1
|
Al-Kabe SH, Niamah AK. Current Trends and Technological Advancements in the Use of Oxalate-Degrading Bacteria as Starters in Fermented Foods-A Review. Life (Basel) 2024; 14:1338. [PMID: 39459637 PMCID: PMC11509417 DOI: 10.3390/life14101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Nephrolithiasis is a medical condition characterized by the existence or development of calculi, commonly referred to as stones within the renal system, and poses significant health challenges. Calcium phosphate and calcium oxalate are the predominant constituents of renal calculi and are introduced into the human body primarily via dietary sources. The presence of oxalates can become particularly problematic when the delicate balance of the normal flora residing within the gastrointestinal tract is disrupted. Within the human gut, species of Oxalobacter, Lactobacillus, and Bifidobacterium coexist in a symbiotic relationship. They play a pivotal role in mitigating the risk of stone formation by modulating certain biochemical pathways and producing specific enzymes that can facilitate the breakdown and degradation of oxalate salts. The probiotic potential exhibited by these bacteria is noteworthy, as it underscores their possible utility in the prevention of nephrolithiasis. Investigating the mechanisms by which these beneficial microorganisms exert their effects could lead to novel therapeutic strategies aimed at reducing the incidence of kidney stones. The implications of utilizing probiotics as a preventive measure against kidney stone formation represent an intriguing frontier in both nephrology and microbiome research, meriting further investigation to unlock their full potential.
Collapse
Affiliation(s)
| | - Alaa Kareem Niamah
- Department of Food Science, College of Agriculture, University of Basrah, Basra City 61004, Iraq;
| |
Collapse
|
2
|
Shamjana U, Vasu DA, Hembrom PS, Nayak K, Grace T. The role of insect gut microbiota in host fitness, detoxification and nutrient supplementation. Antonie Van Leeuwenhoek 2024; 117:71. [PMID: 38668783 DOI: 10.1007/s10482-024-01970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Insects are incredibly diverse, ubiquitous and have successfully flourished out of the dynamic and often unpredictable nature of evolutionary processes. The resident microbiome has accompanied the physical and biological adaptations that enable their continued survival and proliferation in a wide array of environments. The host insect and microbiome's bidirectional relationship exhibits their capability to influence each other's physiology, behavior and characteristics. Insects are reported to rely directly on the microbial community to break down complex food, adapt to nutrient-deficit environments, protect themselves from natural adversaries and control the expression of social behavior. High-throughput metagenomic approaches have enhanced the potential for determining the abundance, composition, diversity and functional activities of microbial fauna associated with insect hosts, enabling in-depth investigation into insect-microbe interactions. We undertook a review of some of the major advances in the field of metagenomics, focusing on insect-microbe interaction, diversity and composition of resident microbiota, the functional capability of endosymbionts and discussions on different symbiotic relationships. The review aims to be a valuable resource on insect gut symbiotic microbiota by providing a comprehensive understanding of how insect gut symbionts systematically perform a range of functions, viz., insecticide degradation, nutritional support and immune fitness. A thorough understanding of manipulating specific gut symbionts may aid in developing advanced insect-associated research to attain health and design strategies for pest management.
Collapse
Affiliation(s)
- U Shamjana
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Deepa Azhchath Vasu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Preety Sweta Hembrom
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Karunakar Nayak
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Tony Grace
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
3
|
Li Y, Liang X, Lyu Y, Wang K, Han L, Wang Y, Sun J, Chi C. Association between the gut microbiota and nonalcoholic fatty liver disease: A two-sample Mendelian randomization study. Dig Liver Dis 2023; 55:1464-1471. [PMID: 37543433 DOI: 10.1016/j.dld.2023.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Increasing studies have shown that there is a significant association between gut microbiota and non-alcoholic fatty liver disease. AIMS To show the potential association between gut microbiota and non-alcoholic fatty liver disease, we performed a two-sample Mendelian randomization analysis. METHODS We analyzed summary statistics from genome-wide association studies of gut microbiota and non-alcoholic fatty liver disease and conducted Mendelian randomization studies to evaluate relationships between these factors. RESULTS Of the 211 gut microbiota taxa examined, the inverse variance weighted method identified Lactobacillaceae (OR = 0.83, 95% CI = 0.72 - 0.95, P = 0.007), Christensenellaceae (OR = 0.74, 95% CI = 0.59 - 0.92, P = 0.007), and Intestinibacter (OR = 0.85, 95% CI = 0.73 - 0.99, P = 0.035) were negatively correlated with non-alcoholic fatty liver disease. And Coriobacteriia (OR = 1.22, 95% CI = 1.01 - 1.42, P = 0.038), Actinomycetales (OR = 1.25, 95% CI = 1.02 - 1.53, P = 0.031), Oxalobacteraceae (OR = 1.10, 95% CI = 1.01 - 1.21, P = 0.036), Ruminococcaceae_UCG005 (OR = 1.18, 95% CI = 1.01 - 1.38, P = 0.033) are positively associated with non-alcoholic fatty liver disease. CONCLUSIONS Our study found that the abundance of certain strains was associated with the progression of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Yu Li
- School of Nursing, Jining Medical University, Jining, 272067, China; School of Nursing, Weifang Medical University, Weifang, 261042, China
| | - Xifeng Liang
- School of Nursing, Jining Medical University, Jining, 272067, China; School of Nursing, Weifang Medical University, Weifang, 261042, China
| | - Yaning Lyu
- School of Nursing, Jining Medical University, Jining, 272067, China; School of Nursing, Weifang Medical University, Weifang, 261042, China
| | - Kexue Wang
- Department of Critical Care Medicine, The People's Hospital of Zhaoyuan City, Yantai 265400, China
| | - Linjing Han
- School of Nursing, Jining Medical University, Jining, 272067, China
| | - Yuhan Wang
- School of Nursing, Jining Medical University, Jining, 272067, China
| | - Jing Sun
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, 4222, Australia; Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Queensland, 4019, Australia.
| | - Cheng Chi
- School of Nursing, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
4
|
Nishizawa Y, Miyata S, Tosaka M, Hirasawa E, Hosoda Y, Horimoto A, Omae K, Ito K, Nagano N, Hoshino J, Ogawa T. Serum oxalate concentration is associated with coronary artery calcification and cardiovascular events in Japanese dialysis patients. Sci Rep 2023; 13:18558. [PMID: 37899362 PMCID: PMC10613608 DOI: 10.1038/s41598-023-45903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023] Open
Abstract
Coronary artery calcification (CAC) is associated with cardiovascular disease (CVD). CAC might contain calcium oxalate, and a high serum oxalate (SOx) concentration is associated with cardiovascular mortality in dialysis patients. We assessed the associations between SOx and CAC or CVD events in Japanese hemodialysis patients. This cross-sectional and retrospective cohort study was done in 2011. Seventy-seven hemodialysis patients' Agatston CAC score was measured, and serum samples were collected. SOx concentrations were measured in 2021 by using frozen samples. Also, new-onset CVD events in 2011-2021 were retrospectively recorded. The association between SOx concentration and CAC score ≥ 1000, and new-onset CVD events were examined. Median SOx concentration and CAC score were 266.9 (229.5-318.5) µmol/L and 912.5 (123.7-2944), respectively. CAC score ≥ 1000 was associated with SOx [adjusted odds ratio (OR) 1.01, 95% confidence interval (CI), 1.00-1.02]. The number of new-onset CVD events was significantly higher in patients with SOx ≥ median value [hazard ratio (HR) 2.71, 95% CI 1.26-6.16]. By Cox proportional hazard models, new-onset CVD events was associated with SOx ≥ median value (adjusted HR 2.10, 95% CI 0.90-4.91). SOx was associated with CAC score ≥ 1000 and new-onset CVD events in Japanese hemodialysis patients.
Collapse
Affiliation(s)
- Yoko Nishizawa
- Department of Medicine, Tokyo Women's Medical University Adachi Medical Center, 4-33-1, Kohoku, Adachi, Tokyo, 123-8558, Japan.
- Teikyo University Graduate School of Public Health, Itabashi, Tokyo, Japan.
| | - Satoshi Miyata
- Teikyo University Graduate School of Public Health, Itabashi, Tokyo, Japan
| | - Mai Tosaka
- Department of Medicine, Tokyo Women's Medical University Adachi Medical Center, 4-33-1, Kohoku, Adachi, Tokyo, 123-8558, Japan
| | - Eriko Hirasawa
- Department of Medicine, Tokyo Women's Medical University Adachi Medical Center, 4-33-1, Kohoku, Adachi, Tokyo, 123-8558, Japan
| | - Yumi Hosoda
- Department of Medicine, Tokyo Women's Medical University Adachi Medical Center, 4-33-1, Kohoku, Adachi, Tokyo, 123-8558, Japan
| | - Ai Horimoto
- Department of Medicine, Tokyo Women's Medical University Adachi Medical Center, 4-33-1, Kohoku, Adachi, Tokyo, 123-8558, Japan
| | - Kiyotsugu Omae
- Department of Medicine, Tokyo Women's Medical University Adachi Medical Center, 4-33-1, Kohoku, Adachi, Tokyo, 123-8558, Japan
| | - Kyoko Ito
- Kidney Disease and Dialysis Center, Hidaka Hospital, Hidaka-kai, Takasaki, Gunma, Japan
| | - Nobuo Nagano
- Kidney Disease and Dialysis Center, Hidaka Hospital, Hidaka-kai, Takasaki, Gunma, Japan
| | - Junichi Hoshino
- Department of Nephrology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Tetsuya Ogawa
- Department of Medicine, Tokyo Women's Medical University Adachi Medical Center, 4-33-1, Kohoku, Adachi, Tokyo, 123-8558, Japan
- Kidney Disease and Dialysis Center, Hidaka Hospital, Hidaka-kai, Takasaki, Gunma, Japan
| |
Collapse
|
5
|
Amini Khiabani S, Asgharzadeh M, Samadi Kafil H. Chronic kidney disease and gut microbiota. Heliyon 2023; 9:e18991. [PMID: 37609403 PMCID: PMC10440536 DOI: 10.1016/j.heliyon.2023.e18991] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Chronic kidney disease (CKD) refers to a range of various pathophysiological processes correlated with abnormal renal function and a progressive loss in GFR. Just as dysbiosis and altered pathology of the gut are accompanied with hypertension, which is a significant CKD risk factor. Gut dysbiosis in CKD patients is associated with an elevated levels of uremic toxins, which in turn increases the CKD progression. According to research results, the gut-kidney axis has a role in the formation of kidney stones, also in IgAN. A number of researchers have categorized the gut microbiota as enterotypes, and others, skeptical of theory of enterotypes, have suggested biomarkers to describe taxa that related to lifestyle, nutrition, and disease status. Metabolome-microbiome studies have been used to investigate the interactions of host-gut microbiota in terms of the involvement of metabolites in these interactions and are yielded promising results. The correlation between gut microbiota and CKD requires further multi-omic researches. Also, with regard to systems biology, studies on the communication network of proteins and transporters such as SLC and ABC, can help us achieve a deeper understanding of the gut-liver-kidney axis communication and can thus provide promising new horizons in the treatment of CKD patients. Probiotic-based treatment is an approach to reduce uremic poisoning, which is accomplished by swallowing microbes those can catalyze URS in the gut. If further comprehensive studies are carried out, we will know about the probiotics impact in slowing the renal failure progression and reducing inflammatory markers.
Collapse
Affiliation(s)
- Siamak Amini Khiabani
- Research center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Yin S, Wang J, Bai Y, Yang Z, Cui J, Wang J. Association between sleep duration and kidney stones in 34 190 American adults: A cross-sectional analysis of NHANES 2007-2018. Sleep Health 2022; 8:671-677. [PMID: 36216750 DOI: 10.1016/j.sleh.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 07/14/2022] [Accepted: 08/12/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To explore the association between sleep duration and kidney stones among United States adults. PARTICIPANTS AND METHODS This cross-sectional study is based on National Health and Nutrition Examination Surveys (NHANES) 2007-2018. Participants aged 20 years and above who self-reported history of kidney stones and sleep duration were included. Weighted proportions, multivariable analysis, and piecewise linear regression were used to evaluate the associations between sleep duration and kidney stones, while adjusting for gender, age, race, poverty income ratio, body mass index, education, marital status, trouble sleeping, smoking, alcohol and some comorbidities. Stratified logistic regression models were used in subgroup analyses and included all potential confounding factors above. RESULTS Of the 34,190 participants, the overall weighted kidney stone prevalence was 9.73%, weighted mean age was 47.67 ± 16.99 years, and mean sleep duration was 7.15 ± 1.44 hours. The fully adjusted multivariable model demonstrated that people with normal (7-9 hours) and long (>9 hours) sleep duration had 17% and 20% lower odds of kidney stone prevalence than people with short sleep duration (<7 hours), respectively. However, fitting a smooth curve showed a nonlinear association between sleep duration and kidney stones. A piecewise linear regression model showed that one hour longer sleep duration was associated with 7% lower kidney stone prevalence for people with short sleep duration and with 22% higher prevalence for participants with long sleep duration. However, for people with normal sleep duration, increasing sleep duration was nonsignificantly associated with lower prevalence of kidney stones. Subgroup analysis showed no significant interaction effects. CONCLUSIONS There is a curvilinear relationship between sleep duration and kidney stones. Normal sleep duration is associated with lower prevalence of kidney stones than short sleep duration. This study provides new insight into potential strategies for the prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Shan Yin
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.; Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiahao Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunjin Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenzhen Yang
- Department of Clinical Laboratory, Nanchong Central Hospital, Nanchong, China
| | - Jianwei Cui
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Kuznetzova AB, Prazdnova EV, Chistyakov VA, Kutsevalova OY, Batiushin MM. Are Probiotics Needed in Nephrology? NEPHROLOGY (SAINT-PETERSBURG) 2022; 26:18-30. [DOI: 10.36485/1561-6274-2022-26-4-18-30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- A. B. Kuznetzova
- Academy of Biology and Biotechnology named after D.I. Ivanovsky, Southern Federal University
| | - E. V. Prazdnova
- Academy of Biology and Biotechnology named after D.I. Ivanovsky, Southern Federal University
| | - V. A. Chistyakov
- Academy of Biology and Biotechnology named after D.I. Ivanovsky, Southern Federal University
| | - O. Yu. Kutsevalova
- Federal State Budgetary Institution "National Medical Research Center of Oncology"
| | | |
Collapse
|
8
|
Gao H, Lin J, Xiong F, Yu Z, Pan S, Huang Y. Urinary Microbial and Metabolomic Profiles in Kidney Stone Disease. Front Cell Infect Microbiol 2022; 12:953392. [PMID: 36132987 PMCID: PMC9484321 DOI: 10.3389/fcimb.2022.953392] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundKidney stones or nephrolithiasis is a chronic metabolic disease characterized by renal colic and hematuria. Currently, a pathogenetic mechanism resulting in kidney stone formation remains elusive. We performed a multi-omic study investigating urinary microbial compositions and metabolic alterations during nephrolithiasis.MethodUrine samples from healthy and individuals with nephrolithiasis were collected for 16S rRNA gene sequencing and liquid chromatography-mass spectroscopy. Microbiome and metabolome profiles were analyzed individually and combined to construct interactome networks by bioinformatic analysis.ResultsDistinct urinary microbiome profiles were determined in nephrolithiasis patients compared with controls. Thirty-nine differentially abundant taxa between controls and nephrolithiasis patients were identified, and Streptococcus showed the most significant enrichment in nephrolithiasis patients. We also observed significantly different microbial compositions between female and male nephrolithiasis patients. The metabolomic analysis identified 112 metabolites that were differentially expressed. Two significantly enriched metabolic pathways, including biosynthesis of unsaturated fatty acids and tryptophan metabolism, were also identified in nephrolithiasis patients. Four potentially diagnostic metabolites were also identified, including trans-3-hydroxycotinine, pyroglutamic acid, O-desmethylnaproxen, and FAHFA (16:0/18:2), and could function as biomarkers for the early diagnosis of nephrolithiasis. We also identified three metabolites that contributed to kidney stone size. Finally, our integrative analysis of the urinary tract microbiome and metabolome identified distinctly different network characteristics between the two groups.ConclusionsOur study has characterized important profiles and correlations among urinary tract microbiomes and metabolomes in nephrolithiasis patients for the first time. These results shed new light on the pathogenesis of nephrolithiasis and could provide early clinical biomarkers for diagnosing the disease.
Collapse
Affiliation(s)
- Hong Gao
- Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, China
| | - Jiaqiong Lin
- Affiliated Dongguan Maternal and Child Healthcare Hospital, Southern Medical University, Dongguan, China
| | - Fu Xiong
- Department of Medical Genetics/Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zuhu Yu
- Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, China
| | - Shilei Pan
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yuxin Huang, ; Shilei Pan,
| | - Yuxin Huang
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yuxin Huang, ; Shilei Pan,
| |
Collapse
|
9
|
Vinegar reduced renal calcium oxalate stones by regulating acetate metabolism in gut microbiota and crystal adhesion in rats. Int Urol Nephrol 2022; 54:2485-2495. [DOI: 10.1007/s11255-022-03259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/30/2022] [Indexed: 10/17/2022]
|
10
|
Stepanova N, Tolstanova G, Akulenko I, Nepomnyashchyi V, Savchenko S, Zholos A, Kolesnyk M. Pilot testing for long-term impact of glycerol-induced acute kidney injury on oxalate homeostasis in rats. UKRAINIAN JOURNAL OF NEPHROLOGY AND DIALYSIS 2022:15-24. [DOI: 10.31450/ukrjnd.2(74).2022.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Abstract. There is a general lack of research on the long-term effects of acute kidney injury (AKI) on oxalate-degrading bacteria (ODB) and their total oxalate-degrading activity (ODA) in fecal microbiota. In the present pilot study, we separately evaluated the changes in the ODB number and their total ODA in fecal microbiota at 3-time points after glycerol-induced AKI. In addition, we assessed the interactions between AKI-induced renal histopathological changes and ODB, total fecal ODA, and plasma and urine oxalate concentrations in rats.
Methods. The male Wistar rats (200-300 g, n = 20) on oxalate-free diet were randomly divided into 2 groups. After 24-h of water deprivation, experimental group 1 (n = 10) received an intramuscular injection of 50% glycerol (10 ml/kg of body weight), and group 2 (n = 10) served as a control. The numbers of ODB (incubated in a highly selective Oxalate Medium and determined using the culture method), total fecal ODA and urinary oxalate (UOx) excretion were measured after injection on days 8, 22 and 70. The method of redoximetric titration with a KMnO4 solution was adopted to evaluate total ODA in fecal microbiota. Renal injury was assessed by histopathology examination, serum creatinine plasma oxalic acid (POx) concentration and daily proteinuria levels after removing the animals from the experiment on day 70.
Results. After glycerol injection on days 8 and 22, no differences were found in the numbers of ODB, their total fecal ODA, and UOx excretion level between the experimental and control groups. However, after AKI initiation on day 70, the numbers of ODB, total fecal ODA, and daily UOx excretion were significantly lower in the experimental group as compared with the control group. In addition, in 10 weeks following AKI, the number of ODB had a direct correlation with UOx excretion and an inverse correlation with POx and serum creatinine concentrations and daily proteinuria. Total ODA in fecal microbiota was directly associated with the percentage of renal interstitial fibrosis and the average glomerular volumes in the experimental rats.
Conclusions: AKI had long-term negative effects on the quantitative and qualitative characteristics of ODB in fecal microbiota in rats. Moreover, the results of our study confirmed an increasing trend in total fecal ODA according to the aggravation of renal interstitial fibrosis and glomerular volume in rats’ kidneys. Further studies are warranted to gain more insight into the mechanism of oxalate homeostasis impairment in AKI.
Collapse
|
11
|
Tian L, Liu Y, Xu X, Jiao P, Hu G, Cui Y, Chen J, Ma Y, Jin X, Wang K, Sun Q. Lactiplantibacillus plantarum J-15 reduced calcium oxalate kidney stones by regulating intestinal microbiota, metabolism, and inflammation in rats. FASEB J 2022; 36:e22340. [PMID: 35524736 DOI: 10.1096/fj.202101972rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 02/05/2023]
Abstract
The prevention role of Lactiplantibacillus plantarum against the formation of kidney stones has been increasingly recognized; its mechanism, however, has mainly been focused on inhibiting the inflammation in the colon in the gastrointestinal (GI) system, and the intestinal metabolites from microflora have not been revealed fully with regarding to the stone formation. In this study, we investigated the effect of L. plantarum J-15 on kidney stone formation in renal calcium oxalate (CaOx) rats induced by ethylene glycol and monitored the changes of intestinal microflora and their metabolites detected by 16S rRNA sequencing and widely targeted analysis, followed by the evaluation of the intestinal barrier function and inflammation levels in the colon, blood and kidney. The results showed that L. plantarum J-15 effectively reduced renal crystallization and urinary oxalic acid. Ten microbial genera, including anti-inflammatory and SCFAs-related Faecalibaculum, were enriched in the J-15 treatment group. There are 136 metabolites from 11 categories significantly different in the J-15 supplementation group compared with CaOx model rats, most of which were enriched in the amino acid metabolic and secondary bile acid pathways. The expression of intestinal tight junction protein Occludin and the concentration of pro-inflammatory cytokines and prostaglandin were decreased in the intestine, which further reduced the translocated lipopolysaccharide and inflammation levels in the blood upon J-15 treatment. Thus, the inflammation and injury in the kidney might be alleviated by downregulating TLR4/NF-κB/COX-2 signaling pathway. It suggested that L. plantarum J-15 might reduce kidney stone formation by restoring intestinal microflora and metabolic disorder, protecting intestinal barrier function, and alleviating inflammation. This finding provides new insights into the therapies for renal stones.
Collapse
Affiliation(s)
- Lei Tian
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofang Xu
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pengrui Jiao
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Gaofei Hu
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yaqian Cui
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jixiang Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Yucheng Ma
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Qun Sun
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Kim HN, Kim JH, Chang Y, Yang D, Joo KJ, Cho YS, Park HJ, Kim HL, Ryu S. Gut microbiota and the prevalence and incidence of renal stones. Sci Rep 2022; 12:3732. [PMID: 35260689 PMCID: PMC8904816 DOI: 10.1038/s41598-022-07796-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/15/2022] [Indexed: 11/09/2022] Open
Abstract
The role of the gut microbiome in the development of renal stone diseases has not been well characterized. This study focused on the taxonomic and functional profiles of gut microbiomes according to the prevalence and incidence of nephrolithiasis. Stool samples from 915 Korean adults were collected at baseline. Participants were followed for a median of 4.0 years. We evaluated the biodiversity of the gut microbiota and taxonomic profiles associated with nephrolithiasis status, using 16S rRNA gene sequencing. Nephrolithiasis status was categorized into three groups: control (no-stone at both baseline and follow-up visits), incidental nephrolithiasis, and prevalent nephrolithiasis. Compared to the control and incidental nephrolithiasis, the prevalent nephrolithiasis showed a reduced evenness in alpha diversity. Nephrolithiasis was associated with a reduced abundance of some key taxa involved in short-chain fatty acid production. Moreover, the abundance of Bifidobacterium, which possess oxalate-degrading ability, was higher in the control. Conversely, there was no significant difference in the bacterial composition between the incidental and prevalent nephrolithiasis. In our study with repeated nephrolithiasis measurements, prevalent renal stones were associated with an altered gut microbiota composition compared to the control. Besides the known oxalate degradation pathway, other functional pathways inferred in this study require further investigation.
Collapse
Affiliation(s)
- Han-Na Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jae Heon Kim
- Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University Medical College, Seoul, Republic of Korea
| | - Yoosoo Chang
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea. .,Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. .,Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Samsung Main Building B2, 250, Taepyung-ro 2ga, Jung-gu, Seoul, 04514, Republic of Korea.
| | - Dongmin Yang
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University Medical College, Seoul, Republic of Korea
| | - Kwan Joong Joo
- Department of Urology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young-Sam Cho
- Department of Urology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Heung Jae Park
- Department of Urology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Seungho Ryu
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.,Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Samsung Main Building B2, 250, Taepyung-ro 2ga, Jung-gu, Seoul, 04514, Republic of Korea
| |
Collapse
|
13
|
Bostanghadiri N, Ziaeefar P, Sameni F, Mahmoudi M, Hashemi A, Darban-Sarokhalil D. The controversial association of gut and urinary microbiota with kidney stone formation. Microb Pathog 2021; 161:105257. [PMID: 34687841 DOI: 10.1016/j.micpath.2021.105257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/24/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022]
Abstract
Nephrolithiasis (kidney stones) is one of the most common chronic kidney diseases that are typically more common among adult men comparing to adult women. The prevalence of this disease is increasing which is influenced by genetic and environmental factors. Kidney stones are mainly composed of calcium oxalate and urinary oxalate which is considered a dangerous factor in their formation. Besides diverse leading reasons in the progression of nephrolithiasis, the gut and urinary microbiome has been recognized as a major player in the development or prevention of it. These microbes produce metabolites that have diverse effects on host biological functions. Therefore, Changes in the composition and structure of the microbiome (dysbiosis) have been implicated in various diseases. The present review focuses on the roles of gut and urinary in kidney stone formation.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- -Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pardis Ziaeefar
- -School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sameni
- -Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Mohammad Mahmoudi
- -Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- -Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Davood Darban-Sarokhalil
- -Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Liu Y, Jin X, Tian L, Jian Z, Ma Y, Cheng L, Cui Y, Li H, Sun Q, Wang K. Lactiplantibacillus plantarum Reduced Renal Calcium Oxalate Stones by Regulating Arginine Metabolism in Gut Microbiota. Front Microbiol 2021; 12:743097. [PMID: 34630369 PMCID: PMC8498331 DOI: 10.3389/fmicb.2021.743097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/02/2021] [Indexed: 02/05/2023] Open
Abstract
Renal calcium oxalate (CaOx) stones are a common kidney disease. There are few methods for reducing the formation of these stones. However, the potential of probiotics for reducing renal stones has received increasing interest. We previously isolated a strain of Lactiplantibacillus plantarum N-1 from traditional cheese in China. This study aimed to investigate the effects of N-1 on renal CaOx crystal deposition. Thirty rats were randomly allocated to three groups: control group (ddH2O by gavage), model group [ddH2O by gavage and 1% ethylene glycol (EG) in drinking water], and Lactiplantibacillus group (N-1 by gavage and 1% EG in drinking water). After 4 weeks, compared with the model group, the group treated with N-1 exhibited significantly reduced renal crystals (P < 0.05). In the ileum and caecum, the relative abundances of Lactobacillus and Eubacterium ventriosum were higher in the control group, and those of Ruminococcaceae UCG 007 and Rikenellaceae RC9 were higher in the N-1-supplemented group. In contrast, the relative abundances of Staphylococcus, Corynebacterium 1, Jeotgalicoccus, Psychrobacter, and Aerococcus were higher in the model group. We also predicted that the arginase level would be higher in the ileal microbiota of the model group than in the N-1-supplemented group with PICRUSt2. The arginase activity was higher, while the level of arginine was lower in the ileal contents of the model group than in the N-1-supplemented group. The arginine level in the blood was also higher in the N-1-supplemented group than in the model group. In vitro studies showed that exposure to arginine could reduce CaOx crystal adhesion to renal epithelial HK-2 cells. Our findings highlighted the important role of N-1 in reducing renal CaOx crystals by regulating arginine metabolism in the gut microbiota. Probiotics containing L. plantarum N-1 may be potential therapies for preventing renal CaOx stones.
Collapse
Affiliation(s)
- Yu Liu
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Jin
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Tian
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhongyu Jian
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yucheng Ma
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Liang Cheng
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yaqian Cui
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hong Li
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qun Sun
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kunjie Wang
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Wei Z, Cui Y, Tian L, Liu Y, Yu Y, Jin X, Li H, Wang K, Sun Q. Probiotic Lactiplantibacillus plantarum N-1 could prevent ethylene glycol-induced kidney stones by regulating gut microbiota and enhancing intestinal barrier function. FASEB J 2021; 35:e21937. [PMID: 34606628 DOI: 10.1096/fj.202100887rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/05/2023]
Abstract
Defective permeability barrier is considered to be an incentive of hyperuricemia, however, the link between them has not been proven. Here, we evaluated the potential preventive effects of Lactiplantibacillus plantarum N-1 (LPN1) on gut microbiota and intestinal barrier function in rats with hyperoxaluria-induced kidney stones. Male rats were supplied with 1% ethylene glycol (EG) dissolved in drinking water for 4 weeks to develop hyperoxaluria, and some of them were administered with LPN1 for 4 weeks before EG treatment as a preventive intervention. We found that EG not only resulted hyperoxaluria and kidney stone formation, but also promoted the intestinal inflammation, elevated intestinal permeability, and gut microbiota disorders. Supplementation of LPN1 inhibited the renal crystalline deposits through reducing urinary oxalic acid and renal osteopontin and CD44 expression and improved EG-induced intestinal inflammation and barrier function by decreasing the serum LPS and TLR4/NF-κB signaling and up-regulating tight junction Claudin-2 in the colon, as well as increasing the production of short-chain fatty acid (SCFAs) and the abundance of beneficial SCFAs-producing bacteria, mainly from the families of Lachnospiraceae and Ruminococcaceae. Probiotic LPN1 could prevent EG-induced hyperoxaluria by regulating gut microbiota and enhancing intestinal barrier function.
Collapse
Affiliation(s)
- Zhitao Wei
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Yaqian Cui
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lei Tian
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Yang Yu
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Qun Sun
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Activity of probiotics from food origin for oxalate degradation. Arch Microbiol 2021; 203:5017-5028. [PMID: 34282467 DOI: 10.1007/s00203-021-02484-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Kidney stones composed of oxalate are a significant health problem. It has been suggested that modification of the intestinal microbiota to reduce the amount of oxalate in the digestive system could be an effective treatment. There have been several studies into the use of lactic acid bacteria for the degradation of intestinal oxalates. We isolated 88 lactic acid bacteria strains from a range of dairy products, and screened for their ability to degrade oxalate. Using the oxalate-degrading Enzymatic Activity Index and the viable cell counts, five strains of Lactobacillus fermentum and two strains of Lactobacillus gastricus were identified as having strong oxalate degradation abilities, and were further investigated. All seven strains were able to tolerate acid (pH 4 and 3), bile salts (0.3%), phenol (0.3%), and to produce exopolysaccharides. They were resistant to a wide range of antibiotics. Among these strains, Lactobacillus fermentum NRAMJ5 and Lactobacillus gastricus NRAMJ2 were, therefore, good candidates as probiotics for managing hyperoxaluria.
Collapse
|
17
|
Wang Z, Zhang Y, Zhang J, Deng Q, Liang H. Recent advances on the mechanisms of kidney stone formation (Review). Int J Mol Med 2021; 48:149. [PMID: 34132361 PMCID: PMC8208620 DOI: 10.3892/ijmm.2021.4982] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Kidney stone disease is one of the oldest diseases known to medicine; however, the mechanisms of stone formation and development remain largely unclear. Over the past decades, a variety of theories and strategies have been developed and utilized in the surgical management of kidney stones, as a result of recent technological advances. Observations from the authors and other research groups suggest that there are five entirely different main mechanisms for kidney stone formation. Urinary supersaturation and crystallization are the driving force for intrarenal crystal precipitation. Randall's plaques are recognized as the origin of calcium oxalate stone formation. Sex hormones may be key players in the development of nephrolithiasis and may thus be potential targets for new drugs to suppress kidney stone formation. The microbiome, including urease-producing bacteria, nanobacteria and intestinal microbiota, is likely to have a profound effect on urological health, both positive and negative, owing to its metabolic output and other contributions. Lastly, the immune response, and particularly macrophage differentiation, play crucial roles in renal calcium oxalate crystal formation. In the present study, the current knowledge for each of these five aspects of kidney stone formation is reviewed. This knowledge may be used to explore novel research opportunities and improve the understanding of the initiation and development of kidney stones for urologists, nephrologists and primary care.
Collapse
Affiliation(s)
- Zhu Wang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Ying Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Jianwen Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Qiong Deng
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Hui Liang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| |
Collapse
|
18
|
Wang Y, Wu J, Lv M, Shao Z, Hungwe M, Wang J, Bai X, Xie J, Wang Y, Geng W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front Bioeng Biotechnol 2021; 9:612285. [PMID: 34055755 PMCID: PMC8149962 DOI: 10.3389/fbioe.2021.612285] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Lactic acid bacteria are a kind of microorganisms that can ferment carbohydrates to produce lactic acid, and are currently widely used in the fermented food industry. In recent years, with the excellent role of lactic acid bacteria in the food industry and probiotic functions, their microbial metabolic characteristics have also attracted more attention. Lactic acid bacteria can decompose macromolecular substances in food, including degradation of indigestible polysaccharides and transformation of undesirable flavor substances. Meanwhile, they can also produce a variety of products including short-chain fatty acids, amines, bacteriocins, vitamins and exopolysaccharides during metabolism. Based on the above-mentioned metabolic characteristics, lactic acid bacteria have shown a variety of expanded applications in the food industry. On the one hand, they are used to improve the flavor of fermented foods, increase the nutrition of foods, reduce harmful substances, increase shelf life, and so on. On the other hand, they can be used as probiotics to promote health in the body. This article reviews and prospects the important metabolites in the expanded application of lactic acid bacteria from the perspective of bioengineering and biotechnology.
Collapse
Affiliation(s)
- Yaqi Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jiangtao Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mengxin Lv
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zhen Shao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Meluleki Hungwe
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jinju Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojia Bai
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yanping Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Weitao Geng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
19
|
CHANGES IN THE INTESTINAL MICROBIOTA IN PATIENTS WITH ULCERATIVE COLITIS AND IRRITABLE BOWEL SYNDROME COMBINED WITH UROLITHIASIS. WORLD OF MEDICINE AND BIOLOGY 2021. [DOI: 10.26724/2079-8334-2021-3-77-77-81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Liu Y, Jin X, Hong HG, Xiang L, Jiang Q, Ma Y, Chen Z, Cheng L, Jian Z, Wei Z, Ai J, Qi S, Sun Q, Li H, Li Y, Wang K. The relationship between gut microbiota and short chain fatty acids in the renal calcium oxalate stones disease. FASEB J 2020; 34:11200-11214. [PMID: 32645241 DOI: 10.1096/fj.202000786r] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/20/2020] [Accepted: 06/16/2020] [Indexed: 02/05/2023]
Abstract
The relationship of gut microbiota and calcium oxalate stone has been limited investigated, especially with no study of gut microbiota and short chain fatty acids (SCFAs) in nephrolithiasis. We provided Sprague Dawley rats of renal calcium oxalate stones with antibiotics and examined the renal crystals deposition. We also performed a case-control study by analyzing 16S rRNA microbial profiling, shotgun metagenomics and SCFAs in 153 fecal samples from non-kidney stone (NS) controls, patients with occasional renal calcium oxalate stones (OS) and patients with recurrent stones (RS). Antibiotics reduced bacterial load in feces and could promote the formation of renal calcium crystals in model rats. In addition, both OS and RS patients exhibited higher fecal microbial diversity than NS controls. Several SCFAs-producing gut bacteria, as well as metabolic pathways associated with SCFAs production, were considerably lower in the gut microbiota among the kidney stone patients compared with the NS controls. Representation of genes involved in oxalate degradation showed no significance difference among groups. However, fecal acetic acid concentration was the highest in RS patients with high level of urinary oxalate, which was positively correlated with genes involvement in oxalate synthesis. Administration of SCFAs reduced renal crystals. These results shed new light on bacteria and SCFAs, which may promote the development of treatment strategy in nephrolithiasis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Jin
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hyokyoung G Hong
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, USA
| | - Liyuan Xiang
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qingyao Jiang
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yucheng Ma
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zude Chen
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Liang Cheng
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongyu Jian
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhitao Wei
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Shiqian Qi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qun Sun
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hong Li
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Li
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Kunjie Wang
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Wernimont SM, Radosevich J, Jackson MI, Ephraim E, Badri DV, MacLeay JM, Jewell DE, Suchodolski JS. The Effects of Nutrition on the Gastrointestinal Microbiome of Cats and Dogs: Impact on Health and Disease. Front Microbiol 2020; 11:1266. [PMID: 32670224 PMCID: PMC7329990 DOI: 10.3389/fmicb.2020.01266] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) microbiome of cats and dogs is increasingly recognized as a metabolically active organ inextricably linked to pet health. Food serves as a substrate for the GI microbiome of cats and dogs and plays a significant role in defining the composition and metabolism of the GI microbiome. The microbiome, in turn, facilitates the host's nutrient digestion and the production of postbiotics, which are bacterially derived compounds that can influence pet health. Consequently, pet owners have a role in shaping the microbiome of cats and dogs through the food they choose to provide. Yet, a clear understanding of the impact these food choices have on the microbiome, and thus on the overall health of the pet, is lacking. Pet foods are formulated to contain the typical nutritional building blocks of carbohydrates, proteins, and fats, but increasingly include microbiome-targeted ingredients, such as prebiotics and probiotics. Each of these categories, as well as their relative proportions in food, can affect the composition and/or function of the microbiome. Accumulating evidence suggests that dietary components may impact not only GI disease, but also allergies, oral health, weight management, diabetes, and kidney disease through changes in the GI microbiome. Until recently, the focus of microbiome research was to characterize alterations in microbiome composition in disease states, while less research effort has been devoted to understanding how changes in nutrition can influence pet health by modifying the microbiome function. This review summarizes the impact of pet food nutritional components on the composition and function of the microbiome and examines evidence for the role of nutrition in impacting host health through the microbiome in a variety of disease states. Understanding how nutrition can modulate GI microbiome composition and function may reveal new avenues for enhancing the health and resilience of cats and dogs.
Collapse
Affiliation(s)
| | | | | | - Eden Ephraim
- Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | | | | | - Dennis E. Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Jan S. Suchodolski
- Texas A&M College of Veterinary Medicine & Biomedical Sciences, College Station, TX, United States
| |
Collapse
|
22
|
Stanford J, Charlton K, Stefoska-Needham A, Ibrahim R, Lambert K. The gut microbiota profile of adults with kidney disease and kidney stones: a systematic review of the literature. BMC Nephrol 2020; 21:215. [PMID: 32503496 PMCID: PMC7275316 DOI: 10.1186/s12882-020-01805-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background There is mounting evidence that individuals with kidney disease and kidney stones have an abnormal gut microbiota composition. No studies to date have summarised the evidence to categorise how the gut microbiota profile of these individuals may differ from controls. Synthesis of this evidence is essential to inform future clinical trials. This systematic review aims to characterise differences of the gut microbial community in adults with kidney disease and kidney stones, as well as to describe the functional capacity of the gut microbiota and reporting of diet as a confounder in these studies. Methods Included studies were those that investigated the gut microbial community in adults with kidney disease or kidney stones and compared this to the profile of controls. Six scientific databases (CINHAL, Medline, PubMed, Scopus, Web of Science and Cochrane Library), as well as selected grey literature sources, were searched. Quality assessment was undertaken independently by three authors. The system of evidence level criteria was employed to quantitatively evaluate the alteration of microbiota by strictly considering the number, methodological quality and consistency of the findings. Additional findings relating to altered functions of the gut microbiota, dietary intakes and dietary methodologies used were qualitatively summarised. Results Twenty-five articles met the eligibility criteria and included data from a total of 892 adults with kidney disease or kidney stones and 1400 controls. Compared to controls, adults with kidney disease had increased abundances of several microbes including Enterobacteriaceae, Streptococcaceae, Streptococcus and decreased abundances of Prevotellaceae, Prevotella, Prevotella 9 and Roseburia among other taxa. Adults with kidney stones also had an altered microbial composition with variations to Bacteroides, Lachnospiraceae NK4A136 group, Ruminiclostridium 5 group, Dorea, Enterobacter, Christensenellaceae and its genus Christensenellaceae R7 group. Differences in the functional potential of the microbial community between controls and adults with kidney disease or kidney stones were also identified. Only three of the 25 articles presented dietary data, and of these studies, only two used a valid dietary assessment method. Conclusions The gut microbiota profile of adults with kidney disease and kidney stones differs from controls. Future study designs should include adequate reporting of important confounders such as dietary intake to assist with interpretation of findings.
Collapse
Affiliation(s)
- Jordan Stanford
- University of Wollongong, School of Medicine, Faculty of Science, Medicine and Health, Wollongong, New South Wales, 2522, Australia. .,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia.
| | - Karen Charlton
- University of Wollongong, School of Medicine, Faculty of Science, Medicine and Health, Wollongong, New South Wales, 2522, Australia.,University of Wollongong, Health Impacts Research Cluster, Wollongong, New South Wales, 2522, Australia
| | - Anita Stefoska-Needham
- University of Wollongong, School of Medicine, Faculty of Science, Medicine and Health, Wollongong, New South Wales, 2522, Australia.,University of Wollongong, Health Impacts Research Cluster, Wollongong, New South Wales, 2522, Australia
| | - Rukayat Ibrahim
- University of Surrey, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, Guildford, GU2 7XH, UK
| | - Kelly Lambert
- University of Wollongong, School of Medicine, Faculty of Science, Medicine and Health, Wollongong, New South Wales, 2522, Australia.,University of Wollongong, Health Impacts Research Cluster, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
23
|
Liu R, Meng C, Zhang Z, Ma H, Lv T, Xie S, Liu Y, Wang C. Comparative metabolism of schaftoside in healthy and calcium oxalate kidney stone rats by UHPLC-Q-TOF-MS/MS method. Anal Biochem 2020; 597:113673. [DOI: 10.1016/j.ab.2020.113673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/18/2022]
|
24
|
Calcium Oxalate Nephrolithiasis and Gut Microbiota: Not just a Gut-Kidney Axis. A Nutritional Perspective. Nutrients 2020; 12:nu12020548. [PMID: 32093202 PMCID: PMC7071363 DOI: 10.3390/nu12020548] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Recent studies have shown that patients with kidney stone disease, and particularly calcium oxalate nephrolithiasis, exhibit dysbiosis in their fecal and urinary microbiota compared with controls. The alterations of microbiota go far beyond the simple presence and representation of Oxalobacter formigenes, a well-known symbiont exhibiting a marked capacity of degrading dietary oxalate and stimulating oxalate secretion by the gut mucosa. Thus, alterations of the intestinal microbiota may be involved in the pathophysiology of calcium kidney stones. However, the role of nutrition in this gut-kidney axis is still unknown, even if nutritional imbalances, such as poor hydration, high salt, and animal protein intake and reduced fruit and vegetable intake, are well-known risk factors for kidney stones. In this narrative review, we provide an overview of the gut-kidney axis in nephrolithiasis from a nutritional perspective, summarizing the evidence supporting the role of nutrition in the modulation of microbiota composition, and their relevance for the modulation of lithogenic risk.
Collapse
|
25
|
Abstract
OBJECTIVES Patients requiring oral and/or enteral nutrition support, delivered via nasogastric, gastric, or intestinal routes, have a relatively high incidence of calcium oxalate (CaOx) kidney stones. Nutrition formulas are frequently made from corn and/or or soy, both of which contain ample oxalate. Excessive oxalate intake contributes to hyperoxaluria (>45 mg urine oxalate/day) and CaOx stones especially when unopposed by concomitant calcium intake, gastrointestinal malabsorption is present, and/or oxalate degrading gut bacteria are limiting or absent. Our objective was to assess the oxalate content of commonly used commercial enteral nutrition formulas. METHODS Enteral nutrition formulas were selected from the formulary at our clinical inpatient institution. Multiple samples of each were assessed for oxalate concentration with ion chromatography. RESULTS Results from 26 formulas revealed highly variable oxalate concentration ranging from 4 to 140 mg oxalate/L of formula. No definitive patterns for different types of formulas (eg, flavored vs unflavored, high protein vs not) were evident. Coefficients of variation for all formulas ranged from 0.68% to 43% (mean ± SD 19% ± 12%; median 18%). CONCLUSIONS Depending on the formula and amount delivered, patients requiring nutrition support could obtain anywhere from 12 to 150 mg oxalate/day or more and are thus at risk for hyperoxaluria and CaOx stones.
Collapse
|
26
|
Karamad D, Khosravi-Darani K, Hosseini H, Tavasoli S. Analytical procedures and methods validation for oxalate content estimation. BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY 2019; 9:4305-4310. [PMID: 33927893 PMCID: PMC8081276 DOI: 10.33263/briac95.305310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increased urinary oxalate is considered a major risk factor in the formation of calcium oxalate kidney stones. Gut microbiota may reduce the risk of stone formation. Anyway, the first step for any research about monitoring of oxalate content (both in vitro and in vivo) is a determination of its concentration, while there are different methods reported in the literature for oxalate content determination. In this research, the main reported methods including titration with two titrators (potassium permanganate, and NaOH) as well as enzymatic method (oxalate assay kit) are presented and compared for the measurement of oxalate in both inoculated and non-inoculated media.
Collapse
Affiliation(s)
- Dina Karamad
- Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4741, Tehran, Iran
| | - Kianoush Khosravi-Darani
- Research Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4741, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4741, Tehran, Iran
| | - Sanaz Tavasoli
- Urology and Nephrology Research Center, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Hugar LA, Kafka I, Fuller TW, Taan H, Averch TD, Semins MJ. Trends in renal calculus composition and 24-hour urine analyses in patients with neurologically derived musculoskeletal deficiencies. Int Braz J Urol 2019; 45:572-580. [PMID: 30676304 PMCID: PMC6786099 DOI: 10.1590/s1677-5538.ibju.2018.0531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/05/2018] [Indexed: 11/28/2022] Open
Abstract
Purpose: To better characterize metabolic stone risk in patients with neurologically derived musculoskeletal deficiencies (NDMD) by determining how patient characteristics relate to renal calculus composition and 24-hour urine parameters. Materials and Methods: We performed a retrospective cohort study of adult patients with neurologically derived musculoskeletal deficiencies presenting to our multidisciplinary Kidney Stone Clinic. Patients with a diagnosis of NDMD, at least one 24-hour urine collection, and one chemical stone analysis were included in the analysis. Calculi were classified as primarily metabolic or elevated pH. We assessed in clinical factors, demographics, and urine metabolites for differences between patients who formed primarily metabolic or elevated pH stones. Results: Over a 16-year period, 100 patients with NDMD and nephrolithiasis were identified and 41 met inclusion criteria. Thirty percent (12 / 41) of patients had purely metabolic calculi. Patients with metabolic calculi were significantly more likely to be obese (median body mass index 30.3kg / m2 versus 25.9kg / m2), void spontaneously (75% vs. 6.9%), and have low urine volumes (100% vs. 69%). Patients who formed elevated pH stones were more likely to have positive preoperative urine cultures with urease splitting organisms (58.6% vs. 16.7%) and be hyperoxaluric and hypocitraturic on 24-hour urine analysis (37mg / day and 265mg / day versus 29mg / day and 523mg / day). Conclusions: Among patients with NDMD, metabolic factors may play a more significant role in renal calculus formation than previously believed. There is still a high incidence of carbonate apatite calculi, which could be attributed to bacteriuria. However, obesity, low urine volumes, hypocitraturia, and hyperoxaluria suggest an underrecognized metabolic contribution to stone formation in this population.
Collapse
Affiliation(s)
- Lee A Hugar
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ilan Kafka
- Shaare Zedek Medical Center, Jerusalem, Israel
| | - Thomas W Fuller
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hassan Taan
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Timothy D Averch
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michelle J Semins
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Martins AA, Santos-Junior VA, Filho ER, Silva HL, Ferreira MVS, Graça JS, Esmerino EA, Lollo PC, Freitas MQ, Sant'Ana AS, Costa LEO, Raices RS, Silva MC, da Cruz AG, Barros ME. Probiotic Prato cheese consumption attenuates development of renal calculi in animal model of urolithiasis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|