1
|
Elahi G, Goli HR, Shafiei M, Nikbin VS, Gholami M. Antimicrobial resistance, virulence gene profiling, and genetic diversity of multidrug-resistant Pseudomonas aeruginosa isolates in Mazandaran, Iran. BMC Microbiol 2024; 24:546. [PMID: 39732629 PMCID: PMC11681713 DOI: 10.1186/s12866-024-03707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a major cause of healthcare-associated infections (HAIs), particularly in immunocompromised patients, leading to high morbidity and mortality rates. This study aimed to investigate the antimicrobial resistance patterns, virulence gene profiles, and genetic diversity among P. aeruginosa isolates from hospitalized patients in Mazandaran, Iran. METHODS From September 2021 to April 2022, 82 non-duplicate P. aeruginosa isolates were collected from diverse clinical sources. Identification was confirmed using API 20 NE (bioMérieux, Marcy l'Etoile, France). Antimicrobial susceptibility testing was conducted using the Kirby-Bauer disk diffusion method according to CLSI guidelines to assess resistance to a range of antibiotics. The virulence profile (exoT, exoY, exoU, toxA, plcH, plcN, algD, aprA, lasB and exoS) of each P. aeruginosa isolate was determined by PCR. The genetic diversity among the strains was evaluated using the random amplification of polymorphic DNA (RAPD) technique. Clustering was based on a Dice similarity coefficient of ≥ 85%. RESULTS Of the 82 total strains, P. aeruginosa exhibited the highest and lowest resistance toward ticarcillin-clavulanate (98.78%) and colistin (0%), respectively. Moreover, 100% of the P. aeruginosa isolates were MDR. The following prevalence of virulence factor genes was observed: aprA, lasB, algD, toxA, plcH, exoY, and exoT in 100% of isolates. The plcN, exoS, and exoU were identified 98.78%, 67.07%, and 45.12%, respectively. The RAPD patterns obtained with primers 272 and 208 had respectively 2-19 and 6-17 bands. According to the Dice similarity coefficient of higher than 85%, 56 and 39 clusters were recognized. CONCLUSION The high rate of multidrug resistance combined with the widespread presence of virulence genes in P. aeruginosa isolates highlights the potential for increased infection severity, morbidity, and mortality in hospitalized patients. The substantial genetic diversity observed among isolates suggests that P. aeruginosa in this region may rapidly evolve, necessitating ongoing surveillance and more targeted antimicrobial strategies. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Ghazaleh Elahi
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Goli
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mehrdad Gholami
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Molecular and Cell Biology Research Centre, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Olana MD, Asrat D, Swedberg G. Antimicrobial resistance profile, biofilm forming capacity and associated factors of multidrug resistance in Pseudomonas aeruginosa among patients admitted at Tikur Anbessa Specialized Hospital and Yekatit 12 Hospital Medical College in Addis Ababa, Ethiopia. BMC Infect Dis 2024; 24:1472. [PMID: 39732630 DOI: 10.1186/s12879-024-10359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is one of the leading causes of nosocomial infections and the most common multidrug-resistant pathogen. This study aimed to determine antimicrobial resistance patterns, biofilm-forming capacity, and associated factors of multidrug resistance in P. aeruginosa isolates at two hospitals in Addis Ababa, Ethiopia. METHODS A cross-sectional study was conducted from August 2022 to August 2023 at Tikur Anbessa Specialized Hospital and Yekatit 12 Hospital Medical College. Culture and identification of P. aeruginosa were done using standard microbiological methods. An antimicrobial susceptibility test was done by Kirby-Bauer disk diffusion according to CLSI recommendations. The microtiter plate assay method was used to determine biofilm-forming capacity. SPSS version 25 was used for data analysis. Bivariate and multivariable logistic regression were used to assess factors associated with multidrug resistance in P. aeruginosa. The Spearman correlation coefficient (rs = 0.266)) was performed to evaluate the relationship between biofilm formation and drug resistance. RESULTS The overall prevalence of P. aeruginosa was 19.6%. High levels of resistance were observed for ciprofloxacin (51.8%), ceftazidime (50.6%), and cefepime (48.2%). The level of multidrug-resistance was 56.6%. The isolates showed better susceptibility to ceftazidime-avibactam (95.2%) and imipenem (79.5%). Overall, 95.2% of P. aeruginosa were biofilm-producing isolates, and 27.7% and 39.8% of isolates were strong and moderate biofilm producers, respectively. A positive correlation and statistically significant relationship was observed between resistance to multiple drugs and the level of biofilm formation (rs = 0.266; p-value = 0.015). Previous history of exposure to ciprofloxacin (OR, 5.1; CI, 1.12-24.7, p-value, 0.032) was identified as an independent associated factor for multidrug resistance in P. aeruginosa. CONCLUSION The present study indicates an association between multidrug resistance in P. aeruginosa and its biofilm formation capabilities. Additionally, over half of the isolates were resistant to multiple drugs, with prior use of ciprofloxacin linked to the development of multidrug-resistance. These findings suggest that antibiotic stewardship programs in hospital settings may be beneficial in addressing resistance.
Collapse
Affiliation(s)
- Matifan Dereje Olana
- Department of Medical Laboratory Sciences, Collage of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia.
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, Uppsala, Sweden.
| | - Daniel Asrat
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Göte Swedberg
- Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Galarde-López M, Velazquez-Meza ME, Godoy-Lozano EE, Carrillo-Quiroz BA, Cornejo-Juárez P, Sassoé-González A, Ponce-de-León A, Saturno-Hernández P, Alpuche-Aranda CM. Presence and Persistence of ESKAPEE Bacteria before and after Hospital Wastewater Treatment. Microorganisms 2024; 12:1231. [PMID: 38930614 PMCID: PMC11206169 DOI: 10.3390/microorganisms12061231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The metagenomic surveillance of antimicrobial resistance in wastewater has been suggested as a methodological tool to characterize the distribution, status, and trends of antibiotic-resistant bacteria. In this study, a cross-sectional collection of samples of hospital-associated raw and treated wastewater were obtained from February to March 2020. Shotgun metagenomic sequencing and bioinformatic analysis were performed to characterize bacterial abundance and antimicrobial resistance gene analysis. The main bacterial phyla found in all the samples were as follows: Proteobacteria, Bacteroides, Firmicutes, and Actinobacteria. At the species level, ESKAPEE bacteria such as E. coli relative abundance decreased between raw and treated wastewater, but S. aureus, A. baumannii, and P. aeruginosa increased, as did the persistence of K. pneumoniae in both raw and treated wastewater. A total of 172 different ARGs were detected; blaOXA, blaVEB, blaKPC, blaGES, mphE, mef, erm, msrE, AAC(6'), ant(3″), aadS, lnu, PBP-2, dfrA, vanA-G, tet, and sul were found at the highest abundance and persistence. This study demonstrates the ability of ESKAPEE bacteria to survive tertiary treatment processes of hospital wastewater, as well as the persistence of clinically important antimicrobial resistance genes that are spreading in the environment.
Collapse
Affiliation(s)
- Miguel Galarde-López
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Morelos 62100, Mexico; (M.G.-L.); (E.E.G.-L.); (B.A.C.-Q.)
| | - Maria Elena Velazquez-Meza
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Morelos 62100, Mexico; (M.G.-L.); (E.E.G.-L.); (B.A.C.-Q.)
| | - Elizabeth Ernestina Godoy-Lozano
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Morelos 62100, Mexico; (M.G.-L.); (E.E.G.-L.); (B.A.C.-Q.)
| | - Berta Alicia Carrillo-Quiroz
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Morelos 62100, Mexico; (M.G.-L.); (E.E.G.-L.); (B.A.C.-Q.)
| | - Patricia Cornejo-Juárez
- Departamento de Infectología, Instituto Nacional de Cancerología, Tlalpan, Mexico City 14080, Mexico;
| | - Alejandro Sassoé-González
- Unidad de Inteligencia Epidemiológica, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico;
| | - Alfredo Ponce-de-León
- Laboratorio Nacional de Máxima Seguridad para el Estudio de Tuberculosis y Enfermedades Emergentes, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico;
| | - Pedro Saturno-Hernández
- Centro de Investigación en Evaluación de Encuestas, Instituto Nacional de Salud Pública, Morelos 62100, Mexico;
| | - Celia Mercedes Alpuche-Aranda
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Morelos 62100, Mexico; (M.G.-L.); (E.E.G.-L.); (B.A.C.-Q.)
| |
Collapse
|
4
|
Romero-González LE, Montelongo-Martínez LF, González-Valdez A, Quiroz-Morales SE, Cocotl-Yañez M, Franco-Cendejas R, Soberón-Chávez G, Pardo-López L, Bustamante VH. Pseudomonas aeruginosa Isolates from Water Samples of the Gulf of Mexico Show Similar Virulence Properties but Different Antibiotic Susceptibility Profiles than Clinical Isolates. Int J Microbiol 2024; 2024:6959403. [PMID: 38784405 PMCID: PMC11115996 DOI: 10.1155/2024/6959403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen found in a wide variety of environments, including soil, water, and habitats associated with animals, humans, and plants. From a One Health perspective, which recognizes the interconnectedness of human, animal, and environmental health, it is important to study the virulence characteristics and antibiotic susceptibility of environmental bacteria. In this study, we compared the virulence properties and the antibiotic resistance profiles of seven isolates collected from the Gulf of Mexico with those of seven clinical strains of P. aeruginosa. Our results indicate that the marine and clinical isolates tested exhibit similar virulence properties; they expressed different virulence factors and were able to kill Galleria mellonella larvae, an animal model commonly used to analyze the pathogenicity of many bacteria, including P. aeruginosa. In contrast, the clinical strains showed higher antibiotic resistance than the marine isolates. Consistently, the clinical strains exhibited a higher prevalence of class 1 integron, an indicator of anthropogenic impact, compared with the marine isolates. Thus, our results indicate that the P. aeruginosa marine strains analyzed in this study, isolated from the Gulf of Mexico, have similar virulence properties, but lower antibiotic resistance, than those from hospitals.
Collapse
Affiliation(s)
- Luis E. Romero-González
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Luis F. Montelongo-Martínez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Sara E. Quiroz-Morales
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Miguel Cocotl-Yañez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Rafael Franco-Cendejas
- Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra,” Ciudad de México, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Liliana Pardo-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
5
|
Domingues N, Ramos LDP, Pereira LM, do Rosário Estevam Dos Santos PB, Scorzoni L, Pereira TC, Abu Hasna A, Carvalho CAT, de Oliveira LD. Antimicrobial action of four herbal plants over mixed-species biofilms of Candida albicans with four different microorganisms. AUST ENDOD J 2023; 49:262-271. [PMID: 36057926 DOI: 10.1111/aej.12681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
Abstract
This study aimed to evaluate the antimicrobial effect of four herbal plants glycolic extracts over mixed-species biofilm composed of Candida albicans (C. albicans) and another pathogenic bacterium as alternative therapy to be investigated. Four plants extract of Pfaffia paniculata roots; Hamamelis virginiana leaf, Stryphnodendron barbatiman tree bark and Gymnema sylvestre stem and leaves were tested over multi-species biofilm of C. albicans (ATCC 18804) and Streptococcus mutans (ATCC 35688), Staphylococcus aureus (ATCC 6538), Enterococcus faecalis (ATCC 4083) or Pseudomonas aeruginosa (ATCC 15442) for 5 min and 24 h and colony forming units per millilitre was calculated. The data were analysed using Kruskal-Wallis with Dunn's test (p ≤ 0.05). All tested extracts showed antimicrobial action over the mixed-species biofilms after 24 h. Some extracts eliminated totally the biofilms. The glycolic extract of P. paniculata, H. virginiana, S. barbatiman and G. sylvestre are effective over mixed-species biofilms and may be indicated as endodontic irrigant or intracanal medication.
Collapse
Affiliation(s)
- Nádia Domingues
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, Brazil
| | - Lucas de Paula Ramos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, Brazil
| | - Larissa Marques Pereira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, Brazil
| | - Pâmela Beatriz do Rosário Estevam Dos Santos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, Brazil
- Universidade Paulista (UNIP), Health Sciences Institute, São José dos Campos, Brazil
| | - Liliana Scorzoni
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, Brazil
| | - Thaís Cristine Pereira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, Brazil
| | - Amjad Abu Hasna
- Department of Restorative Dentistry, Endodontics Division, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | - Cláudio Antonio Talge Carvalho
- Department of Restorative Dentistry, Endodontics Division, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | - Luciane Dias de Oliveira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, Brazil
| |
Collapse
|
6
|
Kamiya Y, Mishima K, Tanaka T, Sawamura K, Matsushita M, Imagama S. Acute osteomyelitis of the patella due to Pseudomonas aeruginosa in an immunocompetent child: A case report. Medicine (Baltimore) 2023; 102:e33012. [PMID: 36800616 PMCID: PMC9936032 DOI: 10.1097/md.0000000000033012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
RATIONALE Plentiful vascularity and lack of the physis are thought to render the patella less vulnerable to osteomyelitis. Pseudomonas aeruginosa (PA) is an opportunistic pathogen predominantly affecting immunocompromised hosts. Despite the ubiquitous nature of PA, osteomyelitis of the patella caused by PA has been rarely reported in children. PATIENT CONCERNS A 5-year-old boy who had presented with a prolonged history of the left anterior knee pain following minor trauma was diagnosed with prepatellar bacterial cellulitis and bursitis. Afterward, a focal osteolytic lesion emerged at the ventral surface of the patella despite oral and intravenous antibiotic therapy lasting for weeks. We described clinical presentation as well as medical and surgical management of pediatric patellar osteomyelitis secondary to prepatellar septic bursitis. DIAGNOSES Pseudomonas aeruginosa-associated osteomyelitis of the patella. Magnetic resonance imaging of the left knee showed a focal destructive change of the ventral half of the cartilaginous patella and a suprapatellar joint effusion. Bacterial culture from the bursa revealed Pseudomonas aeruginosa. INTERVENTIONS Systemic inflammation, patellar osteochondral destruction, and purulent synovial fluid of the knee were prolonged for 6 weeks despite antibiotics use deemed appropriate and reparative surgical debridement, whereas they were eventually resolved with a 6-week course of intravenous ceftazidime and cessation of continuous intracapsular irrigation. OUTCOMES He was clinically asymptomatic at the latest follow-up but exhibited a minor leg length discrepancy <2 cm associated with overgrowth of the affected femur. LESSONS This is a rare case of Pseudomonas osteomyelitis of the patella in a healthy pediatric patient. Uncommon osteochondral sequelae occurred probably because of a protracted arthritis of the affected knee. We would like to emphasize the ineffectiveness of continuous irrigation without antibiotics for Pseudomonas aeruginosa-associated osteomyelitis.
Collapse
Affiliation(s)
- Yasunari Kamiya
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenichi Mishima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- * Correspondence: Kenichi Mishima, Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan (e-mail: )
| | - Tetsuji Tanaka
- Department of Orthopaedic Surgery, Holy Spirit Hospital, Nagoya, Aichi, Japan
| | - Kenta Sawamura
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masaki Matsushita
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
7
|
Unravelling the Distinctive Virulence Traits and Clonal Relationship among the Pseudomonas aeruginosa Isolates from Diabetic Patients. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections with P. aeruginosa are three times more common in people with diabetes than in non-diabetic individuals. Investigations disclosing the distinguishing traits of P. aeruginosa strains to cause respiratory and wound infection in diabetics is limited. Wound swab and sputum from infected diabetic patients were used for the isolation of P. aeruginosa. The confirmed isolates were evaluated for their virulence factor production, antibiotic susceptibility, and clonal relationship. The study confirmed the increased virulence of sputum isolates characterized by their multidrug resistant nature, strong biofilm formation at 72h [(p<0.05) =0.003)] and 96h [(p<0.05) =0.002)] and elaboration of proteolytic enzymes (40.0%). Albeit the fact that wound isolates were less virulent than the sputum isolates, there was an increased siderophore production (77.0%). Nearly 90.0% of the isolates including sputum and wound were resistant to colistin. Random Amplified Polymorphic DNA analysis showed no distinct lineages of wound and sputum isolates. The study disclosed the higher prevalence of virulent P. aeruginosa in causing infection in the diabetics. No distinct lineages of the wound and sputum isolates indicated their ability to adapt to different host environments. To the best of our knowledge, this is the first study to show the difference in virulence traits among the P. aeruginosa strains isolated from sputum and wound of diabetic patients. Our study distinctly reveals the significance of periodic examination of antibiotic resistance and virulence factors of P. aeruginosa in order to recognize the possible co-regulatory mechanism involved in their expression.
Collapse
|
8
|
Presence of quorum sensing system, virulence genes, biofilm formation and relationship among them and class 1 integron in carbapenem-resistant clinical Pseudomonas aeruginosa isolates. Arch Microbiol 2022; 204:464. [PMID: 35802194 DOI: 10.1007/s00203-022-03061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/16/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Carbapenems are the most effective agents for treating clinical P. aeruginosa (PsA) infections. During an infection, a quorum-sensing (QS) system and its regulating virulence genes have a great role. The aim of the study was to detect the presence of a las and rhl QS system and related virulence genes, biofilm formation and a class 1 (Cls1) integron. A total of 52 carbapenem-resistant PsA (CRPsA) isolates obtained from Kastamonu, Turkey was analyzed. For the isolation and identification of CRPsA isolates, a conventional culture method, an automated VITEK-2 compact system, and oprL gene-based molecular technique were applied. The two QS system genes were detected in 51 (98.1%), and co-existed of four two QS system genes (lasI/R and rhIl/R genes) were determined in 41 (78.8%) of the isolates. algD, lasB, toxA and aprA genes were detected in between 46.1 and 88.5%, and co-existence of four two QS system genes with four virulence genes were detected in 40.4% of the isolates. Biofilm formation using microtiter plate assay and slime production using Congo Red Agar and Cls1 integron were determined in 84.6%, 67.3% and 51.9% of the isolates, respectively. According to statistical analyses results, there was a significant positive correlation (p < .10) between the las and the rhl systems and a strongly and positive correlation (p < .01 or p < .05) between the rhl system-three virulence genes and slime production-and among some virulence genes. In conclusion, the CRPsA isolates tested in the study are highly virulent and QS systems have a significant role in pathogenesis.
Collapse
|
9
|
Li Z, Li A, Hoyt JR, Dai W, Leng H, Li Y, Li W, Liu S, Jin L, Sun K, Feng J. Activity of bacteria isolated from bats against Pseudogymnoascus destructans in China. Microb Biotechnol 2022; 15:469-481. [PMID: 33559264 PMCID: PMC8867990 DOI: 10.1111/1751-7915.13765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/20/2021] [Indexed: 11/28/2022] Open
Abstract
White-nose syndrome, a disease that is caused by the psychrophilic fungus Pseudogymnoascus destructans, has threatened several North America bat species with extinction. Recent studies have shown that East Asian bats are infected with P. destructans but show greatly reduced infections. While several factors have been found to contribute to these reduced infections, the role of specific microbes in limiting P. destructans growth remains unexplored. We isolated three bacterial strains with the ability to inhibit P. destructans, namely, Pseudomonas yamanorum GZD14026, Pseudomonas brenneri XRD11711 and Pseudomonas fragi GZD14479, from bats in China. Pseudomonas yamanorum, with the highest inhibition score, was selected to extract antifungal active substance. Combining mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy analyses, we identified the active compound inhibiting P. destructans as phenazine-1-carboxylic acid (PCA), and the minimal inhibitory concentration (MIC) was 50.12 μg ml-1 . Whole genome sequencing also revealed the existence of PCA biosynthesis gene clusters. Gas chromatography-mass spectrometry (GC-MS) analysis identified volatile organic compounds. The results indicated that 10 ppm octanoic acid, 100 ppm 3-tert-butyl-4-hydroxyanisole (isoprenol) and 100 ppm 3-methyl-3-buten-1-ol (BHA) inhibited the growth of P. destructans. These results support that bacteria may play a role in limiting the growth of P. destructans on bats.
Collapse
Affiliation(s)
- Zhongle Li
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchun130018China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
| | - Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
- Key Laboratory of Vegetation EcologyMinistry of EducationChangchun130024China
| | - Joseph R. Hoyt
- Department of Biological SciencesVirginia Polytechnic InstituteBlacksburgVA24060USA
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
| | - Yanfei Li
- College of Chinese Medicine MaterialsJilin Agricultural UniversityChangchun130118China
| | - Wei Li
- College of Chinese Medicine MaterialsJilin Agricultural UniversityChangchun130118China
| | - Sen Liu
- Institute of Resources and EnvironmentHenan Polytechnic UniversityJiaozuo454000China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
- Key Laboratory of Vegetation EcologyMinistry of EducationChangchun130024China
| | - Jiang Feng
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchun130018China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
| |
Collapse
|
10
|
Gajdács M, Baráth Z, Kárpáti K, Szabó D, Usai D, Zanetti S, Donadu MG. No Correlation between Biofilm Formation, Virulence Factors, and Antibiotic Resistance in Pseudomonas aeruginosa: Results from a Laboratory-Based In Vitro Study. Antibiotics (Basel) 2021; 10:1134. [PMID: 34572716 PMCID: PMC8471826 DOI: 10.3390/antibiotics10091134] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) possesses a plethora of virulence determinants, including the production of biofilm, pigments, exotoxins, proteases, flagella, and secretion systems. The aim of our present study was to establish the relationship between biofilm-forming capacity, the expression of some important virulence factors, and the multidrug-resistant (MDR) phenotype in P. aeruginosa. A total of three hundred and two (n = 302) isolates were included in this study. Antimicrobial susceptibility testing and phenotypic detection of resistance determinants were carried out; based on these results, isolates were grouped into distinct resistotypes and multiple antibiotic resistance (MAR) indices were calculated. The capacity of isolates to produce biofilm was assessed using a crystal violet microtiter-plate based method. Motility (swimming, swarming, and twitching) and pigment-production (pyoverdine and pyocyanin) were also measured. Pearson correlation coefficients (r) were calculated to determine for antimicrobial resistance, biofilm-formation, and expression of other virulence factors. Resistance rates were the highest for ceftazidime (56.95%; n = 172), levofloxacin (54.97%; n = 166), and ciprofloxacin (54.64%; n = 159), while lowest for colistin (1.66%; n = 5); 44.04% (n = 133) of isolates were classified as MDR. 19.87% (n = 60), 20.86% (n = 63) and 59.27% (n = 179) were classified as weak, moderate, and strong biofilm producers, respectively. With the exception of pyocyanin production (0.371 ± 0.193 vs. non-MDR: 0.319 ± 0.191; p = 0.018), MDR and non-MDR isolates did not show significant differences in expression of virulence factors. Additionally, no relevant correlations were seen between the rate of biofilm formation, pigment production, or motility. Data on interplay between the presence and mechanisms of drug resistance with those of biofilm formation and virulence is crucial to address chronic bacterial infections and to provide strategies for their management.
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 63, 6720 Szeged, Hungary
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62–64, 6720 Szeged, Hungary;
| | - Krisztina Kárpáti
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62–64, 6720 Szeged, Hungary;
| | - Dóra Szabó
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
| | - Donatella Usai
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.U.); (S.Z.); (M.G.D.)
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.U.); (S.Z.); (M.G.D.)
| | - Matthew Gavino Donadu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.U.); (S.Z.); (M.G.D.)
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
11
|
Antipseudomonal β-Lactams Resistance in Iran. Int J Microbiol 2020; 2020:8818315. [PMID: 33488724 PMCID: PMC7803146 DOI: 10.1155/2020/8818315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
Over the last years, the mortality rate of Pseudomonas aeruginosa, which is one of the major reasons for severe infections, has been significantly increasing. This bacterium is highly resistant to many antibiotics, especially carbapenems, thanks to its complicated mechanism by which it can acquire exogenous genes. The purpose of this research is to have a review of empirical studies surveying the P. aeruginosa resistance to beta-lactams in Iran in order to investigate the most reliable methods by which the incidence of P. aeruginosa infections can be decreased and controlled. We performed a systematic review of all articles published from 2008 until 2018. Studies which did not address P. aeruginosa resistance to beta-lactams were excluded from the analysis. Studies with less than 10 cases were also excluded. Studies with more than ten cases, which did not have repetitive information, were taken into account for the final selection; 133 out of 893 articles were chosen. The resistance rate of P. aeruginosa among the articles was as follows: more than 72% of studies revealed >50% level of resistance to cefepime, followed by aztreonam (53.2%), ceftazidime (61%), piperacillin/tazobactam (54.5%), meropenem (48.3%), and imipenem (42.4%). The selection of empiric antipseudomonal antibiotics is absolutely uncertain and hazardous, and the risk of clinical failure may be more among cephalosporins and piperacillin-tazobactam as well as aztreonam. The results of this study illustrate that the methods enabling clinics to identify the bacterium resistance pattern and its genetic basis and to have the opportunity of empiric therapies through access to updated local data of antimicrobial susceptibility pattern are the most effective methods. However, the widespread usage of these approaches undoubtedly needs reliable molecular and nucleic acid-based devices, which are both affordable and available.
Collapse
|
12
|
Alaali Z, Bin Thani AS. Patterns of antimicrobial resistance observed in the Middle East: Environmental and health care retrospectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140089. [PMID: 32559543 DOI: 10.1016/j.scitotenv.2020.140089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/07/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Antimicrobial resistance is one of the biggest worldwide challenging problems that associates with high morbidity and mortality rates. The resistance of bacteria to various antibiotic classes results in difficulties in the treatment of infectious diseases caused by those bacteria. This paper highlights and provides a critical overview of observational and experimental studies investigating the presence of antibiotic resistant bacteria in different environments in Middle East countries and the mechanisms by which bacteria acquire and spread resistance. The data of this research considered the published papers within the last ten years (2010-2020) and was carried out using PubMed. A total of 66 articles were selected in this review. This review covered studies done on antibiotic resistant bacteria found in a wide range of environments including foods, animals, groundwater, aquatic environments as well as industrial and hospital wastewater. They acquire and achieve their resistance through several mechanisms such as antibiotic resistant genes, efflux pumps and enzymatic reactions. However, the dissemination and spread of antibiotic resistant bacteria is affected by several factors like anthropogenic, domestic, inappropriate use of antibiotics and the expulsion of wastewater containing antibiotic residues to the environments. Therefore, it is important to increase the awareness regarding these activities and their effect on the environment and eventually on health.
Collapse
Affiliation(s)
- Zahraa Alaali
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Sakhir 976, Bahrain.
| | - Ali Salman Bin Thani
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Sakhir 976, Bahrain
| |
Collapse
|
13
|
Antibiotic Resistance of Legionella pneumophila in Clinical and Water Isolates-A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165809. [PMID: 32796666 PMCID: PMC7459901 DOI: 10.3390/ijerph17165809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022]
Abstract
The current systematic review investigates the antibiotic susceptibility pattern of Legionella pneumophila isolates from the 1980s to the present day, deriving data from clinical and/or water samples from studies carried out all over the world. Eighty-nine papers meeting the inclusion criteria, i.e., “Legionella pneumophila” and “resistance to antibiotics”, were evaluated according to pre-defined validity criteria. Sixty articles referred to clinical isolates, and 18 articles reported water-related L. pneumophila isolates, while 11 articles included both clinical and water isolates. Several methods have been proposed as suitable for the determination of MICs, such as the E-test, broth and agar dilution, and disk diffusion methods, in vivo and in vitro, using various media. The E-test method proposed by the European Society of Clinical Microbiology and Infectious Diseases (EUCAST) seems to be the second most frequently used method overall, but it is the preferred method in the most recent publications (2000–2019) for the interpretation criteria. Erythromycin has been proved to be the preference for resistance testing over the years. However, in the last 19 years, the antibiotics ciprofloxacin (CIP), erythromycin (ERM), levofloxacin (LEV) and azithromycin (AZM) were the ones that saw an increase in their use. A decrease in the sensitivity to antibiotics was identified in approximately half of the reviewed articles.
Collapse
|
14
|
Karballaei Mirzahosseini H, Hadadi-Fishani M, Morshedi K, Khaledi A. Meta-Analysis of Biofilm Formation, Antibiotic Resistance Pattern, and Biofilm-Related Genes in Pseudomonas aeruginosa Isolated from Clinical Samples. Microb Drug Resist 2020; 26:815-824. [PMID: 31976811 DOI: 10.1089/mdr.2019.0274] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Resistant microorganisms such as Pseudomonas aeruginosa grow by developing biofilms in hospitals. We aimed to investigate the biofilm formation and the frequencies of biofilm-related genes and their associations with antibiotic resistance pattern in P. aeruginosa isolated from Iranians' clinical samples. This review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We conducted a systematic literature search in scientific databases using medical subject heading terms, including "Pseudomonas aeruginosa," "biofilm formation," "biofilm-related genes," "antibiotic resistance," and "prevalence," to obtain related articles published from 1st January, 2000, to 30th March, 2019. The studies reporting the prevalence of biofilm formation, the frequencies of biofilm-related genes, and the antibiotic resistance pattern in P. aeruginosa retrieved from Iranian patients were included. Meta-analysis was performed using the Comprehensive Meta-Analysis software. The pooled rate of biofilm formation was calculated as 86.5% (95% confidence interval [CI]: 79-91.6). The combined frequencies of strong, moderate, and weak biofilms were 51% (95% CI: 37.4-64.4), 29.2% (95% CI: 20.9-39.1), and 25.4% (95% CI: 11.5-47.2), respectively. The pooled prevalence of laslR, algD, algU, ppyR, and pelF genes were 93.6% (95% CI: 88.1-96.6), 91.4% (95% CI: 80.8-96.4), 89.3% (95% CI: 85.2-92.3), 98.7% (95% CI: 96.5-99.6), and 93% (95% CI: 82.7-97.3), respectively. The highest combined antibiotic resistance rates of P. aeruginosa isolates were against piperacillin/tazobactam (90%). This study showed that biofilm formation was higher in multidrug-resistant (MDR) P. aeruginosa than non-MDRs. A significant correlation was observed between biofilm formation and antibiotic resistance in 50% of studies included in this review.
Collapse
Affiliation(s)
| | - Mehdi Hadadi-Fishani
- Department of Medical Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, I.R. Iran
| | - Korosh Morshedi
- Faculty of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Azad Khaledi
- Infectious Diseases Research Center, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran.,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
15
|
Insights into Antagonistic Interactions of Multidrug Resistant Bacteria in Mangrove Sediments from the South Indian State of Kerala. Microorganisms 2019; 7:microorganisms7120678. [PMID: 31835720 PMCID: PMC6956087 DOI: 10.3390/microorganisms7120678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/28/2023] Open
Abstract
Antibiotic resistance is a global issue which is magnified by interspecies horizontal gene transfer. Understanding antibiotic resistance in bacteria in a natural setting is crucial to check whether they are multidrug resistant (MDR) and possibly avoid outbreaks. In this study, we have isolated several antibiotic-resistant bacteria (ARB) (n = 128) from the mangroves in Kerala, India. ARBs were distributed based on antibiotics (p = 1.6 × 10-5). The 16S rRNA gene characterization revealed dominance by Bacillaceae (45%), Planococcaceae (22.5%), and Enterobacteriaceae (17.5%). A high proportion of the isolates were MDR (75%) with maximum resistance to methicillin (70%). Four isolates affiliated to plant-growth promoters, probiotics, food, and human pathogens were resistant to all antibiotics indicating the seriousness and prevalence of MDR. A significant correlation (R = 0.66; p = 2.5 × 10-6) was observed between MDR and biofilm formation. Antagonist activity was observed in 62.5% isolates. Gram-positive isolates were more susceptible to antagonism (75.86%) than gram-negative (36.36%) isolates. Antagonism interactions against gram-negative isolates were lower (9.42%) when compared to gram-positive isolates (89.85%). Such strong antagonist activity can be harnessed for inspection of novel antimicrobial mechanisms and drugs. Our study shows that MDR with strong biofilm formation is prevalent in natural habitat and if acquired by deadly pathogens may create havoc in public health.
Collapse
|
16
|
Ghazalibina M, Morshedi K, Farahani RK, Babadi M, Khaledi A. Study of virulence genes and related with biofilm formation in Pseudomonas aeruginosa isolated from clinical samples of Iranian patients; A systematic review. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Miryala SK, Anbarasu A, Ramaiah S. Systems biology studies in Pseudomonas aeruginosa PA01 to understand their role in biofilm formation and multidrug efflux pumps. Microb Pathog 2019; 136:103668. [DOI: 10.1016/j.micpath.2019.103668] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/24/2019] [Accepted: 08/12/2019] [Indexed: 11/29/2022]
|
18
|
Dandachi I, Chaddad A, Hanna J, Matta J, Daoud Z. Understanding the Epidemiology of Multi-Drug Resistant Gram-Negative Bacilli in the Middle East Using a One Health Approach. Front Microbiol 2019; 10:1941. [PMID: 31507558 PMCID: PMC6716069 DOI: 10.3389/fmicb.2019.01941] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
In the last decade, extended-spectrum cephalosporin and carbapenem resistant Gram-negative bacilli (GNB) have been extensively reported in the literature as being disseminated in humans but also in animals and the environment. These resistant organisms often cause treatment challenges due to their wide spectrum of antibiotic resistance. With the emergence of colistin resistance in animals and its subsequent detection in humans, the situation has worsened. Several studies reported the transmission of resistant organisms from animals to humans. Studies from the middle east highlight the spread of resistant organisms in hospitals and to a lesser extent in livestock and the environment. In view of the recent socio-economical conflicts that these countries are facing in addition to the constant population mobilization; we attempt in this review to highlight the gaps of the prevalence of resistance, antibiotic consumption reports, infection control measures and other risk factors contributing in particular to the spread of resistance in these countries. In hospitals, carbapenemases producers appear to be dominant. In contrast, extended spectrum beta lactamases (ESBL) and colistin resistance are becoming a serious problem in animals. This is mainly due to the continuous use of colistin in veterinary medicine even though it is now abandoned in the human sphere. In the environment, despite the small number of reports, ESBL and carbapenemases producers were both detected. This highlights the importance of the latter as a bridge between humans and animals in the transmission chain. In this review, we note that in the majority of the Middle Eastern area, little is known about the level of antibiotic consumption especially in the community and animal farms. Furthermore, some countries are currently facing issues with immigrants, poverty and poor living conditions which has been imposed by the civil war crisis. This all greatly facilitates the dissemination of resistance in all environments. In the one health concept, this work re-emphasizes the need to have global intervention measures to avoid dissemination of antibiotic resistance in humans, animals and the environment in Middle Eastern countries.
Collapse
Affiliation(s)
- Iman Dandachi
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Amer Chaddad
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Jason Hanna
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Jessika Matta
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Ziad Daoud
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
- Division of Clinical Microbiology, Saint George Hospital University Medical Center, Beirut, Lebanon
| |
Collapse
|
19
|
Gawish S, Abbass A, Abaza A. Occurrence and biofilm forming ability of Pseudomonas aeruginosa in the water output of dental unit waterlines in a dental center in Alexandria, Egypt. Germs 2019; 9:71-80. [PMID: 31341834 DOI: 10.18683/germs.2019.1160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 11/08/2022]
Abstract
Introduction Dental unit waterlines (DUWLs) are notorious for being contaminated with different bacterial species including the opportunistic pathogen Pseudomonas aeruginosa which poses a risk to patients and professionals. This work aimed at studying the occurrence and biofilm-forming ability (BFA) of P. aeruginosa in the output of DUWLs in a dental center in Egypt. Methods Water samples were collected from the outlets of the high-speed hand piece, the air/water syringe and the cup filler waterlines. Bacteriological analysis included heterotrophic plate count (HPC), isolation and identification of P. aeruginosa and determination of the antimicrobial susceptibility and the BFA of the isolates by tissue culture plate (TCP) method and tube method (TM). Results The average concentration of HPC bacteria in the output of the 3 DUWLs was 2.9×104 CFU/μL where 88.3% of the samples exceeded the Egyptian standards for drinking water (<50 CFU L). P. aeruginosa was isolated from nine cup filler samples (which had a water source different from the other waterlines). The isolates were sensitive to all tested antimicrobials. Of these nine isolates, 6, 5 and 4 were positive for BFA by TCP, modified TCP and TM, respectively. Conclusions More stringent measures are required to ensure safer dental water; as the majority of studied samples exceeded the required HPC bacterial limit and P. aeruginosa isolates were detected. P. aeruginosa isolates from DUWLs may not be as resistant to antibiotics as what is reported in the literature about clinical isolates. Some P. aeruginosa isolates can colonize DUWLs despite their inability to form biofilms in experimental testing.
Collapse
Affiliation(s)
- Sheref Gawish
- MSc Microbiology, Microbiology Department, High Institute of Public Health, Alexandria University, 165 El Horreya Avenue, Alexandria, Egypt
| | - Aleya Abbass
- PhD, Professor of Microbiology, Microbiology Department, High Institute of Public Health, Alexandria University, 165 El Horreya Avenue, Alexandria, Egypt
| | - Amani Abaza
- PhD, Professor of Microbiology, Microbiology Department, High Institute of Public Health, Alexandria University, 165 El Horreya Avenue, Alexandria, Egypt
| |
Collapse
|
20
|
Majumdar M, Biswas SC, Choudhury R, Upadhyay P, Adhikary A, Roy DN, Misra TK. Synthesis of Gold Nanoparticles UsingCitrus macropteraFruit Extract: Anti‐Biofilm and Anticancer Activity. ChemistrySelect 2019. [DOI: 10.1002/slct.201804021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Moumita Majumdar
- Department of ChemistryNational Institute of Technology Agartala, Agartala Tripura 799046 India
| | - Suresh Chandra Biswas
- Department of ChemistryNational Institute of Technology Agartala, Agartala Tripura 799046 India
| | - Rupasree Choudhury
- Department of ChemistryNational Institute of Technology Agartala, Agartala Tripura 799046 India
| | - Priyanka Upadhyay
- Centre for Research in Nanoscience and NanotechnologyCalcutta University Kolkata 700098, WB India
| | - Arghya Adhikary
- Centre for Research in Nanoscience and NanotechnologyCalcutta University Kolkata 700098, WB India
| | - Dijendra Nath Roy
- Department of BioengineeringNational Institute of Technology Agartala Tripura 799046 India
| | - Tarun Kumar Misra
- Department of ChemistryNational Institute of Technology Agartala, Agartala Tripura 799046 India
| |
Collapse
|
21
|
Biochemical and Hematological Study with the Appreciation of some Immunological Parameters in Thalassemia Patients at Kerbala Province. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Methanolic Extract of Plectranthus tenuiflorus Attenuates Quorum Sensing Mediated Virulence and Biofilm Formation in Pseudomonas aeruginosa PAO1. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
23
|
Osimani A, Milanović V, Cardinali F, Garofalo C, Clementi F, Pasquini M, Riolo P, Ruschioni S, Isidoro N, Loreto N, Franciosi E, Tuohy K, Petruzzelli A, Foglini M, Gabucci C, Tonucci F, Aquilanti L. The bacterial biota of laboratory-reared edible mealworms (Tenebrio molitor L.): From feed to frass. Int J Food Microbiol 2018. [PMID: 29525619 DOI: 10.1016/j.ijfoodmicro.2018.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tenebrio molitor represents one of the most popular species used for the large-scale conversion of plant biomass into protein and is characterized by high nutritional value. In the present laboratory study, the bacterial biota characterizing a pilot production chain of fresh T. molitor larvae was investigated. To this end, different batches of fresh mealworm larvae, their feeding substrate (wheatmeal) and frass were analyzed by viable microbial counts, PCR-DGGE and Illumina sequencing. Moreover, the occurrence of Coxiella burnetii, Pseudomonas aeruginosa and Shiga toxin-producing E. coli (STEC) was assessed through qualitative real-time PCR assays. Microbial viable counts highlighted low microbial contamination of the wheatmeal, whereas larvae and frass were characterized by high loads of Enterobacteriaceae, lactic acid bacteria, and several species of mesophilic aerobes. Spore-forming bacteria were detected to a lesser extent in all the samples. The combined molecular approach used to profile the microbiota confirmed the low microbial contamination of wheatmeal and allowed the detection of Enterobacter spp., Erwinia spp., Enterococcus spp. and Lactococcus spp. as dominant genera in both larvae and frass. Moreover, Klebsiella spp., Pantoea spp., and Xenorhabdus spp. were found to be in the minority. Entomoplasmatales (including Spiroplasma spp.) constituted a major fraction of the microbiota of one batch of larvae. From the real-time PCR assays, no sample was positive for either C. burnetii or STEC, whereas P. aeruginosa was detected in one sample of frass. Based on the overall results, two sources of microbial contamination were hypothesized, namely feeding with wheatmeal and vertical transmission of microorganisms from mother to offspring. Since mealworms are expected to be eaten as a whole, the overall outcomes collected in this laboratory study discourage the consumption of fresh mealworm larvae. Moreover, microbial loads and the absence of potential pathogens known to be associated with this insect species should be carefully assessed in order to reduce the minimum risk for consumers, by identifying the most opportune processing methods (e.g., boiling, frying, drying, etc.).
Collapse
Affiliation(s)
- Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Marina Pasquini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Paola Riolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Sara Ruschioni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Nunzio Isidoro
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Nino Loreto
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Elena Franciosi
- Food Quality and Nutrition Department (DQAN), Research and Innovation Center, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Kieran Tuohy
- Food Quality and Nutrition Department (DQAN), Research and Innovation Center, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Annalisa Petruzzelli
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Martina Foglini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Claudia Gabucci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Franco Tonucci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|