1
|
Hasan M, Ahmed S, Imranuzzaman M, Bari R, Roy S, Hasan MM, Mia MM. Designing and development of efficient multi-epitope-based peptide vaccine candidate against emerging avian rotavirus strains: A vaccinomic approach. J Genet Eng Biotechnol 2024; 22:100398. [PMID: 39179326 PMCID: PMC11260576 DOI: 10.1016/j.jgeb.2024.100398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/19/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Enteric avian rotavirus (ARV) is the etiological agent of several health problems that pose a global threat to commercial chickens. Therefore, to avoid these widespread epidemics and high mortality rates, only vaccine and strict biosecurity are required. METHOD The present study employs computational techniques to design a unique multi-epitope-based vaccine candidate that successfully activates immune cells against the ARV by combining adjuvant, linker, and B and T-cell epitopes. Starting, homologous sequences in the various ARV serotypes were revealed in the NCBI BLAST database, and then the two surface proteins (VP4 and VP7) of the ARV were retrieved from the UniprotKB database. The Clustal Omega server was then used to identify the conserved regions among the homologous sequences, and the B and T-cell epitopes were predicted using IEDB servers. Then, superior epitopes-2 MHC-1 epitopes, 2 MHC-2 epitopes, and 3B-cell epitopes-were combined with various adjuvants to create a total of four unique vaccine candidates. Afterward, the designed vaccine candidates underwent computational validation to assess their antigenicity, allergenicity, and stability. The vaccine candidate (V2) that demonstrated non-antigenicity, a high VaxiJen score, and non-allergenicity was ultimately chosen for molecular docking and dynamic simulation. RESULTS Although the V2 and V4 vaccine candidates were highly immunogenic, V2 had a higher solubility rate. The predicted values of the aliphatic index and GRAVY value were 30.4 and 0.417, respectively. In terms of binding energy, V2 outperformed V4. Being successfully docked with TLRs, V2 was praised as the finest. After adaptation, the sequence's 50.73 % GC content outside of the BglII or ApaI restriction sites indicated that it was equivalently safe to clone. The chosen sequence was then inserted into the pET28a(+) vector within the BglII and ApaI restriction sites. This resulted in a final clone that was 4914 base pairs long, with the inserted sequence accounting for 478 bp and the vector accounting for the remainder. CONCLUSIONS The immune-mediated simulation results for the selected vaccine construct showed significant response; thus, the study confirmed that the selected V2 vaccine candidate could enhance the immune response against ARV.
Collapse
Affiliation(s)
- Mahamudul Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh.
| | - Shakil Ahmed
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh.
| | - Md Imranuzzaman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Department of Pharmacology and Toxicology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Rezaul Bari
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Shiplu Roy
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Department of Livestock Production and Management, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md Mahadi Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md Mukthar Mia
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| |
Collapse
|
2
|
Rahman NAA, Fuaad AAHA, Azami NAM, Amin MCIM, Azmi F. Next-generation Dengue Vaccines: Leveraging Peptide-Based Immunogens and Advanced Nanoparticles as Delivery Platforms. J Pharm Sci 2024; 113:2044-2054. [PMID: 38761864 DOI: 10.1016/j.xphs.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Dengue, caused by the dengue virus (DENV), is a prevalent arthropod-borne disease in humans and poses a significant burden on public health. Severe cases of dengue can be life-threatening. Although a licensed dengue vaccine is available, its efficacy varies across different virus serotypes and may exacerbate the disease in some seronegative recipients. Developing a safe and effective vaccine against all DENV serotypes remains challenging and requires continued research. Conventional approaches in dengue vaccine development, using live or attenuated microorganisms or parts of them often contain unnecessary epitopes, risking allergenic or autoimmune reactions. To address these challenges, innovative strategies such as peptide vaccines have been explored. Peptide vaccines offer a safer alternative by inducing specific immune responses with minimal immunogenic fragments. Chemical modification strategies of peptides have revolutionized their design, allowing for the incorporation of multi-epitope presentation, self-adjuvanting features, and self-assembling properties. These modifications enhance the antigenicity of the peptides, leading to improved vaccine efficacy. This review outlines advancements in peptide-based dengue vaccine development, leveraging nanoparticles as antigen-displaying platforms. Additionally, key immunological considerations for enhancing efficacy and safety against DENV infection have been addressed, providing insight into the next-generation of dengue vaccine development leveraging on peptide-nanoparticle technology.
Collapse
Affiliation(s)
- Nur Adilah Abdul Rahman
- Centre for Drug Delivery Technology and Vaccine (CENTRIC), Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Abdullah Al-Hadi Ahmad Fuaad
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Nor Azila Muhammad Azami
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, 56000 Cheras, Federal Territory of Kuala Lumpur, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology and Vaccine (CENTRIC), Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Fazren Azmi
- Centre for Drug Delivery Technology and Vaccine (CENTRIC), Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Hadpech S, Thongboonkerd V. Proteomic investigations of dengue virus infection: key discoveries over the last 10 years. Expert Rev Proteomics 2024; 21:281-295. [PMID: 39049185 DOI: 10.1080/14789450.2024.2383580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Dengue virus (DENV) infection remains one of the most significant infectious diseases in humans. Several efforts have been made to address its molecular mechanisms. Over the last 10 years, proteomics has been widely applied to investigate various aspects of DENV infection. AREAS COVERED In this review, we briefly introduce common proteomics approaches using various mass spectrometric modalities followed by summarizing all the discoveries obtained from proteomic investigations of DENV infection over the last 10 years. These include the data on DENV-vector interactions and host responses to address the DENV biology and disease mechanisms. Moreover, applications of proteomics to disease prevention, diagnosis, vaccine design, development of anti-DENV agents and other new treatment strategies are discussed. EXPERT OPINION Despite efforts on disease prevention, DENV infection is still a significant global healthcare burden that affects the general population. As summarized herein, proteomic technologies with high-throughput capabilities have provided more in-depth details of protein dynamics during DENV infection. More extensive applications of proteomics and other powerful research tools would provide a promise to better cope and prevent this mosquito-borne infectious disease.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
4
|
Sharma AD, Grewal RK, Gorle S, Cuspoca AF, Kaushik V, Rajjak Shaikh A, Cavallo L, Chawla M. T cell epitope based vaccine design while targeting outer capsid proteins of rotavirus strains infecting neonates: an immunoinformatics approach. J Biomol Struct Dyn 2024; 42:4937-4955. [PMID: 37382214 DOI: 10.1080/07391102.2023.2226721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Gastrointestinal diarrhea is majorly caused by the rotavirus (RV) in the children who generally are under the age group of 5 years. WHO estimates that ∼95% of the children contract RV infection, by this age. The disease is highly contagious; notably in many cases, it is proven fatal with high mortality rates especially in the developing countries. In India alone, an estimated 145,000 yearly deaths occurs due to RV related gastrointestinal diarrhea. WHO pre-qualified vaccines that are available for RV are all live attenuated vaccines with modest efficacy range between 40 and 60%. Further, the risk of intussusceptions has been reported in some children on RV vaccination. Thus, in a quest to develop alternative candidate to overcome challenges associated with these oral vaccines, we chose immunoinformatics approach to design a multi-epitope vaccine (MEV) while targeting the outer capsid viral proteinsVP4 and VP7 of the neonatal strains of rotavirus. Interestingly, ten epitopes, that is, six CD8+T-cells and four CD4+T-cell epitopes were identified which were predicted to be antigenic, non-allergic, non-toxic and stable. These epitopes were then linked to adjuvants, linkers, and PADRE sequences to create a multi-epitope vaccine for RV. The in silico designed RV-MEV and human TLR5 complex displayed stable interactions during molecular dynamics simulations. Further, the immune simulation studies of RV-MEV corroborated that the vaccine candidate emerges as a promising immunogen. Future investigations while performing in vitro and in vivo analyses with designed RV-MEV construct are highly desirable to warrant the potential of this vaccine candidate in protective immunity against different strains of RVs infecting neonates.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arijit Das Sharma
- School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Punjab, India
| | - Ravneet Kaur Grewal
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Suresh Gorle
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Andrés Felipe Cuspoca
- Grupo de Investigación Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
- Centro de Atención e Investigación Médica - CAIMED, Chía, Colombia
| | - Vikas Kaushik
- School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Punjab, India
| | - Abdul Rajjak Shaikh
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mohit Chawla
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
5
|
Nayak AK, Chakraborty A, Shukla S, Kumar N, Samanta S. An immunoinformatic approach for developing a multi-epitope subunit vaccine against Monkeypox virus. In Silico Pharmacol 2024; 12:42. [PMID: 38746047 PMCID: PMC11089034 DOI: 10.1007/s40203-024-00220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
An in-silico approach was implemented to develop a multi-epitope subunit vaccine construct against the recent outbreak of the Monkeypox virus. The contribution of 10 different antigenic proteins based on their antigenicity led to the selection of 10 HTL, 9 CTL, and 6 BCL epitopes. The construct was further investigated for its allergenicity, antigenicity, and physio-chemical properties using servers such as AllerTOP and Allergen FP, VaxiJen and ANTIGENPro, and ProtParam respectively. The secondary structure of the vaccine was predicted using the SOPMA server followed by I-TASSER for the 3D structure. After refinement and validation of structural stability of the modelled vaccine, a molecular docking assay was implemented to study the interaction of the known TLR4 receptor with that of the constructed vaccine using the ClusPro server. The docked vaccine and TLR4 receptor were studied using the molecular dynamics (MD) simulation to validate the stability of the complex. After codon optimization the cDNA was constructed and in-silico cloning of the vaccine construct was carried out. The vaccine was also subjected to computational immune assay which predicted a powerful immune response against the Monkeypox virus validating that the developed multi-epitope vaccine construct can be a potent vaccine candidate. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00220-5.
Collapse
Affiliation(s)
- Ashmad Kumar Nayak
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh India
| | - Aritra Chakraborty
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh India
| | - Sakshi Shukla
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh India
| | - Nikhil Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh India
| | - Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh India
| |
Collapse
|
6
|
Wubshet AK, Li GX, Li Q, Dai JF, Ding YZ, Zhou L, Qu M, Wang Y, Ma Z, Werid GM, Abera BH, Kebede AT, Sun Y, Yin X, Liu Y, Jie Z. Stability and integrity of self-assembled bovine parvovirus virus‑like particles (BPV‑VLPs) of VP2 and combination of VP1VP2 assisted by baculovirus-insect cell expression: a potential logistical platform for vaccine deployment. Virol J 2024; 21:87. [PMID: 38641833 PMCID: PMC11027344 DOI: 10.1186/s12985-024-02322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/20/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Bovine parvovirus (BPV) is an autonomous DNA virus with a smaller molecular size and subtle differences in its structural proteins, unlike other animal parvoviruses. More importantly, this virus has the potential to produce visible to silent economic catastrophes in the livestock business, despite receiving very little attention. Parvoviral virus-like particles (VLPs) as vaccines and as logistical platforms for vaccine deployment are well studied. However, no single experimental report on the role of VP1 in the assembly and stability of BPV-VLPs is available. Furthermore, the self-assembly, integrity and stability of the VLPs of recombinant BPV VP2 in comparison to VP1 VP2 Cap proteins using any expression method has not been studied previously. In this study, we experimentally evaluated the self-assembling ability with which BPV virus-like particles (VLPs) could be synthesized from a single structural protein (VP2) and by integrating both VP2 and VP1 amino acid sequences. METHODS In silico and experimental cloning methods were carried out. His-tagged and without-His-tag VP2 and V1VP2-encoding amino acid sequences were cloned and inserted into pFastbacdual, and insect cell-generated recombinant protein was evaluated by SDS‒PAGE and western blot. Period of infectivity and expression level were determined by IFA. The integrity and stability of the BPV VLPs were evaluated by transmission electron microscopy. The secondary structure of the BPV VLPs from both VP2 and V1VP2 was analyzed by circular dichroism. RESULTS Our findings show that VP2 alone was equally expressed and purified into detectable proteins, and the stability at different temperatures and pH values was not appreciably different between the two kinds of VLPs. Furthermore, BPV-VP2 VLPs were praised for their greater purity and integrity than BPV-VP1VP2 VLPs, as indicated by SDS‒PAGE. Therefore, our research demonstrates that the function of VP1 has no bearing on the stability or integrity of BPV-VLPs. CONCLUSIONS In summary, incredible physiochemically stable BPV VP2-derived VLPs have been found to be promising candidates for the development of multivalent vaccines and immunodiagnostic kits against enteric viruses and to carry heterogeneous epitopes for various economically important livestock diseases.
Collapse
Affiliation(s)
- Ashenafi Kiros Wubshet
- State Key Laboratory of Veterinary Etiological Biology, National/OIE Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China
- Department of Veterinary Basics and Diagnostic Sciences, College of Veterinary Science, Mekelle University, 2084, Mekelle, Tigray, Ethiopia
| | - Guo-Xiu Li
- State Key Laboratory of Veterinary Etiological Biology, National/OIE Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China
| | - Qian Li
- State Key Laboratory of Veterinary Etiological Biology, National/OIE Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China
| | - Jun-Fei Dai
- State Key Laboratory of Veterinary Etiological Biology, National/OIE Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China
| | - Yao-Zhong Ding
- State Key Laboratory of Veterinary Etiological Biology, National/OIE Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China
| | - Luoyi Zhou
- State Key Laboratory of Veterinary Etiological Biology, National/OIE Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China
| | - Min Qu
- State Key Laboratory of Veterinary Etiological Biology, National/OIE Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China
| | - Yang Wang
- State Key Laboratory of Veterinary Etiological Biology, National/OIE Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China
| | - Zhongyuan Ma
- State Key Laboratory of Veterinary Etiological Biology, National/OIE Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China
| | - Gebremeskel Mamu Werid
- Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA, 5371, Australia
| | - Birhanu Hadush Abera
- Department of Veterinary Basics and Diagnostic Sciences, College of Veterinary Science, Mekelle University, 2084, Mekelle, Tigray, Ethiopia
| | - Asmelash Tassew Kebede
- State Key Laboratory of Veterinary Etiological Biology, National/OIE Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China
- Department of Animal Science, College of Agriculture and Natural Resources, Raya University, 92, Maychew, Tigray, Ethiopia
| | - Yuefeng Sun
- State Key Laboratory of Veterinary Etiological Biology, National/OIE Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China
| | - Xiangping Yin
- State Key Laboratory of Veterinary Etiological Biology, National/OIE Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, National/OIE Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China.
- College of Animal Science & Technology (CAST), Hebei Normal University of Science & Technology (HNUST), Qinhuangdao, People's Republic of China.
| | - Zhang Jie
- State Key Laboratory of Veterinary Etiological Biology, National/OIE Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China.
- College of Animal Science & Technology (CAST), Hebei Normal University of Science & Technology (HNUST), Qinhuangdao, People's Republic of China.
| |
Collapse
|
7
|
Ganji M, Bakhshi S, Ahmadi K, Shoari A, Moeini S, Ghaemi A. Rational design of B-cell and T-cell multi epitope-based vaccine against Zika virus, an in silico study. J Biomol Struct Dyn 2024; 42:3426-3440. [PMID: 37190978 DOI: 10.1080/07391102.2023.2213339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
The Zika virus (ZKV) is a single-stranded positive-sense, enveloped RNA virus. Zika infection during pregnancy can cause congenital microcephaly, Guillain-Barré syndrome, miscarriage, and other CNS abnormalities. The world needs safe and effective vaccinations to fight against ZIKV infection since vaccination is generally regarded as one of the most effective ways to prevent infectious diseases. In the present work, we used immunoinformatics and docking studies to construct a vaccine containing multi-epitopes using the structural and non-structural proteins of ZKV. The structural models of ZKV proteins (PrE, PrM, NS1, and NS2A) were constructed using Pyre2 and RaptorX servers. The epitopes of B-cell, T-cell (HTL and CTL), and IFN-γ were predicted, and each epitope's immunogenic nature and physiochemical properties were confirmed. As an adjuvant, the CPG-Oligodeoxynucleotide, an agonist of Toll-like receptor 9 (TLR9), is associated to cytotoxic T-lymphocytes (CTL) epitopes via PAPAP linker. To assess the binding affinity and the tendency of the designed vaccine to induce an immune response through TLR9, molecular docking was done. In the next step, molecular dynamics (MD) simulation to 100 nanoseconds (ns) was used to evaluate the stability of the interaction of the designed vaccine with TLR9. The designed vaccine is predicted to be highly antigenic, non-toxic, soluble, and stable with low flexibility in MD simulation. MD studies indicated that the finalized vaccine-TLR9 docked complex was stable during simulation time. The vaccine construct is able to stimulate both humoral and cellular immune responses. We suppose that our constructed model of the vaccine may have the ability to induce the host immune response against ZKV. Further studies, including in vitro and in vivo experimental analyses, are needed to prove the constructed vaccine's efficacy with multi-epitopes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahmoud Ganji
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shohreh Bakhshi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Soheila Moeini
- Department of Surgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Akter R, Tasneem F, Das S, Soma MA, Georgakopoulos-Soares I, Juthi RT, Sazed SA. Approaches of dengue control: vaccine strategies and future aspects. Front Immunol 2024; 15:1362780. [PMID: 38487527 PMCID: PMC10937410 DOI: 10.3389/fimmu.2024.1362780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
Dengue, caused by the dengue virus (DENV), affects millions of people worldwide every year. This virus has two distinct life cycles, one in the human and another in the mosquito, and both cycles are crucial to be controlled. To control the vector of DENV, the mosquito Aedes aegypti, scientists employed many techniques, which were later proved ineffective and harmful in many ways. Consequently, the attention shifted to the development of a vaccine; researchers have targeted the E protein, a surface protein of the virus and the NS1 protein, an extracellular protein. There are several types of vaccines developed so far, such as live attenuated vaccines, recombinant subunit vaccines, inactivated virus vaccines, viral vectored vaccines, DNA vaccines, and mRNA vaccines. Along with these, scientists are exploring new strategies of developing improved version of the vaccine by employing recombinant DNA plasmid against NS1 and also aiming to prevent the infection by blocking the DENV life cycle inside the mosquitoes. Here, we discussed the aspects of research in the field of vaccines until now and identified some prospects for future vaccine developments.
Collapse
Affiliation(s)
- Runa Akter
- Department of Pharmacy, Independent University Bangladesh, Dhaka, Bangladesh
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Faria Tasneem
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Shuvo Das
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | | | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rifat Tasnim Juthi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Saiful Arefeen Sazed
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
9
|
Kumari S, Kessel A, Singhal D, Kaur G, Bern D, Lemay-St-Denis C, Singh J, Jain S. Computational identification of a multi-peptide vaccine candidate in E2 glycoprotein against diverse Hepatitis C virus genotypes. J Biomol Struct Dyn 2023; 41:11044-11061. [PMID: 37194293 DOI: 10.1080/07391102.2023.2212777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/11/2022] [Indexed: 05/18/2023]
Abstract
Hepatitis C Virus (HCV) is estimated to affect nearly 180 million people worldwide, culminating in ∼0.7 million yearly casualties. However, a safe vaccine against HCV is not yet available. This study endeavored to identify a multi-genotypic, multi-epitopic, safe, and globally competent HCV vaccine candidate. We employed a consensus epitope prediction strategy to identify multi-epitopic peptides in all known envelope glycoprotein (E2) sequences, belonging to diverse HCV genotypes. The obtained peptides were screened for toxicity, allergenicity, autoimmunity and antigenicity, resulting in two favorable peptides viz., P2 (VYCFTPSPVVVG) and P3 (YRLWHYPCTV). Evolutionary conservation analysis indicated that P2 and P3 are highly conserved, supporting their use as part of a designed multi-genotypic vaccine. Population coverage analysis revealed that P2 and P3 are likely to be presented by >89% Human Leukocyte Antigen (HLA) molecules from six geographical regions. Indeed, molecular docking predicted the physical binding of P2 and P3 to various representative HLAs. We designed a vaccine construct using these peptides and assessed its binding to toll-like receptor 4 (TLR-4) by molecular docking and simulation. Subsequent analysis by energy-based and machine learning tools predicted high binding affinity and pinpointed the key binding residues (i.e. hotspots) in P2 and P3. Also, a favorable immunogenic profile of the construct was predicted by immune simulations. We encourage the scientific community to validate our vaccine construct in vitro and in vivo.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shweta Kumari
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Amit Kessel
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Divya Singhal
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Gurpreet Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - David Bern
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Claudèle Lemay-St-Denis
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
| | - Jasdeep Singh
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Sahil Jain
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
10
|
Bano N, Kumar A. Immunoinformatics study to explore dengue (DENV-1) proteome to design multi-epitope vaccine construct by using CD4+ epitopes. J Genet Eng Biotechnol 2023; 21:128. [PMID: 37987878 PMCID: PMC10663418 DOI: 10.1186/s43141-023-00592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Immunoinformatics is an emerging interdisciplinary field which integrates immunology, bioinformatics, and computational biology to study the immune system. In this study, we apply immunoinformatics approaches to explore the dengue proteome in order to design a multi-epitope vaccine construct. METHODS We used existing databases and algorithms to predict potential epitopes on dengue proteins and used a bioinformatics approach to identify the most promising epitopes. We then used molecular modelling to develop a multi-epitope construct which could be used as a potential vaccine. The results of this study demonstrate that immunoinformatics is a powerful tool for exploring and designing potential vaccines for infectious diseases like dengue. RESULTS Here, we found four CD4+ epitopes NLKYSVIVTVHTGDQ, ANPIVTDKEKPVNIE, LDPVVYDAKFEKQL, and VGAIALDFKPGTSGS that were used to design vaccine construct. The vaccine construct docked with TLR5. RMSD values suggest that docked complex of TLR5 and vaccine construct have putative stable interaction to induce immunogenic effects on host. CONCLUSIONS Furthermore, our study provides a proof of concept for the use of immunoinformatics approaches in DENV vaccine design. This vaccine can be effective in treating patients infected with DENV virus.
Collapse
Affiliation(s)
- Nishat Bano
- Department of Biotechnology, Faculty of Engineering and Technology Rama University, G.T. Road, Kanpur, 209217, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology Rama University, G.T. Road, Kanpur, 209217, India.
| |
Collapse
|
11
|
Paul B, Alam J, Hossain MMK, Hoque SF, Bappy MNI, Akter H, Ahmed N, Akter M, Ali Zinnah M, Das S, Mia MM, Parvej MS, Sarkar S, Ghosh H, Hasan M, Ashour HM, Rahman MM. Immunoinformatics for Novel Multi-Epitope Vaccine Development in Canine Parvovirus Infections. Biomedicines 2023; 11:2180. [PMID: 37626677 PMCID: PMC10452229 DOI: 10.3390/biomedicines11082180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Canine parvovirus (CPV-2) is one of the most important pathogens of dogs of all ages, causing pandemic infections that are characterized by fatal hemorrhagic enteritis. The CPV-2 vaccine is recommended as a core vaccine for pet animals. Despite the intensive practice of active immunization, CPV-2 remains a global threat. In this study, a multi-epitope vaccine against CPV-2 was designed, targeting the highly conserved capsid protein (VP2) via in silico approaches. Several immunoinformatics methods, such as epitope screening, molecular docking, and simulation were used to design a potential vaccine construct. The partial protein sequences of the VP2 gene of CPV-2 and protein sequences retrieved from the NCBI were screened to predict highly antigenic proteins through antigenicity, trans-membrane-topology screening, an allergenicity assessment, and a toxicity analysis. Homologous VP2 protein sequences typically linked to the disease were identified using NCBI BLAST, in which four conserved regions were preferred. Overall, 10 epitopes, DPIGGKTGI, KEFDTDLKP, GTDPDDVQ, GGTNFGYIG, GTFYFDCKP, NRALGLPP, SGTPTN, LGLPPFLNSL, IGGKTG, and VPPVYPN, were selected from the conserved regions to design the vaccine construct. The molecular docking demonstrated the higher binding affinity of these epitopes with dog leukocyte antigen (DLA) molecules. The selected epitopes were linked with Salmonella enterica flagellin FliC adjuvants, along with the PADRE sequence, by GGS linkers to construct a vaccine candidate with 272 nucleotides. The codon adaptation and in silico cloning showed that the generated vaccine can be expressed by the E. coli strain, K12, and the sequence of the vaccine construct showed no similarities with dog protein. Our results suggest that the vaccine construct might be useful in preventing canine parvoviral enteritis (CPE) in dogs. Further in vitro and in vivo experiments are needed for the validation of the vaccine candidate.
Collapse
Affiliation(s)
- Bashudeb Paul
- Department of Anatomy and Histology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Jahangir Alam
- Animal Biotechnology Division, National Institute of Biotechnology, Dhaka 1349, Bangladesh
| | | | - Syeda Farjana Hoque
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Md. Nazmul Islam Bappy
- Department of Animal and Fish Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Hafsa Akter
- Department of Biochemistry and Chemistry, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Nadim Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Margia Akter
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mohammad Ali Zinnah
- Department of Microbiology and Public Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Shobhan Das
- Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30458, USA
| | - Md. Mukthar Mia
- Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | | | - Sonjoy Sarkar
- Department of Anatomy and Histology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Hiren Ghosh
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Hossam M. Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL 33701, USA
| | - Md. Masudur Rahman
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- ABEx Bio-Research Center, Dhaka 1230, Bangladesh
| |
Collapse
|
12
|
Al-Kubati AAG, Kandeel M, Hussen J, Hemida MG, Al-Mubarak AIA. Immunoinformatic prediction of the pathogenicity of bovine viral diarrhea virus genotypes: implications for viral virulence determinants, designing novel diagnostic assays and vaccines development. Front Vet Sci 2023; 10:1130147. [PMID: 37483297 PMCID: PMC10359904 DOI: 10.3389/fvets.2023.1130147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Bovine viral diarrhea virus (BVDV) significantly impacts the bovine industries, both dairy and beef sectors. BVDV can infect various domestic and wild animals, most notably cattle. The dynamic variations among BVDV serotypes due to the continuous genetic diversity, especially in BVDV1 (BVDV1), reduce the effectiveness of the currently available vaccines and reduce the specificity/sensitivity of the diagnostic assays. The development of novel, safe, and effective vaccines against BVDV requires deep knowledge of the antigenicity and virulence of the virus. Previous studies on the antigenicity and the virulence of BVDV serotypes have been mainly focused on one or a few BVDV proteins. While however, little is known about the orchestration of all BVDV in the context of viral virulence and immunogenicity. The main aim of the current study was to do a comparative computational evaluation of the immunogenicity, and virulence for all the encoded proteins of both BVDV1 and BVDV2 and their sub-genotypes. Methods To achieve this goal, 11,737 protein sequences were retrieved from Virus Pathogen Resource. The analysis involved a total of 4,583 sequences after the removal of short sequences and those with unknown collection time. We used the MP3 tool to map the pathogenic proteins across different BVDV strains. The potential protective and the epitope motifs were predicted using the VaxiJen and EMBOSS antigen tools, respectively. Results and discussion The virulence prediction revealed that the NS4B proteins of both BVDV1 and BVDV2 likely have essential roles in BVDV virulence. Similarly, both the capsid (C) and the NS4-A proteins of BVDV1 and the Npro and P7 proteins of BVDV2 are likely important virulent factors. There was a clear trend of increasing predicted virulence with the progression of time in the case of BVDV1 proteins, but that was not the case for the BVDV2 proteins. Most of the proteins of the two BVDV serotypes possess antigens predicted immunogens except Npro, P7, and NS4B. However, the predicted antigenicity of the BVDV1 was significantly higher than that of BVDV2. Meanwhile, the predicted immunogenicity of the immunodominant-E2 protein has been decreasing over time. Based on our predicted antigenicity and pathogenicity studies of the two BVDV serotypes, the sub-genotypes (1a, 1f, 1k, 2a, and 2b) may represent ideal candidates for the development of future vaccines against BVDV infection in cattle. In summary, we identified some common differences between the two BVDV genotypes (BVDV1 and BVDV2) and their sub-genotypes regarding their protein antigenicity and pathogenicity. The data presented here will increase our understanding of the molecular pathogenesis of BVDV infection in cattle. It will also pave the way for developing some novel diagnostic assays and novel vaccines against BVDV in the near future.
Collapse
Affiliation(s)
- Anwar A. G. Al-Kubati
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary Medicine, Thamar University, Thamar, Yemen
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, New York, NY, United States
| | - Maged Gomaa Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Abdullah I. A. Al-Mubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, New York, NY, United States
| |
Collapse
|
13
|
Joshi A, Akhtar N, Sharma NR, Kaushik V, Borkotoky S. MERS virus spike protein HTL-epitopes selection and multi-epitope vaccine design using computational biology. J Biomol Struct Dyn 2023; 41:12464-12479. [PMID: 36935104 DOI: 10.1080/07391102.2023.2191137] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/03/2023] [Indexed: 03/20/2023]
Abstract
MERS-CoV, a zoonotic virus, poses a serious threat to public health globally. Thus, it is imperative to develop an effective vaccination strategy for protection against MERS-CoV. Immunoinformatics and computational biology tools provide a faster and more cost-effective strategy to design potential vaccine candidates. In this work, the spike proteins from different strains of MERS-CoV were selected to predict HTL-epitopes that show affinity for T-helper MHC-class II HTL allelic determinant (HLA-DRB1:0101). The antigenicity and conservation of these epitopes among the selected spike protein variants in different MERS-CoV strains were analyzed. The analysis identified five epitopes with high antigenicity: QSIFYRLNGVGITQQ, DTIKYYSIIPHSIRS, PEPITSLNTKYVAPQ, INGRLTTLNAFVAQQ and GDMYVYSAGHATGTT. Then, a multi-epitope vaccine candidate was designed using linkers and adjuvant molecules. Finally, the vaccine construct was subjected to molecular docking with TLR5 (Toll-like receptor-5). The proposed vaccine construct had strong binding energy of -32.3 kcal/mol when interacting with TLR5.Molecular dynamics simulation analysis showed that the complex of the vaccine construct and TLR5 is stable. Analysis using in silico immune simulation also showed that the prospective multi-epitope vaccine design had the potential to elicit a response within 70 days, with the immune system producing cytokines and immunoglobulins. Finally, codon adaptation and in silico cloning analysis showed that the candidate vaccine could be expressed in the Escherichia coli K12 strain. Here we also designed support vaccine construct MEV-2 by using B-cell and CD8+ CTL epitopes to generate the complete immunogenic effect. This study opens new avenues for the extension of research on MERS vaccine development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amit Joshi
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
- Department of Biochemistry, Kalinga University, Raipur, India
| | - Nahid Akhtar
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Neeta Raj Sharma
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Kaushik
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Subhomoi Borkotoky
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| |
Collapse
|
14
|
Moin AT, Singh G, Ahmed N, Saiara SA, Timofeev VI, Ahsan Faruqui N, Sharika Ahsan S, Tabassum A, Nebir SS, Andalib KMS, Araf Y, Ullah MA, Sarkar B, Islam NN, Zohora US. Computational designing of a novel subunit vaccine for human cytomegalovirus by employing the immunoinformatics framework. J Biomol Struct Dyn 2023; 41:833-855. [PMID: 36617426 DOI: 10.1080/07391102.2021.2014969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human cytomegalovirus (HCMV) is a widespread virus that can cause serious and irreversible neurological damage in newborns and even death in children who do not have the access to much-needed medications. While some vaccines and drugs are found to be effective against HCMV, their extended use has given rise to dose-limiting toxicities and the development of drug-resistant mutants among patients. Despite half a century's worth of research, the lack of a licensed HCMV vaccine heightens the need to develop newer antiviral therapies and vaccine candidates with improved effectiveness and reduced side effects. In this study, the immunoinformatics approach was utilized to design a potential polyvalent epitope-based vaccine effective against the four virulent strains of HCMV. The vaccine was constructed using seven CD8+ cytotoxic T lymphocytes epitopes, nine CD4+ helper T lymphocyte epitopes, and twelve linear B-cell lymphocyte epitopes that were predicted to be antigenic, non-allergenic, non-toxic, fully conserved, and non-human homologous. Subsequently, molecular docking study, protein-protein interaction analysis, molecular dynamics simulation (including the root mean square fluctuation (RMSF) and root mean square deviation (RMSD)), and immune simulation study rendered promising results assuring the vaccine to be stable, safe, and effective. Finally, in silico cloning was conducted to develop an efficient mass production strategy of the vaccine. However, further in vitro and in vivo research studies on the proposed vaccine are required to confirm its safety and efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India.,Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Nafisa Ahmed
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | | | - Vladimir I Timofeev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation
| | - Nairita Ahsan Faruqui
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | | | - Afrida Tabassum
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| | - Sadman Sakib Nebir
- Department of Microbiology and Immunology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | | | - Yusha Araf
- Community of Biotechnology, Dhaka, Bangladesh.,Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Asad Ullah
- Community of Biotechnology, Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Bishajit Sarkar
- Community of Biotechnology, Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Umme Salma Zohora
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
15
|
Bhardwaj A, Sharma R, Grover A. Immuno-informatics guided designing of a multi-epitope vaccine against Dengue and Zika. J Biomol Struct Dyn 2023; 41:1-15. [PMID: 34796791 DOI: 10.1080/07391102.2021.2002720] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dengue and zika are amongst the most prevalent mosquito-borne diseases caused by closely related members Dengue virus (DENV) and Zika virus (ZIKV), respectively, of the Flaviviridae family. DENV and ZIKV have been reported to co-infect several people, resulting in fatalities across the world. A vaccine that can safeguard against both these pathogens concurrently, can offer several advantages. This study has employed immuno-informatics for devising a multi-epitope, multi-pathogenic vaccine against both these viruses. Since, the two viruses share a common vector source, whose salivary components are reported to aid viral pathogenesis; antigenic salivary proteins from Aedes aegypti were also incorporated into the design of the vaccine along with conserved structural and non-structural viral proteins. Conserved B- and T-cell epitopes were identified for all the selected antigenic proteins. These epitopes were merged and further supplemented with β-defensin as an adjuvant, to yield an immunogenic vaccine construct. In-silico 3D modeling and structural validation of the vaccine construct was conducted, followed by its molecular docking and molecular dynamics simulation studies with human TLR2. Immune simulation study was also performed, and it further provided support that the designed vaccine can mount an effective immune response and hence provide protection against both DENV and ZIKV. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditi Bhardwaj
- School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ritika Sharma
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
| |
Collapse
|
16
|
Immunoinformatics-Aided Design of a Peptide Based Multiepitope Vaccine Targeting Glycoproteins and Membrane Proteins against Monkeypox Virus. Viruses 2022; 14:v14112374. [PMID: 36366472 PMCID: PMC9693848 DOI: 10.3390/v14112374] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 01/31/2023] Open
Abstract
Monkeypox is a self-limiting zoonotic viral disease and causes smallpox-like symptoms. The disease has a case fatality ratio of 3-6% and, recently, a multi-country outbreak of the disease has occurred. The currently available vaccines that have provided immunization against monkeypox are classified as live attenuated vaccinia virus-based vaccines, which pose challenges of safety and efficacy in chronic infections. In this study, we have used an immunoinformatics-aided design of a multi-epitope vaccine (MEV) candidate by targeting monkeypox virus (MPXV) glycoproteins and membrane proteins. From these proteins, seven epitopes (two T-helper cell epitopes, four T-cytotoxic cell epitopes and one linear B cell epitopes) were finally selected and predicted as antigenic, non-allergic, interferon-γ activating and non-toxic. These epitopes were linked to adjuvants to design a non-allergic and antigenic candidate MPXV-MEV. Further, molecular docking and molecular dynamics simulations predicted stable interactions between predicted MEV and human receptor TLR5. Finally, the immune-simulation analysis showed that the candidate MPXV-MEV could elicit a human immune response. The results obtained from these in silico experiments are promising but require further validation through additional in vivo experiments.
Collapse
|
17
|
Salod Z, Mahomed O. Mapping Potential Vaccine Candidates Predicted by VaxiJen for Different Viral Pathogens between 2017-2021-A Scoping Review. Vaccines (Basel) 2022; 10:1785. [PMID: 36366294 PMCID: PMC9695814 DOI: 10.3390/vaccines10111785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Reverse vaccinology (RV) is a promising alternative to traditional vaccinology. RV focuses on in silico methods to identify antigens or potential vaccine candidates (PVCs) from a pathogen's proteome. Researchers use VaxiJen, the most well-known RV tool, to predict PVCs for various pathogens. The purpose of this scoping review is to provide an overview of PVCs predicted by VaxiJen for different viruses between 2017 and 2021 using Arksey and O'Malley's framework and the Preferred Reporting Items for Systematic Reviews extension for Scoping Reviews (PRISMA-ScR) guidelines. We used the term 'vaxijen' to search PubMed, Scopus, Web of Science, EBSCOhost, and ProQuest One Academic. The protocol was registered at the Open Science Framework (OSF). We identified articles on this topic, charted them, and discussed the key findings. The database searches yielded 1033 articles, of which 275 were eligible. Most studies focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), published between 2020 and 2021. Only a few articles (8/275; 2.9%) conducted experimental validations to confirm the predictions as vaccine candidates, with 2.2% (6/275) articles mentioning recombinant protein expression. Researchers commonly targeted parts of the SARS-CoV-2 spike (S) protein, with the frequently predicted epitopes as PVCs being major histocompatibility complex (MHC) class I T cell epitopes WTAGAAAYY, RQIAPGQTG, IAIVMVTIM, and B cell epitope IAPGQTGKIADY, among others. The findings of this review are promising for the development of novel vaccines. We recommend that vaccinologists use these findings as a guide to performing experimental validation for various viruses, with SARS-CoV-2 as a priority, because better vaccines are needed, especially to stay ahead of the emergence of new variants. If successful, these vaccines could provide broader protection than traditional vaccines.
Collapse
Affiliation(s)
- Zakia Salod
- Discipline of Public Health Medicine, University of KwaZulu-Natal, Durban 4051, South Africa
| | | |
Collapse
|
18
|
Design of a multi-epitope vaccine against the pathogenic fungi Candida tropicalis using an in silico approach. J Genet Eng Biotechnol 2022; 20:140. [PMID: 36175808 PMCID: PMC9521867 DOI: 10.1186/s43141-022-00415-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022]
Abstract
Background Candida tropicalis causes tropical invasive fungal infections, with a high mortality. This fungus has been found to be resistant to antifungal classes such as azoles, echinocandins, and polyenes in several studies. As a result, it is vital to identify novel approaches to prevent and treat C. tropicalis infections. In this study, an in silico technique was utilized to deduce and evaluate a powerful multivalent epitope-based vaccine against C. tropicalis, which targets the secreted aspartic protease 2 (SAP2) protein. This protein is implicated in virulence and host invasion. Results By focusing on the Sap2 protein, 11 highly antigenic, non-allergic, non-toxic, and conserved epitopes were identified. These were subsequently paired with RS09 and flagellin adjuvants, as well as a pan HLA DR-binding epitope (PADRE) sequence to create a vaccine candidate that elicited both cell-mediated and humoral immune responses. It was projected that the vaccine design would be soluble, stable, antigenic, and non-allergic. Ramachandran plot analysis was applied to validate the vaccine construct’s 3-dimensional model. The vaccine construct was tested (at 100 ns) using molecular docking and molecular dynamics simulations, which demonstrated that it can stably connect with MHC-I and Toll-like receptor molecules. Based on in silico studies, we have shown that the vaccine construct can be expressed in E. coli. We surmise that the vaccine design is unrelated to any human proteins, indicating that it is safe to use. Conclusions The vaccine design looks to be an effective option for preventing C. tropicalis infections, based on the outcomes of the studies. A fungal vaccine can be proposed as prophylactic medicine and could provide initial protection as sometimes diagnosis of infection could be challenging. However, more in vitro and in vivo research is needed to prove the efficacy and safety of the proposed vaccine design.
Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00415-3.
Collapse
|
19
|
An Immunoinformatic Study on Exploration of Membrane Proteins to Develop Epitope Based Vaccine Against Streptococcus pneumoniae. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
20
|
Naveed M, Sheraz M, Amin A, Waseem M, Aziz T, Khan AA, Ghani M, Shahzad M, Alruways MW, Dablool AS, Elazzazy AM, Almalki AA, Alamri AS, Alhomrani M. Designing a Novel Peptide-Based Multi-Epitope Vaccine to Evoke a Robust Immune Response against Pathogenic Multidrug-Resistant Providencia heimbachae. Vaccines (Basel) 2022; 10:vaccines10081300. [PMID: 36016188 PMCID: PMC9413917 DOI: 10.3390/vaccines10081300] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Providencia heimbachae, a Gram -ve, rod-shaped, and opportunistic bacteria isolated from the urine, feces, and skin of humans engage in a wide range of infectious diseases such as urinary tract infection (UTI), gastroenteritis, and bacteremia. This bacterium belongs to the Enterobacteriaceae family and can resist antibiotics known as multidrug-resistant (MDR), and as such can be life-threatening to humans. After retrieving the whole proteomic sequence of P. heimbachae ATCC 35613, a total of 6 non-homologous and pathogenic proteins were separated. These shortlisted proteins were further analyzed for epitope prediction and found to be highly non-toxic, non-allergenic, and antigenic. From these sequences, T-cell and B-cell (major histocompatibility complex class 1 and 2) epitopes were extracted that provided vaccine constructs, which were then analyzed for population coverage to find its reliability worldwide. The population coverage for MHC-1 and MHC-2 was 98.29% and 81.81%, respectively. Structural prediction was confirmed by validation through physiochemical molecular and immunological characteristics to design a stable and effective vaccine that could give positive results when injected into the body of the organism. Due to this approach, computational vaccines could be an effective alternative against pathogenic microbe since they cover a large population with positive results. In the end, the given findings may help the experimental vaccinologists to develop a very potent and effective peptide-based vaccine.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
- Correspondence: (M.N.); (T.A.)
| | - Mohsin Sheraz
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Aatif Amin
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Muhammad Waseem
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Tariq Aziz
- Pak-Austria Fachhochschule, Institute of Applied Sciences and Technology, Mang, Haripur 22621, Pakistan
- Correspondence: (M.N.); (T.A.)
| | - Ayaz Ali Khan
- Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara 18800, Pakistan
| | - Mustajab Ghani
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - Muhammad Shahzad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - Mashael W. Alruways
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 15273, Saudi Arabia
| | - Anas S. Dablool
- Department of Public Health, Health Sciences College Al-Leith, Umm Al-Qura University, Makkah al-Mukarammah 24382, Saudi Arabia
| | - Ahmed M. Elazzazy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza 12622, Egypt
| | - Abdulraheem Ali Almalki
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
21
|
Kaushik V, Jain P, Akhtar N, Joshi A, Gupta LR, Grewal RK, Oliva R, Shaikh AR, Cavallo L, Chawla M. Immunoinformatics-Aided Design and In Vivo Validation of a Peptide-Based Multiepitope Vaccine Targeting Canine Circovirus. ACS Pharmacol Transl Sci 2022. [DOI: 10.1021/acsptsci.2c00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Vikas Kaushik
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Pankaj Jain
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Nahid Akhtar
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Amit Joshi
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Lovi Raj Gupta
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Ravneet Kaur Grewal
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad 121002, Haryana, India
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143, Naples, Italy
| | - Abdul Rajjak Shaikh
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad 121002, Haryana, India
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mohit Chawla
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
22
|
Kaushik V, G SK, Gupta LR, Kalra U, Shaikh AR, Cavallo L, Chawla M. Immunoinformatics Aided Design and In-Vivo Validation of a Cross-Reactive Peptide Based Multi-Epitope Vaccine Targeting Multiple Serotypes of Dengue Virus. Front Immunol 2022; 13:865180. [PMID: 35799781 PMCID: PMC9254734 DOI: 10.3389/fimmu.2022.865180] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/05/2022] [Indexed: 02/03/2023] Open
Abstract
Dengue virus (DENV) is an arboviral disease affecting more than 400 million people annually. Only a single vaccine formulation is available commercially and many others are still under clinical trials. Despite all the efforts in vaccine designing, the improvement in vaccine formulation against DENV is very much needed. In this study, we used a roboust immunoinformatics approach, targeting all the four serotypes of DENV to design a multi-epitope vaccine. A total of 13501 MHC II binding CD4+ epitope peptides were predicted from polyprotein sequences of four dengue virus serotypes. Among them, ten conserved epitope peptides that were interferon-inducing were selected and found to be conserved among all the four dengue serotypes. The vaccine was formulated using antigenic, non-toxic and conserved multi epitopes discovered in the in-silico study. Further, the molecular docking and molecular dynamics predicted stable interactions between predicted vaccine and immune receptor, TLR-5. Finally, one of the mapped epitope peptides was synthesized for the validation of antigenicity and antibody production ability where the in-vivo tests on rabbit model was conducted. Our in-vivo analysis clearly indicate that the imunogen designed in this study could stimulate the production of antibodies which further suggest that the vaccine designed possesses good immunogenicity.
Collapse
Affiliation(s)
- Vikas Kaushik
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Punjab, India
| | - Sunil Krishnan G
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Punjab, India
| | - Lovi Raj Gupta
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Punjab, India
| | - Utkarsh Kalra
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, India
- Department of Data Science, Innopolis University, Innopolis, Russia
| | - Abdul Rajjak Shaikh
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, India
- *Correspondence: Abdul Rajjak Shaikh, ; Luigi Cavallo, ; Mohit Chawla, ;
| | - Luigi Cavallo
- Kaust Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- *Correspondence: Abdul Rajjak Shaikh, ; Luigi Cavallo, ; Mohit Chawla, ;
| | - Mohit Chawla
- Kaust Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- *Correspondence: Abdul Rajjak Shaikh, ; Luigi Cavallo, ; Mohit Chawla, ;
| |
Collapse
|
23
|
Jabin D, Kumar A. T-cell epitope-based vaccine prediction against Aspergillus fumigatus: a harmful causative agent of aspergillosis. J Genet Eng Biotechnol 2022; 20:72. [PMID: 35575941 PMCID: PMC9110580 DOI: 10.1186/s43141-022-00364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Among the most common causes of invasive aspergillosis and acute bronchopulmonary aspergillosis is Aspergillus fumigatus. Transmission with A. fumigatus produces aggressive aspergillosis in allogeneic haematopoietic stem cell transplant recipients, HIV patients, and cancer patients. Asthmatics and cystic fibrosis patients are allergic to A. fumigatus. MHC class-II binding epitopes can initiate immunogenic responses in patients. In this study, we deployed immunoinformatic study to reveal epitopes from fungal proteins. RESULTS In modern research, we found multiple epitopes ITLKLLHRYSYKLAG, KLVLRAFPNHFRGDS, RYSYKLAGVNQVDVV, GKSFELNQAARAVTQ, and LHRYSYKLAGVNQVD from crucial proteins of A. fumigatus 5,8-linoleate diol synthase (ACO55067.2) and ChainB-chitinase A1 (2XVN_B). RYSYKLAGVNQVDVV, GKSFELNQAARAVTQ, and LHRYSYKLAGVNQVD epitopes interact with HLA-DRB01_0101, while ITLKLLHRYSYKLAG and KLVLRAFPNHFRGDS epitopes interact with HLA-DRB01_1501. Molecular docking analysis reveals atomic contact energy (ACE) value for these five epitopes shown below -5 Kcal/mol in docked state. CONCLUSIONS The invasive aspergillosis and acute bronchopulmonary aspergillosis are caused by harmful fungal pathogen Aspergillus fumigatus. Our modern immunoinformatic research shows ITLKLLHRYSYKLAG, KLVLRAFPNHFRGDS, RYSYKLAGVNQVDVV, GKSFELNQAARAVTQ, and LHRYSYKLAGVNQVD epitopes could bind to MHC-II HLA allelic determinants and can initiate immunogenic response in patients affected by Aspergillus fumigatus.
Collapse
Affiliation(s)
- Darakshan Jabin
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, G.T. Road, Kanpur, 209217 India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, G.T. Road, Kanpur, 209217 India
| |
Collapse
|
24
|
Kaushal N, Jain S, Baranwal M. Computational design of immunogenic peptide constructs comprising multiple HLA restricted Dengue virus envelope epitopes. J Mol Recognit 2022; 35:e2961. [PMID: 35514257 DOI: 10.1002/jmr.2961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 11/09/2022]
Abstract
Dengue virus (DENV) is endemic in 100 countries with ability to impact nearly 50% of world population. DENV envelope (E) protein is responsible for viral attachment to host cells and has been target of various countermeasure development efforts. The current study focuses on a consensus computational approach to identify cross-reactive, immunogenic DENV-2 E peptides displaying promiscuity with a wide array of HLA molecules. Four conserved peptides (FP-1, FP-2, FP-3 and FP-4) containing multiple CD8+ and CD4+ T cell epitopes were identified by employment of various immunoinformatics tools. FP-1, FP-2, FP-3 and FP-4 were estimated to bind with 227, 1787, 1008 and 834 HLA alleles respectively. RMSD values obtained by Molecular docking (CABS-Dock) with 20 HLA alleles (10 each of HLA class I and II) resulted into comparable RMSD values of identified epitopes with native peptides which represents the natural presentation of epitopes to HLA molecules. These peptides were also found to be part of previous experimentally validated immunogenic peptides. Further, a dengue immunogenic peptide construct was generated by linking the four peptides, an adjuvant and a 6x histidine tag. The construct showed strong binding and stability with Toll-like receptor (TLR4). Collectively, these results provide strong evidence in the support of the immunogenic potential of the dengue immunogenic peptide construct. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Neha Kaushal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Sahil Jain
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.,University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
25
|
Immunogenic Epitope-Based Vaccine Prediction from Surface Glycoprotein of MERS-CoV by Deploying Immunoinformatics Approach. Int J Pept Res Ther 2022; 28:77. [PMID: 35313444 PMCID: PMC8924944 DOI: 10.1007/s10989-022-10382-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2022] [Indexed: 12/19/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) has caused a high mortality rate since its emergence in 2012 in the Middle East. Currently, no effective drug or vaccine is available for MERS-CoV. Supportive care and prevention are the only ways to manage infection. In this study, we identified an epitope-based vaccine that could be an optimal solution for the prevention of MERS-CoV infection. By deploying an immunoinformatics approach, we predicted a subunit vaccine based on the surface glycoprotein (S protein) of MERS-CoV. For this purpose, the proteome of the MERS-CoV spike protein was obtained from the NCBI GenBank database. Then, it was subjected to a check for allergenicity using the Allergen FP v.1.0 tool. The Vaxijen v.2.0 tool was used to conduct antigenicity tests for binding with major histocompatibility complex class I and II molecules. The solidity of the predicted epitope-allele docked complex was evaluated by a molecular dynamics simulation. After docking a total of eight epitopes from the MERS-CoV S protein, further analyses predicted their non-toxicity and therapeutic immunogenic properties. These epitopes have potential utility as vaccine candidates against MERS-CoV, to be validated by wet-lab testing.
Collapse
|
26
|
Joshi A, Krishnan S, Kaushik V. Codon usage studies and epitope-based peptide vaccine prediction against Tropheryma whipplei. J Genet Eng Biotechnol 2022; 20:41. [PMID: 35254546 PMCID: PMC8899776 DOI: 10.1186/s43141-022-00324-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/22/2022] [Indexed: 12/18/2022]
Abstract
Background The Tropheryma whipplei causes acute gastroenteritis to neuronal damages in Homo sapiens. Genomics and codon adaptation studies would be helpful advancements of disease evolution prediction, prevention, and treatment of disease. The codon usage data and codon usage measurement tools were deployed to detect the rare, very rare codons, and also synonymous codons usage. The higher effective number of codon usage values indicates the low codon usage bias in T. whipplei and also in the 23S and 16S ribosomal RNA genes. Results In T. whipplei, it was found to hold low codon biasness in genomic sets. The synonymous codons possess the base content in 3rd position that was calculated as A3S% (24.47 and 22.88), C3S% (20.99 and 22.88), T3S% (21.47 and 19.53), and G3S% (33.08 and 34.71) for 23s and 16s rRNA, respectively. Conclusion Amino acids like valine, aspartate, leucine, and phenylalanine hold high codon usage frequency and also found to be present in epitopes KPSYLSALSAHLNDK and FKSFNYNVAIGVRQP that were screened from proteins excinuclease ABC subunit UvrC and 3-oxoacyl-ACP reductase FabG, respectively. This method opens novel ways to determine epitope-based peptide vaccines against different pathogenic organisms.
Collapse
Affiliation(s)
- Amit Joshi
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sunil Krishnan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Kaushik
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
27
|
Mapalagamage M, Weiskopf D, Sette A, De Silva AD. Current Understanding of the Role of T Cells in Chikungunya, Dengue and Zika Infections. Viruses 2022; 14:v14020242. [PMID: 35215836 PMCID: PMC8878350 DOI: 10.3390/v14020242] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023] Open
Abstract
Arboviral infections such as Chikungunya (CHIKV), Dengue (DENV) and Zika (ZIKV) are a major disease burden in tropical and sub-tropical countries, and there are no effective vaccinations or therapeutic drugs available at this time. Understanding the role of the T cell response is very important when designing effective vaccines. Currently, comprehensive identification of T cell epitopes during a DENV infection shows that CD8 and CD4 T cells and their specific phenotypes play protective and pathogenic roles. The protective role of CD8 T cells in DENV is carried out through the killing of infected cells and the production of proinflammatory cytokines, as CD4 T cells enhance B cell and CD8 T cell activities. A limited number of studies attempted to identify the involvement of T cells in CHIKV and ZIKV infection. The identification of human immunodominant ZIKV viral epitopes responsive to specific T cells is scarce, and none have been identified for CHIKV. In CHIKV infection, CD8 T cells are activated during the acute phase in the lymph nodes/blood, and CD4 T cells are activated during the chronic phase in the joints/muscles. Studies on the role of T cells in ZIKV-neuropathogenesis are limited and need to be explored. Many studies have shown the modulating actions of T cells due to cross-reactivity between DENV-ZIKV co-infections and have repeated heterologous/homologous DENV infection, which is an important factor to consider when developing an effective vaccine.
Collapse
Affiliation(s)
- Maheshi Mapalagamage
- Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo 00700, Sri Lanka;
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| | - Aruna Dharshan De Silva
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
- Department of Paraclinical Sciences, Faculty of Medicine, General Sir John Kotelawala Defence University, Colombo 10390, Sri Lanka
- Correspondence:
| |
Collapse
|
28
|
Designing a Recombinant Vaccine against Providencia rettgeri Using Immunoinformatics Approach. Vaccines (Basel) 2022; 10:vaccines10020189. [PMID: 35214648 PMCID: PMC8876559 DOI: 10.3390/vaccines10020189] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Antibiotic resistance (AR) is the resistance mechanism pattern in bacteria that evolves over some time, thus protecting the bacteria against antibiotics. AR is due to bacterial evolution to make itself fit to changing environmental conditions in a quest for survival of the fittest. AR has emerged due to the misuse and overuse of antimicrobial drugs, and few antibiotics are now left to deal with these superbug infections. To combat AR, vaccination is an effective method, used either therapeutically or prophylactically. In the current study, an in silico approach was applied for the design of multi-epitope-based vaccines against Providencia rettgeri, a major cause of traveler’s diarrhea. A total of six proteins: fimbrial protein, flagellar hook protein (FlgE), flagellar basal body L-ring protein (FlgH), flagellar hook-basal body complex protein (FliE), flagellar basal body P-ring formation protein (FlgA), and Gram-negative pili assembly chaperone domain proteins, were considered as vaccine targets and were utilized for B- and T-cell epitope prediction. The predicted epitopes were assessed for allergenicity, antigenicity, virulence, toxicity, and solubility. Moreover, filtered epitopes were utilized in multi-epitope vaccine construction. The predicted epitopes were joined with each other through specific GPGPG linkers and were joined with cholera toxin B subunit adjuvant via another EAAAK linker in order to enhance the efficacy of the designed vaccine. Docking studies of the designed vaccine construct were performed with MHC-I (PDB ID: 1I1Y), MHC-II (1KG0), and TLR-4 (4G8A). Findings of the docking study were validated through molecular dynamic simulations, which confirmed that the designed vaccine showed strong interactions with the immune receptors, and that the epitopes were exposed to the host immune system for proper recognition and processing. Additionally, binding free energies were estimated, which highlighted both electrostatic energy and van der Waals forces to make the complexes stable. Briefly, findings of the current study are promising and may help experimental vaccinologists to formulate a novel multi-epitope vaccine against P. rettgeri.
Collapse
|
29
|
Sharma P, Sharma P, Ahmad S, Kumar A. Chikungunya Virus Vaccine Development: Through Computational Proteome Exploration for Finding of HLA and cTAP Binding Novel Epitopes as Vaccine Candidates. Int J Pept Res Ther 2022; 28:50. [PMID: 35069056 PMCID: PMC8762984 DOI: 10.1007/s10989-021-10347-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2021] [Indexed: 12/19/2022]
Abstract
Chikungunya virus is a major arbovirus of great public health concern in the whole world, but no vaccine is yet available, still advance therapeutic treatment and effective vaccines are in progress. The present multistep screening and structural binding analysis with CHIKV proteome exploration can be crucial in the development phase of CHIKV epitope based vaccine. The approach employed in two phases (i) Sequence based screening of peptides through propred and IEDB Server (ii) Structure based study through autodocking and NAMD VMD simulation analysis. Among all 29 extracted peptides, only two peptides 2LLANTTFPC10 of protein E3 and 98VNSVAIPLL106 of protein nsP3 were observed most prominent over all consider parameters such as peptide conserve nature, supertype population coverage, TAP binding, docking and simulation study. During docking interaction study, the best peptide and allele docked complexes such as 2LLANTTFPC10–B*0702 allele and 98VNSVAIPLL106–A*0301 allele exhibited best binding energy of − 3.13 kcal/mol and − 3.19 kcal/mol, respectively, with stable bonding patterns and their motion during NAMD simulation which confirm conserve peptide and allele stable interaction. The current study also exhibited the good docking interaction of both peptides 2LLANTTFPC10 and 98VNSVAIPLL106 with c TAP1 protein (1jj7 -PDB ID) cavity which confirm as a channel passageway to peptide transport through the cytoplasm to lumen of ER during antigen processing and presentation. Overall, this multistep screening and crosscheck structural binding analysis with an exploration of the complete proteome of CHIKV can be a novel step in the development of CHIKV epitope based vaccine as well as diagnostic development with aspect of time, cost and side effects.
Collapse
Affiliation(s)
- Priti Sharma
- D. S. Degree College, Aligarh, Dr. B. R. Ambedkar Univeristy, Agra, 282004 India
| | - Pawan Sharma
- Institute of Engineering and Technology, Mangalayatan University, Aligarh, 202145 India
| | - Sheeba Ahmad
- D. S. Degree College, Aligarh, Dr. B. R. Ambedkar Univeristy, Agra, 282004 India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, G.T. Road, Kanpur, 209217 India
| |
Collapse
|
30
|
T-cell epitope-based vaccine designing against Orthohantavirus: a causative agent of deadly cardio-pulmonary disease. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2021; 11:2. [PMID: 34900515 PMCID: PMC8649322 DOI: 10.1007/s13721-021-00339-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022]
Abstract
Orthohantavirus, a zoonotic virus responsible for causing human cardio-pulmonary disease, is proven to be a fatal disease. Due to the paucity of regimens to cure the disease and efficient management to eradicate this deadly virus, there is a constant need to expand in-silico approaches belonging to immunology domain to formulate best feasible peptide-based vaccine against it. In lieu of that, we have predicted and validated an epitope of nine-residue-long sequence “MIGLLSSRI”. The predicted epitope has shown best interactions with HLA alleles of MHC Class II proteins, namely HLA DRB1_0101, DRB1_0401, DRB1_0405, DRB1_0701, DRB1_0901, DRB1_1302, and DRB1_1501. The structure of the epitope was modeled by deploying PEPFOLD 3.5 and verified by Ramachandran plot analysis. Molecular docking and simulation studies reveal that this epitope has satisfactory binding scores, ACE value and global energies for docked complexes along with selectable range of RMSD and RMSF values. Also, the predicted epitope “MIGLLSSRI” exhibits population coverage of more than 62% in world population and maximum of 70% in the United States of America. In this intensive study, we have used many tools like AllergenFP, NETMHCII 3.2, VaxiJen, ToxinPred, PEPFOLD 3.5, DINC, IEDB-Population coverage, MHCPred and JCat server. Most of these tools are based on modern innovative statistical algorithms like HMM, ANN, ML, etc. that help in better predictions of putative candidates for vaccine crafting. This innovative methodology is facile, cost-effective and time-efficient, which could facilitate designing of a vaccine against this virus.
Collapse
|
31
|
Joshi A, Solanki DS, Gehlot P, Singh J, Kaushik V. In-Silico Validation of Prosopis ciniraria Therapeutic Peptides Against Fungal Cell Wall: Better Treatment Strategy for Fungal Diseases. Int J Pept Res Ther 2021; 28:15. [PMID: 34873397 PMCID: PMC8636789 DOI: 10.1007/s10989-021-10330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 12/02/2022]
Abstract
Prosopis cineraria commonly known as Druce are valuable herb that holds antibacterial role, antifungal properties. We identified different peptides from this plant by deploying CADD (Computer-aided-drug-designing) approaches, these peptide sequences are as follows seq1 (RHDEEEEKAKV),seq3(KSNSTVEISQNVQSVDSSKM),seq4(KQVAEMNKPAVGSKTSDANHDLKS),seq5(KTKSAGNDSIQSTKPVPSALTVDKA),seq6(RELEDSNIHHVAASVVLESKSSRT), and seq8(LYSKVELHPFGLHNLGNSCYANAVFSV), these peptides holds therapeutic properties as shows interaction with chitin, a major constituent of fungal cell wall. Molecular docking was conducted by using AutoDock-Vina tool and the results were found to be promising where all binding energies were found in the range of - 9.1 to - 7.5 kcal/mol, it indicates strong binding of peptide sequences with chitin molecule. Even the toxicity analysis supports the considered peptide sequences to hold therapeutic role against fungus with non-toxic effect on humans. These peptides were successfully predicted as important therapeutic agents of P. cinerariaseed that can initiate chitin breakdown, due to their possible strong interaction with fungal cell wall and it also suggests this medicinal plant holds the key for multiple fungal disease treatments. This study will open new research dimensions and integration of computational biology with microbial pathology that will assist scientific and medical community to develop rapid disease prevention strategies against fungal pathogenesis.
Collapse
Affiliation(s)
- Amit Joshi
- Department of Bioinformatics, Lovely Professional University, Phagwara, Punjab India 144011
- Department of Biotechnology, Invertis University, Bareilly, U.P India 243123
| | | | - Praveen Gehlot
- Department of Botany, Jai Narain Vyas University, Jodhpur, India 342001
| | - Joginder Singh
- Department of Bioinformatics, Lovely Professional University, Phagwara, Punjab India 144011
| | - Vikas Kaushik
- Department of Bioinformatics, Lovely Professional University, Phagwara, Punjab India 144011
| |
Collapse
|
32
|
Jahangirian E, Jamal GA, Nouroozi M, Mohammadpour A. A reverse vaccinology and immunoinformatics approach for designing a multiepitope vaccine against SARS-CoV-2. Immunogenetics 2021; 73:459-477. [PMID: 34542663 PMCID: PMC8450176 DOI: 10.1007/s00251-021-01228-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/05/2021] [Indexed: 12/16/2022]
Abstract
Since 2019, the world was involved with SARS-CoV-2 and consequently, with the announcement by the World Health Organization that COVID-19 was a pandemic, scientific were an effort to obtain the best approach to combat this global dilemma. The best way to prevent the pandemic from spreading further is to use a vaccine against COVID-19. Here, we report the design of a recombinant multi-epitope vaccine against the four proteins spike or crown (S), membrane (M), nucleocapsid (N), and envelope (E) of SARS-CoV-2 using immunoinformatics tools. We evaluated the most antigenic epitopes that bind to HLA class 1 subtypes, along with HLA class 2, as well as B cell epitopes. Beta-defensin 3 and PADRE sequence were used as adjuvants in the structure of the vaccine. KK, GPGPG, and AAY linkers were used to fuse the selected epitopes. The nucleotide sequence was cloned into pET26b(+) vector using restriction enzymes XhoI and NdeI, and HisTag sequence was considered in the C-terminal of the construct. The results showed that the proposed candidate vaccine is a 70.87 kDa protein with high antigenicity and immunogenicity as well as non-allergenic and non-toxic. A total of 95% of the selected epitopes have conservancy with similar sequences. Molecular docking showed a strong binding between the vaccine structure and tool-like receptor (TLR) 7/8. The docking, molecular dynamics, and MM/PBSA analysis showed that the vaccine established a stable interaction with both structures of TLR7 and TLR8. Simulation of immune stimulation by this vaccine showed that it evokes immune responses related to humoral and cellular immunity.
Collapse
Affiliation(s)
- Ehsan Jahangirian
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ghadir A Jamal
- Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait.
| | - MohammadReza Nouroozi
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Alemeh Mohammadpour
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
33
|
Jain P, Joshi A, Akhtar N, Krishnan S, Kaushik V. An immunoinformatics study: designing multivalent T-cell epitope vaccine against canine circovirus. J Genet Eng Biotechnol 2021; 19:121. [PMID: 34406518 PMCID: PMC8371590 DOI: 10.1186/s43141-021-00220-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Canine circovirus is a deadly pathogen of dogs and causes vasculitis and hemorrhagic enteritis. It causes lethal gastroenteritis in pigs, fox, and dogs. Canine circovirus genome contains two main (and opposite) transcription units which encode two open reading frames (ORFs), a replicase-associated protein (Rep) and the capsid (Cap) protein. The replicase protein and capsid protein consist of 303 amino acids and 270 amino acids respectively. Several immuno-informatics methods such as epitope screening, molecular docking, and molecular-dynamics simulations were used to craft peptide-based vaccine construct against canine circovirus. RESULTS The vaccine construct was designed by joining the selected epitopes with adjuvants by suitable linker. The cloning and expression of the vaccine construct was also performed using in silico methods. Screening of epitopes was conducted by NetMHC server that uses ANN (Artificial neural networking) algorithm. These methods are fast and cost-effective for screening epitopes that can interact with dog leukocyte antigens (DLA) and initiate an immune response. Overall, 5 epitopes, YQHLPPFRF, YIRAKWINW, ALYRRLTLI, HLQGFVNLK, and GTMNFVARR, were selected and used to design a vaccine construct. The molecular docking and molecular dynamics simulation studies show that these epitopes can bind with DLA molecules with stability. The codon adaptation and in silico cloning studies show that the vaccine can be expressed by Escherichia coli K12 strain. CONCLUSION The results suggest that the vaccine construct can be useful in preventing the dogs from canine circovirus infections. However, the results need further validation by performing other in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Pankaj Jain
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Amit Joshi
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nahid Akhtar
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sunil Krishnan
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Kaushik
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
34
|
Akhtar N, Joshi A, Singh J, Kaushik V. Design of a novel and potent multivalent epitope based human cytomegalovirus peptide vaccine: An immunoinformatics approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116586] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Sanami S, Azadegan-Dehkordi F, Rafieian-Kopaei M, Salehi M, Ghasemi-Dehnoo M, Mahooti M, Alizadeh M, Bagheri N. Design of a multi-epitope vaccine against cervical cancer using immunoinformatics approaches. Sci Rep 2021; 11:12397. [PMID: 34117331 PMCID: PMC8196015 DOI: 10.1038/s41598-021-91997-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Cervical cancer, caused by human papillomavirus (HPV), is the fourth most common type of cancer among women worldwide. While HPV prophylactic vaccines are available, they have no therapeutic effects and do not clear up existing infections. This study aims to design a therapeutic vaccine against cervical cancer using reverse vaccinology. In this study, the E6 and E7 oncoproteins from HPV16 were chosen as the target antigens for epitope prediction. Cytotoxic T lymphocytes (CTL) and helper T lymphocytes (HTL) epitopes were predicted, and the best epitopes were selected based on antigenicity, allergenicity, and toxicity. The final vaccine construct was composed of the selected epitopes, along with the appropriate adjuvant and linkers. The multi-epitope vaccine was evaluated in terms of physicochemical properties, antigenicity, and allergenicity. The tertiary structure of the vaccine construct was predicted. Furthermore, several analyses were also carried out, including molecular docking, molecular dynamics (MD) simulation, and in silico cloning of the vaccine construct. The results showed that the final proposed vaccine could be considered an effective therapeutic vaccine for HPV; however, in vitro and in vivo experiments are required to validate the efficacy of this vaccine candidate.
Collapse
Affiliation(s)
- Samira Sanami
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Maryam Ghasemi-Dehnoo
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehran Mahooti
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
36
|
In-silico designing of epitope-based vaccine against the seven banded grouper nervous necrosis virus affecting fish species. ACTA ACUST UNITED AC 2021; 10:37. [PMID: 34094807 PMCID: PMC8165136 DOI: 10.1007/s13721-021-00315-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Neural necrosis virus (NNV) of family Nodaviridae affect wide range of fish species with viral encephalopathy and retinopathy causing mass mortality up to 100%. Currently there is no effective treatment and depopulation is only suggested recommendation. New avenues and approach are required to control this harmful malady. In this study we developed an epitope-based vaccine (EBV), against NNV using computation approach. We have selected two conserved proteins RNA-dependent RNA polymerase (RdRP) and capsid proteins. Based on more than ~ 1000 epitopes we selected six antigenic epitopes. These were conjugated to adjuvant and linker peptides to generate a full-length vaccine candidate. Biochemical structural properties were analyzed by Phyre2 server. ProtParam, Molprobity. Ramachandran plot results indicate that 98.7% residues are in a favorable region and 93.4% residues in the favored region. The engineered EBV binds to toll like receptor-5 (TLR5) an important elicitor of immune response. Further molecular docking by PatchDock server reveals the atomic contact energy (i.e. − 267.08) for the best docked model of EBV and TLR5 receptor. The molecular simulation results suggest a stable interaction; the RMSD and RMSF values are 1–4 Ǻ and 1–12Ǻ, respectively. Further we have suggested the best possible codon optimized sequence for its cloning and subsequent purification of the protein. Overall, this is a first report to suggest an in-silico method for generation of an EBV candidate against NNV. We surmise that the method and approach suggested could be used as a promising cure for NNVs.
Collapse
|
37
|
Tarasova O, Poroikov V. Machine Learning in Discovery of New Antivirals and Optimization of Viral Infections Therapy. Curr Med Chem 2021; 28:7840-7861. [PMID: 33949929 DOI: 10.2174/0929867328666210504114351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/13/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022]
Abstract
Nowadays, computational approaches play an important role in the design of new drug-like compounds and optimization of pharmacotherapeutic treatment of diseases. The emerging growth of viral infections, including those caused by the Human Immunodeficiency Virus (HIV), Ebola virus, recently detected coronavirus, and some others, leads to many newly infected people with a high risk of death or severe complications. A huge amount of chemical, biological, clinical data is at the disposal of the researchers. Therefore, there are many opportunities to find the relationships between the particular features of chemical data and the antiviral activity of biologically active compounds based on machine learning approaches. Biological and clinical data can also be used for building models to predict relationships between viral genotype and drug resistance, which might help determine the clinical outcome of treatment. In the current study, we consider machine-learning approaches in the antiviral research carried out during the past decade. We overview in detail the application of machine-learning methods for the design of new potential antiviral agents and vaccines, drug resistance prediction, and analysis of virus-host interactions. Our review also covers the perspectives of using the machine-learning approaches for antiviral research, including Dengue, Ebola viruses, Influenza A, Human Immunodeficiency Virus, coronaviruses, and some others.
Collapse
Affiliation(s)
- Olga Tarasova
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow. Russian Federation
| | - Vladimir Poroikov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow. Russian Federation
| |
Collapse
|
38
|
Silva MK, Gomes HSS, Silva OLT, Campanelli SE, Campos DMO, Araújo JMG, Fernandes JV, Fulco UL, Oliveira JIN. Identification of promiscuous T cell epitopes on Mayaro virus structural proteins using immunoinformatics, molecular modeling, and QM:MM approaches. INFECTION GENETICS AND EVOLUTION 2021; 91:104826. [PMID: 33781966 DOI: 10.1016/j.meegid.2021.104826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
The Mayaro virus (MAYV) belongs to genus Alphavirus (family Togaviridae) and has been reported in several countries, especially in tropical regions of America. Due to its outbreaks and potential lack of medication, an effective vaccine formulation is strongly required. This study aimed to predict promiscuous T cell epitopes from structural polyproteins of MAYV using an immunoinformatics approach. For this purpose, consensus sequences were used to identify short protein sequences capable of binding to MHC class I and class II alleles. Our analysis pointed out 4 MHC-I/TCD8+ and 21 MHC-II/TCD4+ epitopes on capside (1;3), E1 (2;5), E2 (1;10), E3 (0;2), and 6 K (0;1) proteins. These predicted epitopes were characterized by high antigenicity, immunogenicity, conservancy, non-allergenic, non-toxic, and good population coverage rate values for North and South American geographical areas. Afterwards, we used the crystal structure of human toll-like receptor 3 (TLR3) ectodomain as a template to predict, through docking essays, the placement of a vaccine prototype at the TLR3 receptor binding site. Finally, classical and quantum mechanics/molecular mechanics (QM:MM) computations were employed to improve the quality of docking calculations, with the QM part of the simulations being accomplished by using the density functional theory (DFT) formalism. These results provide important insights into the advancement of diagnostic platforms, the development of vaccines, and immunotherapeutic interventions.
Collapse
Affiliation(s)
- Maria K Silva
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Heloísa S S Gomes
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Ohana L T Silva
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Stephany E Campanelli
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Daniel M O Campos
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Josélio M G Araújo
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - José V Fernandes
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Umberto L Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Jonas I N Oliveira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil.
| |
Collapse
|