1
|
Zheng L, Yang Y, Han Y, Yu J, Wu Z, Kay M, Xia W, Chen Z, Ma J, Yang X, Yin L, Xu X, Zhang H. Porcine epidemic diarrhea virus E protein induces formation of stress granules and attenuates protein translation through activation of the PERK/eIF2α signaling pathway. Vet Microbiol 2024; 293:110095. [PMID: 38643723 DOI: 10.1016/j.vetmic.2024.110095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) envelope protein (E) has been characterized as an important structural protein that plays critical roles in the interplay with its host to affect the virus life cycle. Stress granules (SGs) are host translationally silent ribonucleoproteins, which are mainly induced by the phosphorylation of eIF2α in the PERK/eIF2α signaling pathway. Our previous study found that PEDV E protein caused endoplasmic reticulum stress response (ERS)-mediated suppression of antiviral proteins' translation. However, the link and the underlying mechanism by which PEDV induces SGs formation and suppresses host translation remain elusive. In this study, our results showed that PEDV E protein significantly elevated the expression of GRP78, CANX, and phosphorylation of PERK and eIF2α, indicating that the PERK/eIF2α branch of ERS was activated. PEDV E protein localized to the ER and aggregated into puncta to reconstruct ER structure, and further induced SGs formation, which has been caused through upregulating the G3BP1 expression level. In addition, a significant global translational stall and endogenous protein translation attenuation were detected in the presence of E protein overexpression, but the global mRNA transcriptional level remained unchanged, suggesting that the shutoff of protein translation was associated with the translation, not with the transcription process. Collectively, this study demonstrates that PERK/eIF2α activation is required for SGs formation and protein translation stall. This study is beneficial for us to better understand the mechanism by which PEDV E suppresses host protein synthesis, and provides us a new insight into the host translation regulation during virus infection.
Collapse
Affiliation(s)
- Liang Zheng
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China; College of Life Sciences, Anqing Normal University, Anqing 246133, PR China
| | - Ying Yang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Yifeng Han
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Jiawen Yu
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Zhijun Wu
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Matthew Kay
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Wenlong Xia
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Zhibao Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Jinzhu Ma
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, PR China
| | - Xiaoge Yang
- College of Life Sciences, Anqing Normal University, Anqing 246133, PR China
| | - Liwei Yin
- College of Life Sciences, Anqing Normal University, Anqing 246133, PR China
| | - Xiaojuan Xu
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Hua Zhang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China; Yancheng Engineering Technology Research Center of Antibody Drugs and Immunodetection, Yancheng Teachers University, Yancheng 224007, PR China; Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng 224007, PR China.
| |
Collapse
|
2
|
Wu Y, Zhang Z, Li Y, Li Y. The Regulation of Integrated Stress Response Signaling Pathway on Viral Infection and Viral Antagonism. Front Microbiol 2022; 12:814635. [PMID: 35222313 PMCID: PMC8874136 DOI: 10.3389/fmicb.2021.814635] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
The integrated stress response (ISR) is an adaptational signaling pathway induced in response to different stimuli, such as accumulation of unfolded and misfolded proteins, hypoxia, amino acid deprivation, viral infection, and ultraviolet light. It has been known that viral infection can activate the ISR, but the role of the ISR during viral infection is still unclear. In some cases, the ISR is a protective mechanism of host cells against viral infection, while viruses may hijack the ISR for facilitating their replication. This review highlighted recent advances on the induction of the ISR upon viral infection and the downstream responses, such as autophagy, apoptosis, formation of stress granules, and innate immunity response. We then discussed the molecular mechanism of the ISR regulating viral replication and how viruses antagonize this cellular stress response resulting from the ISR.
Collapse
Affiliation(s)
- Yongshu Wu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhidong Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yanmin Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- *Correspondence: Yanmin Li,
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Gaete-Argel A, Márquez CL, Barriga GP, Soto-Rifo R, Valiente-Echeverría F. Strategies for Success. Viral Infections and Membraneless Organelles. Front Cell Infect Microbiol 2019; 9:336. [PMID: 31681621 PMCID: PMC6797609 DOI: 10.3389/fcimb.2019.00336] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Regulation of RNA homeostasis or “RNAstasis” is a central step in eukaryotic gene expression. From transcription to decay, cellular messenger RNAs (mRNAs) associate with specific proteins in order to regulate their entire cycle, including mRNA localization, translation and degradation, among others. The best characterized of such RNA-protein complexes, today named membraneless organelles, are Stress Granules (SGs) and Processing Bodies (PBs) which are involved in RNA storage and RNA decay/storage, respectively. Given that SGs and PBs are generally associated with repression of gene expression, viruses have evolved different mechanisms to counteract their assembly or to use them in their favor to successfully replicate within the host environment. In this review we summarize the current knowledge about the viral regulation of SGs and PBs, which could be a potential novel target for the development of broad-spectrum antiviral therapies.
Collapse
Affiliation(s)
- Aracelly Gaete-Argel
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Chantal L Márquez
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gonzalo P Barriga
- Emerging Viruses Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Zou D, Xu J, Duan X, Xu X, Li P, Cheng L, Zheng L, Li X, Zhang Y, Wang X, Wu X, Shen Y, Yao X, Wei J, Yao L, Li L, Song B, Ma J, Liu X, Wu Z, Zhang H, Cao H. Porcine epidemic diarrhea virus ORF3 protein causes endoplasmic reticulum stress to facilitate autophagy. Vet Microbiol 2019; 235:209-219. [PMID: 31383304 PMCID: PMC7117398 DOI: 10.1016/j.vetmic.2019.07.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV), the causative agent of PED, is an enveloped, positive-stranded RNA virus in the genus Alphacoronavirus, family Coronaviridae, order Nidovirales. PEDV non-structural accessory protein ORF3 is an ion channel related to viral infectivity and pathogenicity. Our previous study showed that PEDV ORF3 has expression characteristic of aggregation in cytoplasm, but its biological function remains elusive. Thus in this study, we initiated the construction of various vectors to express ORF3, and found ORF3 localized in the cytoplasm in the aggregation manner. Subsequently, confocal microscopy analysis showed that the aggregated ORF3 localized in endoplasmic reticulum (ER) to trigger ER stress response via up-regulation of GRP78 protein expression and activation of PERK-eIF2α signaling pathway. In addition, our results showed that PEDV ORF3 could induce the autophagy through inducing conversion of LC3-I to LC3-II, but couldn't influence the apoptosis. In contrast, conversion of LC3-I/LC3-II could be significantly inhibited by 4-PBA, an ER stress inhibitor, indicating that ORF3-induced autophagy is dependent on ER stress response. This work not only provides some new findings for the biological function of the PEDV ORF3 protein, but also help us for the further understanding the molecular interaction between PEDV ORF3 protein and cells.
Collapse
Affiliation(s)
- Dehua Zou
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Jiaxin Xu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xulai Duan
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xin Xu
- Branch of Animal Husbandry and Veterinary of HeiLongJiang Academy of Agricultural Sciences, Qiqihar, 161005, China
| | - Pengfei Li
- Department of Nephrology, The Fifth Affiliated Hospital of Harbin Medical University, Daqing 163319, China
| | - Lixin Cheng
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Liang Zheng
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xingzhi Li
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Yating Zhang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xianhe Wang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xuening Wu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Yujiang Shen
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xiangyu Yao
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Jiaqi Wei
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Lili Yao
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Liyang Li
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Baifen Song
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Jinzhu Ma
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xinyang Liu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Zhijun Wu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Hua Zhang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China.
| | - Hongwei Cao
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China.
| |
Collapse
|
5
|
Sam68 Promotes Hepatitis C Virus Replication by Interaction with Stem-Loop 2 of Viral 5' Untranslated Region. J Virol 2019; 93:JVI.00693-19. [PMID: 31068419 DOI: 10.1128/jvi.00693-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
The Src-associated in mitosis 68-kDa (Sam68) protein is a highly conserved nuclear protein and is involved in a series of cellular processes, including transcription and signal transduction. Sam68 is comprised of 443 amino acids and contains an RGG box domain, a KH domain, and a tyrosine-rich domain. Its role in hepatitis C virus (HCV) replication is unknown. Here, we find that Sam68 promotes HCV replication without affecting viral translation. The RNA immunoprecipitation experiments show that the positive strand of HCV RNA interacts with Sam68. HCV infection triggers the translocation of the Sam68 protein from the nucleus to the cytoplasm, where it interacts with the HCV genome. Further study shows that the region of Sam68 spanning amino acids 1 to 157 is the pivotal domain to interact with the stem-loop 2 of the HCV 5' untranslated region (5' UTR) and is responsible for the enhancement of HCV replication. These data suggested that Sam68 may serve as a proviral factor of HCV to facilitate viral replication through interaction with the viral genome.IMPORTANCE Hepatitis C virus (HCV) is a member of the Flaviviridae family, and its infection causes chronic hepatitis, liver cirrhosis, and even hepatocellular carcinoma. No vaccine is available. Many host factors may be implicated in the pathogenesis of HCV-related diseases. This study discloses a new host factor that binds to the HCV 5' UTR and promotes HCV replication. Sam68 may play an important role in HCV-related diseases, and further investigation is highly encouraged to explore its specific actions in HCV pathogenesis.
Collapse
|
6
|
Foot-and-Mouth Disease Virus Leader Protease Cleaves G3BP1 and G3BP2 and Inhibits Stress Granule Formation. J Virol 2019; 93:JVI.00922-18. [PMID: 30404792 DOI: 10.1128/jvi.00922-18] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/26/2018] [Indexed: 12/31/2022] Open
Abstract
Like other viruses, the picornavirus foot-and-mouth disease virus (FMDV; genus Aphthovirus), one of the most notorious pathogens in the global livestock industry, needs to navigate antiviral host responses to establish an infection. There is substantial insight into how FMDV suppresses the type I interferon (IFN) response, but it is largely unknown whether and how FMDV modulates the integrated stress response. Here, we show that the stress response is suppressed during FMDV infection. Using a chimeric recombinant encephalomyocarditis virus (EMCV), in which we functionally replaced the endogenous stress response antagonist by FMDV leader protease (Lpro) or 3Cpro, we demonstrate an essential role for Lpro in suppressing stress granule (SG) formation. Consistently, infection with a recombinant FMDV lacking Lpro resulted in SG formation. Additionally, we show that Lpro cleaves the known SG scaffold proteins G3BP1 and G3BP2 but not TIA-1. We demonstrate that the closely related equine rhinitis A virus (ERAV) Lpro also cleaves G3BP1 and G3BP2 and also suppresses SG formation, indicating that these abilities are conserved among aphthoviruses. Neither FMDV nor ERAV Lpro interfered with phosphorylation of RNA-dependent protein kinase (PKR) or eIF2α, indicating that Lpro does not affect SG formation by inhibiting the PKR-triggered signaling cascade. Taken together, our data suggest that aphthoviruses actively target scaffolding proteins G3BP1 and G3BP2 and antagonize SG formation to modulate the integrated stress response.IMPORTANCE The picornavirus foot-and-mouth disease virus (FMDV) is a notorious animal pathogen that puts a major economic burden on the global livestock industry. Outbreaks have significant consequences for animal health and product safety. Like many other viruses, FMDV must manipulate antiviral host responses to establish infection. Upon infection, viral double-stranded RNA (dsRNA) is detected, which results in the activation of the RNA-dependent protein kinase (PKR)-mediated stress response, leading to a stop in cellular and viral translation and the formation of stress granules (SG), which are thought to have antiviral properties. Here, we show that FMDV can suppress SG formation via its leader protease (Lpro). Simultaneously, we observed that Lpro can cleave the SG scaffolding proteins G3BP1 and G3BP2. Understanding the molecular mechanisms of the antiviral host response evasion strategies of FMDV may help to develop countermeasures to control FMDV infections in the future.
Collapse
|
7
|
Zhang Y, Yao L, Xu X, Han H, Li P, Zou D, Li X, Zheng L, Cheng L, Shen Y, Wang X, Wu X, Xu J, Song B, Xu S, Zhang H, Cao H. Enterovirus 71 inhibits cytoplasmic stress granule formation during the late stage of infection. Virus Res 2018; 255:55-67. [PMID: 30006004 DOI: 10.1016/j.virusres.2018.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
Abstract
Stress granules (SGs) are host translationally silent ribonucleo-proteins formed in cells in response to multiple types of environmental stress, including viral infection. We previously showed that the nuclear protein, 68-kDa Src-associated in mitosis protein (Sam68), is recruited to cytoplasm and form the Sam68-positive SGs at 6 hpi, but the Sam68-positive SGs disassembled beyond 12 hpi, suggesting that the SGs might be inhibited during the late stage of Enterovirus 71 (EV71) infection. However, the mechanism and function of this process remains poorly understood. Thus in this study, we demonstrated that EV71 initially induced SGs formation at the early stage of EV71 infection, and confirmed that 2Apro of EV71 was the key viral component that triggered SG formation. In contrast, SGs were diminished as EV71 infection proceeding. At the same time, arsenite-induced SGs were also blocked at the late stage of EV71 infection. This disruption of SGs was caused by viral protease 3Cpro-mediated G3BP1 cleavage. Furthermore, we demonstrated that over-expression of G3BP1-SGs negatively impacted viral replication at the cytopathic effect (CPE), protein, RNA, and viral titer levels. Our novel finding may not only help us to better understand the mechanism how EV71 interacts with the SG response, but also provide mechanistic linkage between cellular stress responses and innate immune activation during EV71 infection.
Collapse
Affiliation(s)
- Yating Zhang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Lili Yao
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xin Xu
- HeiLongJiang Institute of Veterinary Science, Qiqihar 161005, China
| | - Huansheng Han
- Harbin Specialty Research Institute, HeiLongJiang Academy of Land Reclamation Sciences, Harbin 150038, China
| | - Pengfei Li
- Department of Nephrology, The Fifth Affiliated Hospital of Harbin Medical University, Daqing 163319, China
| | - Dehua Zou
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xingzhi Li
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Liang Zheng
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Lixin Cheng
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Yujiang Shen
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xianhe Wang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xuening Wu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Jiaxin Xu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Baifen Song
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Shuyan Xu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Harbin Specialty Research Institute, HeiLongJiang Academy of Land Reclamation Sciences, Harbin 150038, China.
| | - Hua Zhang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China.
| | - Hongwei Cao
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China.
| |
Collapse
|
8
|
Chen N, Li X, Li P, Pan Z, Ding Y, Zou D, Zheng L, Zhang Y, Li L, Xiao L, Song B, Cui Y, Cao H, Zhang H. Enterovirus 71 inhibits cellular type I interferon signaling by inhibiting host RIG-I ubiquitination. Microb Pathog 2016; 100:84-89. [PMID: 27633794 DOI: 10.1016/j.micpath.2016.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/02/2016] [Indexed: 12/21/2022]
Abstract
Enterovirus 71 (EV71) is a human pathogen that induces hand, foot, and mouth disease (HFMD) and fatal neurological diseases in young children and infants. Pathogenicity of EV71 is likely related to its ability to evade host innate immunity through inhibiting cellular type I interferon signaling. However, it is less well understood the molecular events governing this process. In this study, we found that EV71 infection suppressed the induction of antiviral immunity by inhibiting the expression levels of IFN-β and IFN-stimulated genes (ISGs), such as ISG54 and ISG56, at the late stage of viral infection. At the same time, our results showed that EV71 infection significantly inhibited ubiquitination of RIG-I. In contrast, up-regulation of RIG-I ubiquitination promoted expression of IFN-β and ISGs, suggesting that inhibition of cellular type I interferon signaling was caused by down-regulation of RIG-I ubiquitination during EV71 infection. These results suggest that inhibition of RIG-I-mediated type I IFN responses by EV71 may contribute to the pathogenesis of viral infection.
Collapse
Affiliation(s)
- Ning Chen
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Xingzhi Li
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Pengfei Li
- Department of Nephrology, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163319, China
| | - Ziye Pan
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Yun Ding
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Dehua Zou
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Liang Zheng
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Yating Zhang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Liyang Li
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Lijie Xiao
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Baifen Song
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Yudong Cui
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China.
| | - Hongwei Cao
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China.
| | - Hua Zhang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China.
| |
Collapse
|