1
|
Wu S, Zhang Y, Xu L, Zhang H, Li Y, Yang L, Zhang Z, Zhang H. Mitochondrial Outer Membrane Translocase MoTom20 Modulates Mitochondrial Morphology and Is Important for Infectious Growth of the Rice Blast Fungus Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:407-415. [PMID: 38171376 DOI: 10.1094/mpmi-10-23-0168-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Mitochondria are highly dynamic organelles that constantly change their morphology to adapt to the cellular environment through fission and fusion, which is critical for a cell to maintain normal cellular functions. Despite the significance of this process in the development and pathogenicity of the rice blast fungus Magnaporthe oryzae, the underlying mechanism remains largely elusive. Here, we identified and characterized a mitochondrial outer membrane translocase, MoTom20, in M. oryzae. Targeted gene deletion revealed that MoTom20 plays an important role in vegetative growth, conidiogenesis, penetration, and infectious growth of M. oryzae. The growth rate, conidial production, appressorium turgor, and pathogenicity are decreased in the ΔMotom20 mutant compared with the wild-type and complemented strains. Further analysis revealed that MoTom20 localizes in mitochondrion and plays a key role in regulating mitochondrial fission and fusion balance, which is critical for infectious growth. Finally, we found that MoTom20 is involved in fatty-acid utilization, and its yeast homolog ScTom20 is able to rescue the defects of ΔMotom20 in mitochondrial morphology and pathogenicity. Overall, our data demonstrate that MoTom20 is a key regulator for mitochondrial morphology maintenance, which is important for infectious growth of the rice blast fungus M. oryzae. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ying Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Lele Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Haibo Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Yuhe Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Leiyun Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| |
Collapse
|
2
|
Shi H, Meng S, Qiu J, Xie S, Jiang N, Luo C, Naqvi NI, Kou Y. MoAti1 mediates mitophagy by facilitating recruitment of MoAtg8 to promote invasive growth in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2024; 25:e13439. [PMID: 38483039 PMCID: PMC10938464 DOI: 10.1111/mpp.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/17/2024]
Abstract
Mitophagy is a selective autophagy for the degradation of damaged or excessive mitochondria to maintain intracellular homeostasis. In Magnaporthe oryzae, a filamentous ascomycetous fungus that causes rice blast, the most devastating disease of rice, mitophagy occurs in the invasive hyphae to promote infection. To date, only a few proteins are known to participate in mitophagy and the mechanisms of mitophagy are largely unknown in pathogenic fungi. Here, by a yeast two-hybrid screen with the core autophagy-related protein MoAtg8 as a bait, we obtained a MoAtg8 interactor MoAti1 (MoAtg8-interacting protein 1). Fluorescent observations and protease digestion analyses revealed that MoAti1 is primarily localized to the peripheral mitochondrial outer membrane and is responsible for recruiting MoAtg8 to mitochondria under mitophagy induction conditions. MoAti1 is specifically required for mitophagy, but not for macroautophagy and pexophagy. Infection assays suggested that MoAti1 is required for mitophagy in invasive hyphae during pathogenesis. Notably, no homologues of MoAti1 were found in rice and human protein databases, indicating that MoAti1 may be used as a potential target to control rice blast. By the host-induced gene silencing (HIGS) strategy, transgenic rice plants targeted to silencing MoATI1 showed enhanced resistance against M. oryzae with unchanged agronomic traits. Our results suggest that MoATI1 is required for mitophagy and pathogenicity in M. oryzae and can be used as a target for reducing rice blast.
Collapse
Affiliation(s)
- Huanbin Shi
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Shuai Meng
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Jiehua Qiu
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Shuwei Xie
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Nan Jiang
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Chaoxi Luo
- Key Lab of Horticultural Plant Biology, Ministry of Education, and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, Department of Biological SciencesNational University of SingaporeSingapore
| | - Yanjun Kou
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| |
Collapse
|
3
|
Wang S, He B, Wu H, Cai Q, Ramírez-Sánchez O, Abreu-Goodger C, Birch PRJ, Jin H. Plant mRNAs move into a fungal pathogen via extracellular vesicles to reduce infection. Cell Host Microbe 2024; 32:93-105.e6. [PMID: 38103543 PMCID: PMC10872371 DOI: 10.1016/j.chom.2023.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Cross-kingdom small RNA trafficking between hosts and microbes modulates gene expression in the interacting partners during infection. However, whether other RNAs are also transferred is unclear. Here, we discover that host plant Arabidopsis thaliana delivers mRNAs via extracellular vesicles (EVs) into the fungal pathogen Botrytis cinerea. A fluorescent RNA aptamer reporter Broccoli system reveals host mRNAs in EVs and recipient fungal cells. Using translating ribosome affinity purification profiling and polysome analysis, we observe that delivered host mRNAs are translated in fungal cells. Ectopic expression of two transferred host mRNAs in B. cinerea shows that their proteins are detrimental to infection. Arabidopsis knockout mutants of the genes corresponding to these transferred mRNAs are more susceptible. Thus, plants have a strategy to reduce infection by transporting mRNAs into fungal cells. mRNAs transferred from plants to pathogenic fungi are translated to compromise infection, providing knowledge that helps combat crop diseases.
Collapse
Affiliation(s)
- Shumei Wang
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Baoye He
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Huaitong Wu
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Obed Ramírez-Sánchez
- National Laboratory of Genomics for Biodiversity (Langebio), Cinvestav, Irapuato 36821 Guanajuato, Mexico
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, School of Biological Sciences, the University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Paul R J Birch
- Division of Plant Sciences, School of Life Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
4
|
Flatschacher D, Eschlböck A, Zeilinger S. Identification and evaluation of suitable reference genes for RT-qPCR analyses in Trichoderma atroviride under varying light conditions. Fungal Biol Biotechnol 2023; 10:20. [PMID: 37789459 PMCID: PMC10546744 DOI: 10.1186/s40694-023-00167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/27/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Trichoderma atroviride is a competitive soil-borne mycoparasitic fungus with extensive applications as a biocontrol agent in plant protection. Despite its importance and application potential, reference genes for RT-qPCR analysis in T. atroviride have not been evaluated. Light exerts profound effects on physiology, such as growth, conidiation, secondary metabolism, and stress response in T. atroviride, as well as in other fungi. In this study, we aimed to address this gap by identifying stable reference genes for RT-qPCR experiments in T. atroviride under different light conditions, thereby enhancing accurate and reliable gene expression analysis in this model mycoparasite. We measured and compared candidate reference genes using commonly applied statistical algorithms. RESULTS Under cyclic light-dark cultivation conditions, tbp and rho were identified as the most stably expressed genes, while act1, fis1, btl, and sar1 were found to be the least stable. Similar stability rankings were obtained for cultures grown under complete darkness, with tef1 and vma1 emerging as the most stable genes and act1, rho, fis1, and btl as the least stable genes. Combining the data from both cultivation conditions, gapdh and vma1 were identified as the most stable reference genes, while sar1 and fis1 were the least stable. The selection of different reference genes had a significant impact on the calculation of relative gene expression, as demonstrated by the expression patterns of target genes pks4 and lox1. CONCLUSION The data emphasize the importance of validating reference genes for different cultivation conditions in fungi to ensure accurate interpretation of gene expression data.
Collapse
Affiliation(s)
- Daniel Flatschacher
- Department of Microbiology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria.
| | - Alexander Eschlböck
- Department of Microbiology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| |
Collapse
|
5
|
Shen ZF, Li L, Zhu XM, Liu XH, Klionsky DJ, Lin FC. Current opinions on mitophagy in fungi. Autophagy 2023; 19:747-757. [PMID: 35793406 PMCID: PMC9980689 DOI: 10.1080/15548627.2022.2098452] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022] Open
Abstract
Mitophagy, as one of the most important cellular processes to ensure quality control of mitochondria, aims at transporting damaged, aging, dysfunctional or excess mitochondria to vacuoles (plants and fungi) or lysosomes (mammals) for degradation and recycling. The normal functioning of mitophagy is critical for cellular homeostasis from yeasts to humans. Although the role of mitophagy has been well studied in mammalian cells and in certain model organisms, especially the budding yeast Saccharomyces cerevisiae, our understanding of its significance in other fungi, particularly in pathogenic filamentous fungi, is still at the preliminary stage. Recent studies have shown that mitophagy plays a vital role in spore production, vegetative growth and virulence of pathogenic fungi, which are very different from its roles in mammal and yeast. In this review, we summarize the functions of mitophagy for mitochondrial quality and quantity control, fungal growth and pathogenesis that have been reported in the field of molecular biology over the past two decades. These findings may help researchers and readers to better understand the multiple functions of mitophagy and provide new perspectives for the study of mitophagy in fungal pathogenesis.Abbreviations: AIM/LIR: Atg8-family interacting motif/LC3-interacting region; BAR: Bin-Amphiphysin-Rvs; BNIP3: BCL2 interacting protein 3; CK2: casein kinase 2; Cvt: cytoplasm-to-vacuole targeting; ER: endoplasmic reticulum; IMM: inner mitochondrial membrane; mETC: mitochondrial electron transport chain; OMM: outer mitochondrial membrane; OPTN: optineurin; PAS: phagophore assembly site; PD: Parkinson disease; PE: phosphatidylethanolamine; PHB2: prohibitin 2; PX: Phox homology; ROS, reactive oxygen species; TM: transmembrane.
Collapse
Affiliation(s)
- Zi-Fang Shen
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xiao-Hong Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Li X, Zhu M, Liu Y, Yang L, Yang J. Aoatg11 and Aoatg33 are indispensable for mitophagy, and contribute to conidiation, the stress response, and pathogenicity in the nematode-trapping fungus Arthrobotrys oligospora. Microbiol Res 2022; 266:127252. [DOI: 10.1016/j.micres.2022.127252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
7
|
Clergeot PH, Olson Å. Mitonuclear Genetic Interactions in the Basidiomycete Heterobasidion parviporum Involve a Non-conserved Mitochondrial Open Reading Frame. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:779337. [PMID: 37744141 PMCID: PMC10512249 DOI: 10.3389/ffunb.2021.779337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/19/2021] [Indexed: 09/26/2023]
Abstract
The mitochondrial and nuclear genomes of Eukaryotes are inherited separately and consequently follow distinct evolutionary paths. Nevertheless, the encoding of many mitochondrial proteins by the nuclear genome shows the high level of integration they have reached, which makes mitonuclear genetic interactions all the more conceivable. For each species, natural selection has fostered the evolution of coadapted alleles in both genomes, but a population-wise divergence of such alleles could lead to important phenotypic variation, and, ultimately, to speciation. In this study in the Basidiomycete Heterobasidion parviporum, we have investigated the genetic basis of phenotypic variation among laboratory-designed heterokaryons carrying the same pair of haploid nuclei, but a different mitochondrial genome. Radial growth rate data of thirteen unrelated homokaryotic parents and of their heterokaryotic offspring were combined with SNP data extracted from parental genome sequences to identify nuclear and mitochondrial loci involved in mitonuclear interactions. Two nuclear loci encoding mitochondrial proteins appeared as best candidates to engage in a genetic interaction affecting radial growth rate with a non-conserved mitochondrial open reading frame of unknown function and not reported apart from the Russulales order of Basidiomycete fungi. We believe our approach could be useful to investigate several important traits of fungal biology where mitonuclear interactions play a role, including virulence of fungal pathogens.
Collapse
Affiliation(s)
| | - Åke Olson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
8
|
Navarro-Espíndola R, Suaste-Olmos F, Peraza-Reyes L. Dynamic Regulation of Peroxisomes and Mitochondria during Fungal Development. J Fungi (Basel) 2020; 6:E302. [PMID: 33233491 PMCID: PMC7711908 DOI: 10.3390/jof6040302] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisomes and mitochondria are organelles that perform major functions in the cell and whose activity is very closely associated. In fungi, the function of these organelles is critical for many developmental processes. Recent studies have disclosed that, additionally, fungal development comprises a dynamic regulation of the activity of these organelles, which involves a developmental regulation of organelle assembly, as well as a dynamic modulation of the abundance, distribution, and morphology of these organelles. Furthermore, for many of these processes, the dynamics of peroxisomes and mitochondria are governed by common factors. Notably, intense research has revealed that the process that drives the division of mitochondria and peroxisomes contributes to several developmental processes-including the formation of asexual spores, the differentiation of infective structures by pathogenic fungi, and sexual development-and that these processes rely on selective removal of these organelles via autophagy. Furthermore, evidence has been obtained suggesting a coordinated regulation of organelle assembly and dynamics during development and supporting the existence of regulatory systems controlling fungal development in response to mitochondrial activity. Gathered information underscores an important role for mitochondrial and peroxisome dynamics in fungal development and suggests that this process involves the concerted activity of these organelles.
Collapse
Affiliation(s)
| | | | - Leonardo Peraza-Reyes
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.N.-E.); (F.S.-O.)
| |
Collapse
|
9
|
Tong Y, Wu H, Liu Z, Wang Z, Huang B. G-Protein Subunit Gα i in Mitochondria, MrGPA1, Affects Conidiation, Stress Resistance, and Virulence of Entomopathogenic Fungus Metarhizium robertsii. Front Microbiol 2020; 11:1251. [PMID: 32612588 PMCID: PMC7309505 DOI: 10.3389/fmicb.2020.01251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
G proteins are critical modulators or transducers in various transmembrane signaling systems. They play key roles in numerous biological processes in fungi, including vegetative growth, development of infection-related structures, asexual conidiation, and virulence. However, functions of G proteins in entomopathogenic fungi remain unclear. Here, we characterized the roles of MrGPA1, a G-protein subunit Gαi, in conidiation, stress resistance, and virulence in Metarhizium robertsii. MrGPA1 was localized in the mitochondria. MrGpa1 deletion resulted in a significant reduction (47%) in the conidiation capacity, and reduced expression of several key conidiation-related genes, including fluG, flbD, brlA, wetA, phiA, and stuA. Further, MrGpa1 disruption resulted in decreased fungal sensitivity to UV irradiation and thermal stress, as determined based on conidial germination of ΔMrGpa1 and wild-type (WT) strains. Chemical stress analysis indicated that MrGpa1 contributes to fungal antioxidant capacity and cell wall integrity, but is not involved in tolerance to antifungal drug and osmotic stress. Importantly, insect bioassays involving (topical inoculation and injection) of Galleria mellonella larvae revealed decreased virulence of ΔMrGpa1 strain after cuticle infection. This was accompanied by decreased rates of appressorium formation and reduced expression of several cuticle penetration-related genes. Further assays showed that MrGpa1 regulated intracellular cyclic AMP (cAMP) levels, but feeding with cAMP could not recover the appressorium formation rate of ΔMrGpa1. These observations suggest that MrGpa1 contributes to the regulation of conidiation, UV irradiation, thermal stress response, antioxidant capacity, and cell wall integrity in M. robertsii. This gene is also involved in insect cuticle penetration during infection. These findings raise the possibility of designing powerful strategies for genetic improvement of M. robertsii conidiation capacity and virulence for killing pests.
Collapse
Affiliation(s)
- Youmin Tong
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Hao Wu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Zhenbang Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhangxun Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
Medina R, Franco MEE, Bartel LC, Martinez Alcántara V, Saparrat MCN, Balatti PA. Fungal Mitogenomes: Relevant Features to Planning Plant Disease Management. Front Microbiol 2020; 11:978. [PMID: 32547508 PMCID: PMC7272585 DOI: 10.3389/fmicb.2020.00978] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/23/2020] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial genomes (mt-genomes) are characterized by a distinct codon usage and their autonomous replication. Mt-genomes encode highly conserved genes (mt-genes), like proteins involved in electron transport and oxidative phosphorylation but they also carry highly variable regions that are in part responsible for their high plasticity. The degree of conservation of their genes is such that they allow the establishment of phylogenetic relationships even across distantly related species. Here, we describe the mechanisms that generate changes along mt-genomes, which play key roles at enlarging the ability of fungi to adapt to changing environments. Within mt-genomes of fungal pathogens, there are dispensable as well as indispensable genes for survival, virulence and/or pathogenicity. We also describe the different complexes or mechanisms targeted by fungicides, thus addressing a relevant issue regarding disease management. Despite the controversial origin and evolution of fungal mt-genomes, the intrinsic mechanisms and molecular biology involved in their evolution will help to understand, at the molecular level, the strategies for fungal disease management.
Collapse
Affiliation(s)
- Rocio Medina
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | | | - Laura Cecilia Bartel
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Virginia Martinez Alcántara
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mario Carlos Nazareno Saparrat
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
- Instituto de Fisiología Vegetal (INFIVE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Pedro Alberto Balatti
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
11
|
Wang JJ, Peng YJ, Ding JL, Feng MG, Ying SH. Mitochondrial fission is necessary for mitophagy, development and virulence of the insect pathogenic fungus Beauveria bassiana. J Appl Microbiol 2020; 129:411-421. [PMID: 32086853 DOI: 10.1111/jam.14619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022]
Abstract
AIMS Mitochondrial fission is an essential dynamics that maintains mitochondrial morphology and function. This study seeks to determine the roles of mitochondrial fission in the filamentous entomopathogenic fungus Beauveria bassiana. MATERIAL AND METHODS Three fission-related genes (BbFis1, BbMdv1 and BbDnm1) were functionally characterized via protein intracellular localization and construction of gene disruption mutants. RESULTS Mitochondrial localization was only observed for BbFis1 which interacts with BbMdv1, but BbMdv1 did not have interaction with BbDnm1. Single disruption mutant of three genes generated the elongated and enlarged mitochondria which could not be eliminated via the mitophagy. Three mutant strains displayed the reduced ATP synthesis and vegetative growth compared with the wild type. Three genes were involved in the early stage of conidiation and unnecessary for the late stage. However, all three genes significantly contribute to blastospore development under submerged condition, and the loss of BbMdv1 had the greatest effects compared with the losses of BbFis1 or BbDnm1. Finally, disruption of three genes significantly attenuated fungal virulence, but their mutations had different influences. CONCLUSIONS In addition to their consistent roles in mitochondrial division and mitophagy, three fission-related genes perform divergent roles in the development and virulence of the entomopathogenic fungus B. bassiana. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows that mitochondrial fission is associated with lifecycle of B. bassiana. These findings provide information for the manipulation of fungal physiology and facilitate the application of entomopathogenic fungi.
Collapse
Affiliation(s)
- J-J Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Y-J Peng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - J-L Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - M-G Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - S-H Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Kou Y, He Y, Qiu J, Shu Y, Yang F, Deng Y, Naqvi NI. Mitochondrial dynamics and mitophagy are necessary for proper invasive growth in rice blast. MOLECULAR PLANT PATHOLOGY 2019; 20:1147-1162. [PMID: 31218796 PMCID: PMC6640187 DOI: 10.1111/mpp.12822] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Magnaporthe oryzae causes blast disease, which is one of the most devastating infections in rice and several important cereal crops. Magnaporthe oryzae needs to coordinate gene regulation, morphological changes, nutrient acquisition and host evasion in order to invade and proliferate within the plant tissues. Thus far, the molecular mechanisms underlying the regulation of invasive growth in planta have remained largely unknown. We identified a precise filamentous-punctate-filamentous cycle in mitochondrial morphology during Magnaporthe-rice interaction. Interestingly, disruption of such mitochondrial dynamics by deletion of genes regulating either the mitochondrial fusion (MoFzo1) or fission (MoDnm1) machinery, or inhibition of mitochondrial fission using Mdivi-1 caused significant reduction in M. oryzae pathogenicity. Furthermore, exogenous carbon source(s) but not antioxidant treatment delayed such mitochondrial dynamics/transition during invasive growth. In contrast, carbon starvation induced the breakdown of the mitochondrial network and led to more punctate mitochondria in vitro. Such nutrient-based regulation of organellar dynamics preceded MoAtg24-mediated mitophagy, which was found to be essential for proper biotrophic development and invasive growth in planta. We propose that precise mitochondrial dynamics and mitophagy occur during the transition from biotrophy to necrotrophy and are required for proper induction and establishment of the blast disease in rice.
Collapse
Affiliation(s)
- Yanjun Kou
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Yunlong He
- Temasek Life Sciences Laboratory, and Department of Biological Sciences, 1 Research LinkNational University of Singapore117604Singapore
| | - Jiehua Qiu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Yazhou Shu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Fan Yang
- Temasek Life Sciences Laboratory, and Department of Biological Sciences, 1 Research LinkNational University of Singapore117604Singapore
| | - YiZhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhou510642China
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, and Department of Biological Sciences, 1 Research LinkNational University of Singapore117604Singapore
| |
Collapse
|
13
|
Rogov AG, Ovchenkova AP, Goleva TN, Kireev II, Zvyagilskaya RA. New yeast models for studying mitochondrial morphology as affected by oxidative stress and other factors. Anal Biochem 2018; 552:24-29. [DOI: 10.1016/j.ab.2017.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/28/2017] [Accepted: 04/10/2017] [Indexed: 11/26/2022]
|
14
|
Verma S, Shakya VPS, Idnurm A. Exploring and exploiting the connection between mitochondria and the virulence of human pathogenic fungi. Virulence 2018; 9:426-446. [PMID: 29261004 PMCID: PMC5955198 DOI: 10.1080/21505594.2017.1414133] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are best known for their role in the production of ATP; however, recent research implicates other mitochondrial functions in the virulence of human pathogenic fungi. Inhibitors of mitochondrial succinate dehydrogenase or the electron transport chain are successfully used to combat plant pathogenic fungi, but similar inhibition of mitochondrial functions has not been pursued for applications in medical mycology. Advances in understanding mitochondrial function relevant to human pathogenic fungi are in four major directions: 1) the role of mitochondrial morphology in virulence, 2) mitochondrial genetics, with a focus on mitochondrial DNA recombination and mitochondrial inheritance 3) the role of mitochondria in drug resistance, and 4) the interaction of mitochondria with other organelles. Collectively, despite the similarities in mitochondrial functions between fungi and animals, this organelle is currently an under-explored potential target to treat medical mycoses. Future research could define and then exploit those mitochondrial components best suited as drug targets.
Collapse
Affiliation(s)
- Surbhi Verma
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Viplendra P. S. Shakya
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Chen X, Shen M, Yang J, Xing Y, Chen D, Li Z, Zhao W, Zhang Y. Peroxisomal fission is induced during appressorium formation and is required for full virulence of the rice blast fungus. MOLECULAR PLANT PATHOLOGY 2017; 18:222-237. [PMID: 26950649 PMCID: PMC6638267 DOI: 10.1111/mpp.12395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Peroxisomes are involved in various metabolic processes and are important for virulence in different pathogenic fungi. How peroxisomes rapidly emerge in the appressorium during fungal infection is poorly understood. Here, we describe a gene, PEF1, which can regulate peroxisome formation in the appressorium by controlling peroxisomal fission, and is required for plant infection in the rice blast fungus Magnaporthe oryzae. Targeted deletion of PEF1 resulted in a reduction in virulence and a delay in penetration and invasive growth in host cells. PEF1 was particularly expressed during appressorial development, and its encoding protein was co-localized with peroxisomes during appressorial development. Compared with the massive vesicle-shaped peroxisomes formed in the wild-type appressorium, the Δpef1 mutant could only form stringy linked immature peroxisomes, suggesting that PEF1 was involved in peroxisomal fission during appressorium formation. We also found that the Δpef1 mutant could not utilize fatty acids efficiently, which can improve significantly the expression level of PEF1 and induce peroxisomal fission. As expected, the Δpef1 mutant showed reduced intracellular production of reactive oxygen species (ROS) during appressorium formation and induced ROS accumulation in host cells during infection. Taken together, PEF1-mediated peroxisomal fission is important for fungal infection by controlling the number of peroxisomes in the appressorium.
Collapse
Affiliation(s)
- Xiao‐Lin Chen
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhan430070China
| | - Mi Shen
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Yunfei Xing
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Deng Chen
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Zhigang Li
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Yan Zhang
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
16
|
MoDnm1 Dynamin Mediating Peroxisomal and Mitochondrial Fission in Complex with MoFis1 and MoMdv1 Is Important for Development of Functional Appressorium in Magnaporthe oryzae. PLoS Pathog 2016; 12:e1005823. [PMID: 27556292 PMCID: PMC4996533 DOI: 10.1371/journal.ppat.1005823] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/22/2016] [Indexed: 11/24/2022] Open
Abstract
Dynamins are large superfamily GTPase proteins that are involved in various cellular processes including budding of transport vesicles, division of organelles, cytokinesis, and pathogen resistance. Here, we characterized several dynamin-related proteins from the rice blast fungus Magnaporthe oryzae and found that MoDnm1 is required for normal functions, including vegetative growth, conidiogenesis, and full pathogenicity. In addition, we found that MoDnm1 co-localizes with peroxisomes and mitochondria, which is consistent with the conserved role of dynamin proteins. Importantly, MoDnm1-dependent peroxisomal and mitochondrial fission involves functions of mitochondrial fission protein MoFis1 and WD-40 repeat protein MoMdv1. These two proteins display similar cellular functions and subcellular localizations as MoDnm1, and are also required for full pathogenicity. Further studies showed that MoDnm1, MoFis1 and MoMdv1 are in complex to regulate not only peroxisomal and mitochondrial fission, pexophagy and mitophagy progression, but also appressorium function and host penetration. In summary, our studies provide new insights into how MoDnm1 interacts with its partner proteins to mediate peroxisomal and mitochondrial functions and how such regulatory events may link to differentiation and pathogenicity in the rice blast fungus. Dynamin superfamily members are involved in budding of transport vesicles and division of organelles in eukaryotic cells. To further understand how dynamins function in phytopathogenic fungi, we characterized several dynamin-related proteins from the rice blast fungus M. oryzae. In addition to revealing major conserved dynamin functions, we described how MoDnm1 interacts with mitochondrial fission protein MoFis1 and WD repeat adaptor protein MoMdv1 to mediate peroxisomal and mitochondrial fission, pexophagy and mitophagy. Importantly, we provided evidence to demonstrate that MoDnm1-, MoFis1- and MoMdv1-dependent peroxisomal and mitochondrial functions are linked to differentiation and pathogenicity of the rice blast fungus.
Collapse
|
17
|
Roles of Peroxisomes in the Rice Blast Fungus. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9343417. [PMID: 27610388 PMCID: PMC5004026 DOI: 10.1155/2016/9343417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022]
Abstract
The rice blast fungus, Magnaporthe oryzae, is a model plant pathogenic fungus and is a severe threat to global rice production. Over the past two decades, it has been found that the peroxisomes play indispensable roles during M. oryzae infection. Given the importance of the peroxisomes for virulence, we review recent advances of the peroxisomes roles during M. oryzae infection processes. We firstly introduce the molecular mechanisms and life cycles of the peroxisomes. And then, metabolic functions related to the peroxisomes are also discussed. Finally, we provide an overview of the relationship between peroxisomes and pathogenicity.
Collapse
|