1
|
Meewes C, Gupta K, Geisler WM. Role of microRNAs in immune regulation and pathogenesis of Chlamydia trachomatis and Chlamydia muridarum infections: a rapid review. Microbes Infect 2024; 26:105397. [PMID: 39025257 PMCID: PMC11609027 DOI: 10.1016/j.micinf.2024.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
MicroRNAs in Chlamydia trachomatis (CT) and Chlamydia muridarum (CM) infections are an emerging topic of research that provide knowledge that could advance vaccine development and strategies for managing infection. This rapid review summarizes human and murine studies on miRNA expression in CT and CM infections in vivo and ex vivo.
Collapse
Affiliation(s)
- Chloe Meewes
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kanupriya Gupta
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William M Geisler
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
2
|
Ray A, Pradhan D, Siraj F, Arora R, Rastogi S. MicroRNA mediated regulation of oxidative stress and cytokines in Chlamydia trachomatis-infected recurrent spontaneous abortion: A case-control study. Am J Reprod Immunol 2024; 91:e13821. [PMID: 38374806 DOI: 10.1111/aji.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
PROBLEM Increased oxidative stress (OS) and inflammatory responses are major underlying factors behind Chlamydia trachomatis-associated recurrent spontaneous abortion (RSA). miRNAs are known to regulate inflammation and OS and their dysregulation has been associated with compromised pregnancies. Therefore, aim of this study was to investigate the expression/correlation of OS biomarkers, cytokines and miRNAs in C. trachomatis-associated RSA. METHOD OF STUDY Urine and non-heparinized blood samples were collected from RSA patients with history of >3 consecutive abortions (cases) and non-pregnant women with history of >2 successful deliveries (controls) attending Department of Obstetrics and Gynaecology, Safdarjung hospital, New Delhi. C. trachomatis detection was done in urine by PCR. miRNA expression was studied by microarray analysis and validated by real time-PCR. Evaluation of cytokines and antioxidant genes expression were done by real-time PCR. Level of OS biomarkers 8-hydroxy guanosine (8-OHdG) and 8-isporostane (8-IP) were measured by ELISA. RESULTS Fifty circulating miRNAs were differentially expressed in infected patients compared with controls. Of these, four were overexpressed and 46 downregulated. Thirteen differentially expressed circulating miRNAs were selected to validate microarray results. miRs-8069, -3663-3p showed maximum upregulation/downregulation in infected versus control group. Expression of cytokines (IL-8, TNF-α, IFN-γ), antioxidant genes SOD2 and OS biomarkers (8-OHdG,8-IP) were increased while SOD1 was decreased in infected patients. miR-8069 showed significant positive correlation with cytokines, SOD2, 8-OHdG and 8-IP. miR-3663-3p showed significant positive correlation with SOD1. CONCLUSIONS Overall results indicate circulating miRNAs are involved in pathogenesis of C. trachomatis-associated RSA and are potential modulators of cytokine signalling and OS in infected RSA.
Collapse
Affiliation(s)
- Ankita Ray
- Molecular Microbiology laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung hospital campus, New Delhi, India
| | - Dibyabhaba Pradhan
- ICMR-AIIMS Computational Genomics Centre, Convergence Block, AIIMS, New Delhi, India
| | - Fouzia Siraj
- Pathology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, New Delhi, India
| | - Renu Arora
- Department of Obstetrics and Gynecology, Vardhman Mahavir Medical College (VMMC) and Safdarjung Hospital, New Delhi, India
| | - Sangita Rastogi
- Molecular Microbiology laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung hospital campus, New Delhi, India
| |
Collapse
|
3
|
Ray A, Bhati T, Arora R, Rastogi S. Progesterone-mediated immunoregulation of cytokine signaling by miRNA-133a and 101-3p in Chlamydia trachomatis-associated recurrent spontaneous abortion. Mol Immunol 2023; 164:47-57. [PMID: 37952361 DOI: 10.1016/j.molimm.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/26/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
miRNAs regulate the expression of various genes involved in cellular and metabolic pathways in pregnancy related complications including recurrent spontaneous abortion (RSA). Modulation of progesterone and associated pro-inflammatory cytokines by miRNAs in Chlamydia trachomatis-associated RSA is still under investigation. Present study aimed to evaluate the expression/correlation of serum-circulating miRNAs-133a, 101-3p, 320b, 146b-5p, 24, 559, progesterone and few cytokines in C. trachomatis-positive spontaneous aborters. Non-heparinized blood and urine was collected from 120 patients with history of RSA (Group I) and 120 patients with ≥ 2 successful deliveries (Group II) attending Department of Obstetrics and Gynecology, Safdarjung hospital, New Delhi, India. C. trachomatis detection was performed by PCR and chlamydial load by real time PCR. Progesterone concentration was estimated by ELISA. miRNAs and cytokine expression was studied by quantitative real-time PCR and correlated with progesterone expression. Twenty six patients were found to be positive for C. trachomatis. miRNAs- 133a, 101-3p showed maximum upregulation in infected versus control patients. miRNA expression showed positive correlation with chlamydial load. Progesterone concentration showed significant decrease while cytokines (IL-6, IFN-γ, TNF-α) were significantly upregulated in C. trachomatis-positive patients. Positive correlation was observed between expression of miRNAs-133a and 101-3p and cytokines while negative correlation was observed with progesterone in infected RSA patients. Correlation between progesterone and cytokines was found to be significantly negative in infected RSA patients. Although further validation is required, the study concludes that miR-133a and 101-3p are of clinical importance and have a role in immunoregulation of progesterone and cytokines in infection associated RSA.
Collapse
Affiliation(s)
- Ankita Ray
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital campus, Post Box no. 4909, New Delhi 110029, India
| | - Tanu Bhati
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital campus, Post Box no. 4909, New Delhi 110029, India
| | - Renu Arora
- Department of Obstetrics and Gynecology, Vardhman Mahavir Medical College (VMMC) and Safdarjung Hospital, New Delhi 110029, India
| | - Sangita Rastogi
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital campus, Post Box no. 4909, New Delhi 110029, India.
| |
Collapse
|
4
|
Ray A, Pradhan D, Arora R, Siraj F, Rastogi S. Microarray profiling of serum micro-RNAs in women with Chlamydia trachomatis-associated recurrent spontaneous abortion: A case control study. Microb Pathog 2023; 182:106273. [PMID: 37507027 DOI: 10.1016/j.micpath.2023.106273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Chlamydia trachomatis infection is a major cause of sexually transmitted diseases and adverse pregnancy outcomes such as recurrent spontaneous abortion (RSA). Micro-RNAs (miRNAs) have been known to be upregulated/downregulated in various reproductive-associated diseases such as ectopic pregnancy, preterm birth and pre-eclampsia. However, there is paucity of literature on miRNA profile in C. trachomatis-infected RSA. The present study aimed to determine the profile of serum miRNAs followed by their validation in C. trachomatis-infected RSA and to find target genes involved in biological pathways. Non-heparinized blood and first void urine were collected from 30 non-pregnant women with RSA and 30 non-pregnant women with ≥2 successful deliveries (controls) attending Department of Obstetrics and Gynaecology, Safdarjung hospital, New Delhi, India. C. trachomatis detection was done in urine by PCR and chlamydial load was determined by quantitative real-time PCR (qRT-PCR). miRNA expression was studied by microarray analysis followed by in vitro validation by qRT-PCR. Analysis of target genes/pathways was characterized in silico. 06 RSA patients were infected with C. trachomatis, while chlamydial load was found to be 6000-12,000 copies/ml. 110 circulating miRNAs were expressed differentially in infected RSA patients compared with controls. Of these, 16 were overexpressed and 94 downregulated. 06 differentially expressed circulating miRNAs were selected to validate the microarray results. qRT-PCR data confirmed the reliability of the microarray results: miR-4443, -5100, -7975 showed statistically significant upregulation, while miR-6808-5p, -3148, -6727-5p were significantly downregulated in infected RSA patients versus controls. Chlamydial load was positively correlated with these upregulated miRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that target genes of miRNAs in RSA are involved in AMPK, Akt and mTOR signaling pathways. Overall results indicate that differentially expressed circulating miRNAs are involved in pathogenesis of C. trachomatis-associated RSA and have the potential to be used as biomarkers for predicting RSA.
Collapse
Affiliation(s)
- Ankita Ray
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India.
| | - Dibyabhaba Pradhan
- ICMR-AIIMS Computational Genomics Centre, Room No. 5001, Convergence Block, AIIMS, New Delhi, 110029, India.
| | - Renu Arora
- Department of Obstetrics and Gynecology, Vardhman Mahavir Medical College (VMMC) and Safdarjung Hospital, New Delhi, 110029, India.
| | - Fouzia Siraj
- Pathology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India.
| | - Sangita Rastogi
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India.
| |
Collapse
|
5
|
Bhati T, Ray A, Arora R, Siraj F, Parvez S, Rastogi S. Immunomodulation of cytokine signalling at feto-maternal interface by microRNA-223 and -150-5p in infection-associated spontaneous preterm birth. Mol Immunol 2023; 160:1-11. [PMID: 37285685 DOI: 10.1016/j.molimm.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/24/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Spontaneous preterm birth (sPTB) is a global health concern and it is the most prevalent cause of infant mortality and morbidity with occurrence rate of 5 - 18% worldwide. Studies suggest infection and infection-driven activation of inflammatory responses are the potential risk factors for sPTB. MicroRNAs (miRNAs) are thought to control the expression of several immune genes, making them crucial components of the intricate immune regulatory network and the dysregulation of miRNAs in placenta has been associated to several pregnancy-related complications. However, studies on possible role of miRNAs in immunomodulation of cytokine signalling in infection-associated sPTB are scarce. Present study aimed to investigate expression/ correlation of a few circulating miRNAs (miR-223, -150-5p, -185-5p, -191-5p), miRNA target genes and associated cytokines in sPTB women found infected with Chlamydia trachomatis/ Mycoplasma hominis/ Ureaplasma urealyticum. Non-heparinized blood and placental sample were collected from 140 sPTB and 140 term women visiting Safdarjung hospital, New Delhi (India) for conducting PCR and RT-PCR for pathogen detection and miRNA/ target gene/ cytokine expression, respectively. Common target genes of differentially expressed miRNAs were obtained from databases. The correlation between select target genes/ cytokines and serum miRNAs was determined by Spearman's rank correlation. 43 sPTB were infected with either pathogen and a significant upregulation of serum miRNAs was observed. However, miR-223 and 150-5p showed maximum fold-change (4.78 and 5.58, respectively) in PTB versus control group. IL-6ST, TGF-β R3 and MMP-14 were important target genes among 454 common targets, whereas, IL-6 and TGF-β were associated cytokines. miR-223 and 150-5p showed significant negative correlation with IL-6ST/ IL-6/ MMP-14 and positive correlation with TGF-β R3/ TGF-β. A significant positive correlation was found between IL-6ST and IL-6, TGF-β R3 and TGF-β. However, miR-185-5p and 191-5p were not significantly correlated. Although post-transcriptional validation is required, yet on the basis of mRNA findings, the study concludes that miR-223 and 150-5p are apparently of clinical importance in regulation of inflammatory processes during infection-associated sPTB.
Collapse
Affiliation(s)
- Tanu Bhati
- Molecular Microbiology laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box no. 4909, New Delhi 110029, India; Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India
| | - Ankita Ray
- Molecular Microbiology laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box no. 4909, New Delhi 110029, India; Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India
| | - Renu Arora
- Department of Obstetrics and Gynecology, Vardhman Mahavir Medical College (VMMC) and Safdarjung Hospital, New Delhi 110029, India
| | - Fouzia Siraj
- Pathology laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box no. 4909, New Delhi 110029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India
| | - Sangita Rastogi
- Molecular Microbiology laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box no. 4909, New Delhi 110029, India.
| |
Collapse
|
6
|
Ray A, Bhati T, Arora R, Parvez S, Rastogi S. Association of functional superoxide gene polymorphism with chlamydia trachomatis-associated recurrent spontaneous abortion. Mol Biol Rep 2023; 50:4907-4915. [PMID: 37072652 DOI: 10.1007/s11033-023-08405-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/23/2023] [Indexed: 04/20/2023]
Abstract
BACKGROUND Oxidative stress generated by Chlamydia trachomatis infection is associated with reproductive complications such as recurrent spontaneous abortion. Aim of prospective study was to evaluate whether single nucleotide polymorphisms (SNPs) of SOD1 and SOD2 gene are associated with C. trachomatis-infected recurrent spontaneous abortion (RSA). METHODS 150 patients with history of RSA and 150 patients with history of successful deliveries were recruited from Department of Obstetrics and Gynecology, Safdarjung hospital, New Delhi, India. Urine and non-heparinized blood samples were collected and C. trachomatis was detected by polymerase chain reaction (PCR). Using qualitative real time PCR, SNPs rs4998557 (SOD1) and rs4880 (SOD2) were screened in enrolled patients. Level of 8-hydroxyguanosine (8-OHdG), 8-isoprostane (8-IP), progesterone and estrogen was determined by enzyme-linked immunosorbent assays and correlated with SNPs. RESULTS Significant differences were found in frequency of AA genotype of SOD1 gene among RSA patients versus controls, (82% and 54.66%, respectively; p = 0.02; OR 0.40; CI 95%). Frequency of AA genotype of SOD1 gene among RSA patients with C. trachomatis infection was 87.33%, while in uninfected RSA patients was 71.33% (p < 0.0001; OR 8; CI 95%). No significant relation was found between SOD2 (rs4880) genotype and RSA. Furthermore, significant increase in 8-OHdG, 8-IP and estrogen and significant decrease in progesterone was observed among patients carrying AA genotype. CONCLUSIONS Findings suggest the clinical importance of AA genotype along with 8-OHdG, 8-IP and estrogen and progesterone in screening C. trachomatis-infected RSA women.
Collapse
Affiliation(s)
- Ankita Ray
- Molecular Microbiology laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung hospital campus, Post Box no. 4909, New Delhi, 110029, India
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, 110062, India
| | - Tanu Bhati
- Molecular Microbiology laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung hospital campus, Post Box no. 4909, New Delhi, 110029, India
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, 110062, India
| | - Renu Arora
- Department of Obstetrics and Gynecology, Vardhman Mahavir Medical College (VMMC) and Safdarjung hospital, New Delhi, 110029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, 110062, India
| | - Sangita Rastogi
- Molecular Microbiology laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung hospital campus, Post Box no. 4909, New Delhi, 110029, India.
| |
Collapse
|
7
|
Aberrant gene expression of superoxide dismutases in Chlamydia trachomatis-infected recurrent spontaneous aborters. Sci Rep 2022; 12:14688. [PMID: 36038649 PMCID: PMC9424283 DOI: 10.1038/s41598-022-18941-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
Study aimed to characterize the expression of antioxidant genes SOD1 and SOD2 in Chlamydia trachomatis-induced recurrent spontaneous aborters and further determine their role by in silico analysis. First void urine was collected from 130 non-pregnant women with history of recurrent spontaneous abortion (RSA) (Group I) and 130 non-pregnant women (Group II; control) attending Obstetrics and Gynecology Department, SJH, New Delhi, India. C. trachomatis detection was performed by conventional PCR in urine. Gene expression of SOD1 and SOD2 was performed by quantitative real-time PCR. Further, its interacting partners were studied by in silico analysis. 22 patients were positive for C. trachomatis in Group I. Significant upregulation was observed for SOD2 gene in C. trachomatis-infected RSA patients while SOD1 was found to be downregulated. Increased concentration of oxidative stress biomarkers 8-hydroxyguanosine and 8-isoprostane was found in C. trachomatis-infected RSA patients. Protein–protein interaction (PPI) of SOD proteins and its interacting partners viz.; CCS, GPX1, GPX2, GPX3, GPX4, GPX5, GPX7, GPX8, CAT, PRDX1, TXN, SIRT3, FOXO3, and AKT1 were found to be involved in MAPK, p53 and foxo signaling pathways. Molecular pathways involved in association with SODs indicate reactive oxygen species (ROS) detoxification, apoptotic pathways and cell cycle regulation. Overall data revealed alleviated levels of SOD2 gene and decreased expression of SOD1 gene in response to C. trachomatis-infection leading to production of oxidative stress and RSA.
Collapse
|