Ras/cAMP/PKA pathway include two Ras GTPases (Ras1 and Ras2), an adenylyl cyclase (Cyr1, also known as Cdc35), two cyclic nucleotide phosphodiesterases (Pde1 and Pde2) and the catalytic (Tpk1 and Tpk2) and regulatory (Bcy1) subunits of PKA kinase. Activation of this pathway dramatically alters the gene expression profile via several transcription factors, leading to the activation of specific biological processes. Here, we review the progress made in the past two decades to elucidate the molecular mechanisms by which the Ras/cAMP/PKA pathway senses diverse environmental cues and controls specific cellular responses and its connection with other signaling pathways in C. albicans.
Collapse
Affiliation(s)
- Guanghua Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Huang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Yujia Wei
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Yue Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Han Du
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
28
|
Haider M, Hassan MA, Ahmed IS, Shamma R. Thermogelling Platform for Baicalin Delivery for Versatile Biomedical Applications. Mol Pharm 2018; 15:3478-3488. [PMID: 29953815 DOI: 10.1021/acs.molpharmaceut.8b00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Baicalin (BG) is a natural glycoside with several promising therapeutic and preventive applications. However, its pharmaceutical potential is compromised by its poor water solubility, complex oral absorption kinetics, and low bioavailability. In this work, BG was incorporated in a series of chitosan (Ch)/glycerophosphate (GP)-based thermosensitive hydrogel formulations to improve its water solubility and control its release profile. Molecular interactions between BG and GP were investigated using Fourier transform infrared spectroscopy (FT-IR), and the ability of GP to enhance the water solubility of BG was studied in different release media. Drug-loaded Ch/GP hydrogels were prepared and characterized for their gelation time, swelling ratio, and rheological properties in addition to surface and internal microstructure. Polyethylene glycol (PEG) 6000 and hydroxypropyl methyl cellulose (HPMC) were incorporated in the formulations at different ratios to study their effect on modulating the sol-gel behavior and the in vitro drug release. In vivo pharmacokinetic (PK) studies were carried out using a rabbit model to study the ability of drug-loaded Ch/GP thermosensitive hydrogels to control the absorption rate and improve the bioavailability of BG. Results showed that the solubility of BG was enhanced in the presence of GP, while the incorporation of PEG and/or HPMC had an impact on gelation time, rheological behavior, and rate of drug release in vitro. PK results obtained following buccal application of drug-loaded Ch/GP thermosensitive hydrogels to rabbits showed that the rate of BG absorption was controlled and the in vivo bioavailability was increased by 330% relative to BG aqueous oral suspension. The proposed Ch/GP thermosensitive hydrogel is an easily modifiable delivery platform that is not only capable of improving the solubility and bioavailability of BG following buccal administration but also can be suited for various local and injectable therapeutic applications.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Cairo University , Cairo 11562 , Egypt
| | - Mariame A Hassan
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Cairo University , Cairo 11562 , Egypt
| | - Iman S Ahmed
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | - Rehab Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Cairo University , Cairo 11562 , Egypt
| |
Collapse
|
29
|
Regulated Cell Death as a Therapeutic Target for Novel Antifungal Peptides and Biologics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5473817. [PMID: 29854086 PMCID: PMC5944218 DOI: 10.1155/2018/5473817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/07/2018] [Indexed: 12/17/2022]
Abstract
The rise of microbial pathogens refractory to conventional antibiotics represents one of the most urgent and global public health concerns for the 21st century. Emergence of Candida auris isolates and the persistence of invasive mold infections that resist existing treatment and cause severe illness has underscored the threat of drug-resistant fungal infections. To meet these growing challenges, mechanistically novel agents and strategies are needed that surpass the conventional fungistatic or fungicidal drug actions. Host defense peptides have long been misunderstood as indiscriminant membrane detergents. However, evidence gathered over the past decade clearly points to their sophisticated and selective mechanisms of action, including exploiting regulated cell death pathways of their target pathogens. Such peptides perturb transmembrane potential and mitochondrial energetics, inducing phosphatidylserine accessibility and metacaspase activation in fungi. These mechanisms are often multimodal, affording target pathogens fewer resistance options as compared to traditional small molecule drugs. Here, recent advances in the field are examined regarding regulated cell death subroutines as potential therapeutic targets for innovative anti-infective peptides against pathogenic fungi. Furthering knowledge of protective host defense peptide interactions with target pathogens is key to advancing and applying novel prophylactic and therapeutic countermeasures to fungal resistance and pathogenesis.
Collapse
|
30
|
Athie-García MS, Piñón-Castillo HA, Muñoz-Castellanos LN, Ulloa-Ogaz AL, Martínez-Varela PI, Quintero-Ramos A, Duran R, Murillo-Ramirez JG, Orrantia-Borunda E. Cell wall damage and oxidative stress in Candida albicans ATCC10231 and Aspergillus niger caused by palladium nanoparticles. Toxicol In Vitro 2018; 48:111-120. [DOI: 10.1016/j.tiv.2018.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
|
31
|
Lee H, Woo ER, Lee DG. Apigenin induces cell shrinkage in Candida albicans by membrane perturbation. FEMS Yeast Res 2018; 18:4810751. [DOI: 10.1093/femsyr/foy003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/15/2018] [Indexed: 01/05/2023] Open
|
32
|
Baicalin modulates NF-κB and NLRP3 inflammasome signaling in porcine aortic vascular endothelial cells Infected by Haemophilus parasuis Causing Glässer's disease. Sci Rep 2018; 8:807. [PMID: 29339754 PMCID: PMC5770393 DOI: 10.1038/s41598-018-19293-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022] Open
Abstract
Haemophilus parasuis (H. parasuis) can cause vascular inflammatory injury, but the molecular basis of this effect remains unclear. In this study,we investigated the effect of the anti-inflammatory, anti-microbial and anti-oxidant agent, baicalin, on the nuclear factor (NF)-κB and NLRP3 inflammasome signaling pathway in pig primary aortic vascular endothelial cells. Activation of the NF-κB and NLRP3 inflammasome signaling pathway was induced in H. parasuis-infected cells. However, baicalin reduced the production of reactive oxygen species, apoptosis, and activation of the NF-κB and NLRP3 inflammasome signaling pathway in infected cells. These results revealed that baicalin can inhibit H. parasuis-induced inflammatory responses in porcine aortic vascular endothelial cells, and may thus offer a novel strategy for controlling and treating H. parasuis infection. Furthermore, the results suggest that piglet primary aortic vascular endothelial cells may provide an experimental model for future studies of H. parasuis infection.
Collapse
|
33
|
Zacchino SA, Butassi E, Cordisco E, Svetaz LA. Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 37:14-26. [PMID: 29174600 DOI: 10.1016/j.phymed.2017.10.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Biofilms contribute to the pathogenesis of many chronic and difficult-to eradicate infections whose treatment is complicated due to the intrinsic resistance to conventional antibiotics. As a consequence, there is an urgent need for strategies that can be used for the prevention and treatment of biofilm-associated infections. The combination therapy comprising an antimicrobial drug with a low molecular weight (MW) natural product and an antimicrobial drug (antifungal or antibacterial) appeared as a good alternative to eradicate biofilms. PURPOSE The aims of this review were to perform a literature search on the different natural products that have showed the ability of potentiating the antibiofilm capacity of antimicrobial drugs, to analyze which are the antimicrobial drugs most used in combination, and to have a look on the microbial species most used to prepare biofilms. RESULTS Seventeen papers, nine on combinations against antifungal biofilms and eight against antibacterial biofilms were collected. Within the text, the following topics have been developed: breaf history of the discovery of biofilms; stages in the development of a biofilm; the most used methodologies to assess antibiofilm-activity; the natural products with capacity of eradicating biofilms when acting alone; the combinations of low MW natural products with antibiotics or antifungal drugs as a strategy for eradicating microbial biofilms and a list of the low MW natural products that potentiate the inhibition capacity of antifungal and antibacterial drugs against biofilms. CONCLUSIONS AND PERSPECTIVES Regarding combinations against antifungal biofilms, eight over the nine collected works were carried out with in vitro studies while only one was performed with in vivo assays by using Caenorhabditis elegans nematode. All studies use biofilms of the Candida genus. A 67% of the potentiators were monoterpenes and sesquiterpenes and six over the nine works used FCZ as the antifungal drug. The activity of AmpB and Caspo was enhanced in one and two works respectively. Regarding combinations against bacterial biofilms, in vitro studies were performed in all works by using several different methods of higher variety than the used against fungal biofilms. Biofilms of both the gram (+) and gram (-) bacteria were prepared, although biofilm of Staphylococcus spp. were the most used in the collected works. Among the discovered potentiators of antibacterial drugs, 75% were terpenes, including mono, di- and triterpenes, and, among the atibacterial drugs, several structurally diverse types were used in the combinations: aminoglycosides, β-lactams, glucopeptides and fluoroquinolones. The potentiating capacity of natural products, mainly terpenes, on the antibiofilm effect of antimicrobial drugs opens a wide range of possibilities for the combination antimicrobial therapy. More in vivo studies on combinations of natural products with antimicrobial drugs acting against biofilms are highly required to cope the difficult to treat biofilm-associated infections.
Collapse
Affiliation(s)
- Susana A Zacchino
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| | - Estefanía Butassi
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Estefanía Cordisco
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Laura A Svetaz
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
34
|
Increasing the Fungicidal Action of Amphotericin B by Inhibiting the Nitric Oxide-Dependent Tolerance Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4064628. [PMID: 29129987 PMCID: PMC5654257 DOI: 10.1155/2017/4064628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/02/2017] [Indexed: 11/21/2022]
Abstract
Amphotericin B (AmB) induces oxidative and nitrosative stresses, characterized by production of reactive oxygen and nitrogen species, in fungi. Yet, how these toxic species contribute to AmB-induced fungal cell death is unclear. We investigated the role of superoxide and nitric oxide radicals in AmB's fungicidal activity in Saccharomyces cerevisiae, using a digital microfluidic platform, which enabled monitoring individual cells at a spatiotemporal resolution, and plating assays. The nitric oxide synthase inhibitor L-NAME was used to interfere with nitric oxide radical production. L-NAME increased and accelerated AmB-induced accumulation of superoxide radicals, membrane permeabilization, and loss of proliferative capacity in S. cerevisiae. In contrast, the nitric oxide donor S-nitrosoglutathione inhibited AmB's action. Hence, superoxide radicals were important for AmB's fungicidal action, whereas nitric oxide radicals mediated tolerance towards AmB. Finally, also the human pathogens Candida albicans and Candida glabrata were more susceptible to AmB in the presence of L-NAME, pointing to the potential of AmB-L-NAME combination therapy to treat fungal infections.
Collapse
|
35
|
Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS One 2017; 12:e0176883. [PMID: 28453568 PMCID: PMC5409170 DOI: 10.1371/journal.pone.0176883] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/18/2017] [Indexed: 11/19/2022] Open
Abstract
The quorum sensing (QS) circuit plays a role in the precise regulation of genes controlling virulence factors and biofilm formation in Pseudomonas aeruginosa. QS-controlled biofilm formation by Pseudomonas aeruginosa in clinical settings has remained controversial due to emerging drug resistance; therefore, screening diverse compounds for anti-biofilm or anti-QS activities is important. This study demonstrates the ability of sub-minimum inhibitory concentrations (sub-MICs) of baicalin, an active natural compound extracted from the traditional Chinese medicinal Scutellaria baicalensis, to inhibit the formation of Pseudomonas aeruginosa biofilms and enhance the bactericidal effects of various conventional antibiotics in vitro. In addition, baicalin exerted dose-dependent inhibitory effects on virulence phenotypes (LasA protease, LasB elastase, pyocyanin, rhamnolipid, motilities and exotoxin A) regulated by QS in Pseudomonas aeruginosa. Moreover, the expression levels of QS-regulatory genes, including lasI, lasR, rhlI, rhlR, pqsR and pqsA, were repressed after sub-MIC baicalin treatment, resulting in significant decreases in the QS signaling molecules 3-oxo-C12-HSL and C4-HSL, confirming the ability of baicalin-mediated QS inhibition to alter gene and protein expression. In vivo experiments indicated that baicalin treatment reduces Pseudomonas aeruginosa pathogenicity in Caenorhabditis elegans. Greater worm survival in the baicalin-treated group manifested as an increase in the LT50 from 24 to 96 h. In a mouse peritoneal implant infection model, baicalin treatment enhanced the clearance of Pseudomonas aeruginosa from the implants of mice infected with Pseudomonas aeruginosa compared with the control group. Moreover, the combination of baicalin and antibiotics significantly reduced the numbers of colony-forming units in the implants to a significantly greater degree than antibiotic treatment alone. Pathological and histological analyses revealed mitigation of the inflammatory response and reduced cell infiltration in the peritoneal tissue surrounding the implants after baicalin treatment. Measurement of the cytokine levels in the peritoneal lavage fluid of mice in the baicalin treatment group revealed a decrease in IL-4, an increase in interferon γ (IFN-γ), and a reversed IFN-γ/IL-4 ratio compared with the control group, indicating that baicalin treatment activated the Th1-induced immune response to expedite bacterial load clearance. Based on these results, baicalin might be a potent QS inhibitor and anti-biofilm agent for combating Pseudomonas aeruginosa biofilm-related infections.
Collapse
|
36
|
Costa Silva RA, da Silva CR, de Andrade Neto JB, da Silva AR, Campos RS, Sampaio LS, do Nascimento FBSA, da Silva Gaspar B, da Cruz Fonseca SG, Josino MAA, Grangeiro TB, Gaspar DM, de Lucena DF, de Moraes MO, Cavalcanti BC, Nobre Júnior HV. In vitro anti-Candida activity of selective serotonin reuptake inhibitors against fluconazole-resistant strains and their activity against biofilm-forming isolates. Microb Pathog 2017; 107:341-348. [PMID: 28411060 DOI: 10.1016/j.micpath.2017.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/01/2017] [Accepted: 04/01/2017] [Indexed: 12/18/2022]
Abstract
Recent research has shown broad antifungal activity of the classic antidepressants selective serotonin reuptake inhibitors (SSRIs). This fact, combined with the increased cross-resistance frequency of the genre Candida regarding the main treatment today, fluconazole, requires the development of novel therapeutic strategies. In that context, this study aimed to assess the antifungal potential of fluoxetine, sertraline, and paroxetine against fluconazole-resistant Candida spp. planktonic cells, as well as to assess the mechanism of action and the viability of biofilms treated with fluoxetine. After 24 h, the fluconazole-resistant Candida spp. strains showed minimum inhibitory concentration (MIC) in the ranges of 20-160 μg/mL for fluoxetine, 10-20 μg/mL for sertraline, and 10-100.8 μg/mL for paroxetine by the broth microdilution method (M27-A3). According to our data by flow cytometry, each of the SSRIs cause fungal death after damaging the plasma and mitochondrial membrane, which activates apoptotic signaling pathways and leads to dose-dependant cell viability loss. Regarding biofilm-forming isolates, the fluoxetine reduce mature biofilm of all the species tested. Therefore, it is concluded that SSRIs are capable of inhibit the growth in vitro of Candida spp., both in planktonic form, as biofilm, inducing cellular death by apoptosis.
Collapse
Affiliation(s)
- Rose Anny Costa Silva
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Department of Pathology and Legal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cecília Rocha da Silva
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - João Batista de Andrade Neto
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Department of Pathology and Legal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Anderson Ramos da Silva
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Rosana Sousa Campos
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Letícia Serpa Sampaio
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Department of Pathology and Legal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Francisca Bruna Stefany Aires do Nascimento
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Department of Pathology and Legal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Brenda da Silva Gaspar
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Said Gonçalves da Cruz Fonseca
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria Aparecida Alexandre Josino
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Department of Pathology and Legal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Thalles Barbosa Grangeiro
- Department of Biology, Science Center, Molecular Genetics Laboratory, Federal University of Ceará, CE, Brazil
| | - Danielle Macedo Gaspar
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Federal University of Ceará, Fortaleza, CE, Brazil
| | - David Freitas de Lucena
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico de Moraes
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Bruno Coêlho Cavalcanti
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Hélio Vitoriano Nobre Júnior
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Department of Pathology and Legal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
37
|
Li X, Yu C, Huang X, Sun S. Synergistic Effects and Mechanisms of Budesonide in Combination with Fluconazole against Resistant Candida albicans. PLoS One 2016; 11:e0168936. [PMID: 28006028 PMCID: PMC5179115 DOI: 10.1371/journal.pone.0168936] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/08/2016] [Indexed: 11/21/2022] Open
Abstract
Candida albicans is an important opportunistic pathogen, causing both superficial mucosal infections and life-threatening systemic diseases in the clinic. The emergence of drug resistance in Candida albicans has become a noteworthy phenomenon due to the extensive use of antifungal agents and the development of biofilms. This study showed that budesonide potentiates the antifungal effect of fluconazole against fluconazole-resistant Candida albicans strains both in vitro and in vivo. In addition, our results demonstrated, for the first time, that the combination of fluconazole and budesonide can reverse the resistance of Candida albicans by inhibiting the function of drug transporters, reducing the formation of biofilms, promoting apoptosis and inhibiting the activity of extracellular phospholipases. This is the first study implicating the effects and mechanisms of budesonide against Candida albicans alone or in combination with fluconazole, which may ultimately lead to the identification of new potential antifungal targets.
Collapse
Affiliation(s)
- Xiuyun Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People’s Republic of China
| | - Cuixiang Yu
- Respiration Medicine, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, People’s Republic of China
| | - Xin Huang
- Pharmaceutical Department, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, People’s Republic of China
| | - Shujuan Sun
- Pharmaceutical Department, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
38
|
Fu S, Xu L, Li S, Qiu Y, Liu Y, Wu Z, Ye C, Hou Y, Hu CAA. Baicalin suppresses NLRP3 inflammasome and nuclear factor-kappa B (NF-κB) signaling during Haemophilus parasuis infection. Vet Res 2016; 47:80. [PMID: 27502767 PMCID: PMC4977663 DOI: 10.1186/s13567-016-0359-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/18/2016] [Indexed: 01/04/2023] Open
Abstract
Haemophilus parasuis (H. parasuis) is the causative agent of Glässer’s disease, a severe membrane inflammation disorder. Previously we showed that Baicalin (BA) possesses anti-inflammatory effects via the NLRP3 inflammatory pathway in an LPS-challenged piglet model. However, whether BA has anti-inflammatory effects upon H. parasuis infection is still unclear. This study investigated the anti-inflammatory effects and mechanisms of BA on H. parasuis-induced inflammatory responses via the NF-κB and NLRP3 inflammasome pathway in piglet mononuclear phagocytes (PMNP). Our data demonstrate that PMNP, when infected with H. parasuis, induced ROS (reactive oxygen species) production, promoted apoptosis, and initiated transcription expression of IL-6, IL-8, IL-10, PGE2, COX-2 and TNF-α via the NF-κB signaling pathway, and IL-1β and IL-18 via the NLRP3 inflammasome signaling pathway. Moreover, when BA was administrated, we observed a reduction in ROS production, suppression of apoptosis, and inhibition of the activation of NF-κB and NLRP3 inflammasome signaling pathway in PMNP treated with H. parasuis. To our best knowledge, this is the first example that uses piglet primary immune cells for an H. parasuis infection study. Our data strongly suggest that BA can reverse the inflammatory effect initiated by H. parasuis and possesses significant immunosuppression activity, which represents a promising therapeutic agent in the treatment of H. parasuis infection.
Collapse
Affiliation(s)
- Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Lei Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Sali Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China. .,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China.
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Chien-An Andy Hu
- Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| |
Collapse
|