1
|
Willemin MS, Armand F, Hamelin R, Maillard J, Holliger C. Conditional essentiality of the 11-subunit complex I-like enzyme in strict anaerobes: the case of Desulfitobacterium hafniense strain DCB-2. Front Microbiol 2024; 15:1388961. [PMID: 38993499 PMCID: PMC11238625 DOI: 10.3389/fmicb.2024.1388961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
In oxidative phosphorylation, respiratory complex I serves as an entry point in the electron transport chain for electrons generated in catabolic processes in the form of NADH. An ancestral version of the complex, lacking the NADH-oxidising module, is encoded in a significant number of bacterial genomes. Amongst them is Desulfitobacterium hafniense, a strict anaerobe capable of conserving energy via organohalide respiration. This study investigates the role of the complex I-like enzyme in D. hafniense energy metabolism using rotenone as a specific complex I inhibitor under different growth conditions. The investigation revealed that the complex I-like enzyme was essential for growth with lactate and pyruvate but not in conditions involving H2 as an electron donor. In addition, a previously published proteomic dataset of strain DCB-2 was analysed to reveal the predominance of the complex under different growth conditions and to identify potential redox partners. This approach revealed seven candidates with expression patterns similar to Nuo homologues, suggesting the use of diverse electron sources. Based on these results, we propose a model where the complex I-like enzyme serves as an electron entry point into the respiratory chain for substrates delivering electrons within the cytoplasm, such as lactate or pyruvate, with ferredoxins shuttling electrons to the complex.
Collapse
Affiliation(s)
- Mathilde Stéphanie Willemin
- Laboratory for Environmental Biotechnology (LBE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Florence Armand
- Proteomic Core Facility (PCF), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Romain Hamelin
- Proteomic Core Facility (PCF), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Maillard
- Laboratory for Environmental Biotechnology (LBE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christof Holliger
- Laboratory for Environmental Biotechnology (LBE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
2
|
Maimone NM, Apaza-Castillo GA, Quecine MC, de Lira SP. Accessing the specialized metabolome of actinobacteria from the bulk soil of Paullinia cupana Mart. on the Brazilian Amazon: a promising source of bioactive compounds against soybean phytopathogens. Braz J Microbiol 2024; 55:1863-1882. [PMID: 38421597 PMCID: PMC11153476 DOI: 10.1007/s42770-024-01286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024] Open
Abstract
The Amazon rainforest, an incredibly biodiverse ecosystem, has been increasingly vulnerable to deforestation. Despite its undeniable importance and potential, the Amazonian microbiome has historically received limited study, particularly in relation to its unique arsenal of specialized metabolites. Therefore, in this study our aim was to assess the metabolic diversity and the antifungal activity of actinobacterial strains isolated from the bulk soil of Paullinia cupana, a native crop, in the Brazilian Amazon Rainforest. Extracts from 24 strains were subjected to UPLC-MS/MS analysis using an integrative approach that relied on the Chemical Structural and Compositional Similarity (CSCS) metric, GNPS molecular networking, and in silico dereplication tools. This procedure allowed the comprehensive understanding of the chemical space encompassed by these actinobacteria, which consists of features belonging to known bioactive metabolite classes and several unannotated molecular families. Among the evaluated strains, five isolates exhibited bioactivity against a panel of soybean fungal phytopathogens (Rhizoctonia solani, Macrophomina phaseolina, and Sclerotinia sclerotiorum). A focused inspection led to the annotation of pepstatins, oligomycins, hydroxamate siderophores and dorrigocins as metabolites produced by these bioactive strains, with potentially unknown compounds also comprising their metabolomes. This study introduces a pragmatic protocol grounded in established and readily available tools for the annotation of metabolites and the prioritization of strains to optimize further isolation of specialized metabolites. Conclusively, we demonstrate the relevance of the Amazonian actinobacteria as sources for bioactive metabolites useful for agriculture. We also emphasize the importance of preserving this biome and conducting more in-depth studies on its microbiota.
Collapse
Affiliation(s)
- Naydja Moralles Maimone
- College of Agriculture "Luiz de Queiroz", Department of Exact Sciences, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Gladys Angélica Apaza-Castillo
- College of Agriculture "Luiz de Queiroz", Department of Genetics, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Maria Carolina Quecine
- College of Agriculture "Luiz de Queiroz", Department of Genetics, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Simone Possedente de Lira
- College of Agriculture "Luiz de Queiroz", Department of Exact Sciences, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
3
|
Zhan X, Wang R, Zhang M, Li Y, Sun T, Chen J, Li J, Liu T. Trichoderma-derived emodin competes with ExpR and ExpI of Pectobacterium carotovorum subsp. carotovorum to biocontrol bacterial soft rot. PEST MANAGEMENT SCIENCE 2024; 80:1039-1052. [PMID: 37831609 DOI: 10.1002/ps.7835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Quorum sensing inhibitors (QSIs) are an emerging control tool that inhibits the quorum sensing (QS) system of pathogenic bacteria. We aimed to screen for potential QSIs in the metabolites of Trichoderma and to explore their inhibitory mechanisms. RESULTS We screened a strain of Trichoderma asperellum LN004, which demonstrated the ability to inhibit the color development of Chromobacterium subtsugae CV026, primarily attributed to the presence of emodin as its key QSI component. The quantitative polymerase chain reaction with reverse transcription results showed that after emodin treatment of Pectobacterium carotovorum subsp. carotovorum (Pcc), plant cell wall degrading enzyme-related synthetic genes were significantly downregulated, and the exogenous enzyme synthesis gene negative regulator (rsmA) was upregulated 3.5-fold. Docking simulations indicated that emodin could be a potential ligand for ExpI and ExpR proteins because it exhibited stronger competition than the natural ligands in Pcc. In addition, western blotting showed that emodin attenuated the degradation of n-acylhomoserine lactone on the ExpR protein and protected it. Different concentrations of emodin reduced the activity of pectinase, cellulase, and protease in Pcc by 20.81%-72.21%, 8.38%-52.73%, and 3.57%-47.50%. Lesion size in Chinese cabbages, carrots and cherry tomatoes following Pcc infestation was reduced by 10.02%-68.57%, 40.17%-88.56% and 11.36%-86.17%. CONCLUSION Emodin from T. asperellum LN004 as a QSI can compete to bind both ExpI and ExpR proteins, interfering with the QS of Pcc and reducing the production of virulence factors. The first molecular mechanism reveals the ability of emodin as a QSI to competitively inhibit two QS proteins simultaneously. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Zhan
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
| | - Rui Wang
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
| | - Manman Zhang
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
| | - Yuejiao Li
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
| | - Tao Sun
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jishun Li
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Tong Liu
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
- Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| |
Collapse
|
4
|
Alghamdi S, Khandelwal K, Pandit S, Roy A, Ray S, Alsaiari AA, Aljuaid A, Almehmadi M, Allahyani M, Sharma R, Anand J, Alshareef AA. Application of nanomaterials as potential quorum quenchers for disease: Recent advances and challenges. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:13-31. [PMID: 37666284 DOI: 10.1016/j.pbiomolbio.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Chemical signal molecules are used by bacteria to interact with one another. Small hormone-like molecules known as autoinducers are produced, released, detected, and responded to during chemical communication. Quorum Sensing (QS) is the word for this procedure; it allows bacterial populations to communicate and coordinate group behavior. Several research has been conducted on using inhibitors to prevent QS and minimize the detrimental consequences. Through the enzymatic breakdown of the autoinducer component, by preventing the formation of autoinducers, or by blocking their reception by adding some compounds (inhibitors) that can mimic the autoinducers, a technique known as "quorum quenching" (QQ) disrupts microbial communication. Numerous techniques, including colorimetry, electrochemistry, bioluminescence, chemiluminescence, fluorescence, chromatography-mass spectroscopy, and many more, can be used to test QS/QQ. They all permit quantitative and qualitative measurements of QS/QQ molecules. The mechanism of QS and QQ, as well as the use of QQ in the prevention of biofilms, are all elaborated upon in this writing, along with the fundamental study of nanoparticle (NP)in QQ. Q.
Collapse
Affiliation(s)
- Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Krisha Khandelwal
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University Greater Noida, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University Greater Noida, India
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India.
| | - Subhasree Ray
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University Greater Noida, India
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Abdulelah Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Jigisha Anand
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Ahmad Adnan Alshareef
- Laboratory and Blood Bank Department, Alnoor Specialist Hospital, Ministry of Health, Makkah, Saudi Arabia
| |
Collapse
|
5
|
Morgan RN, Ali AA, Alshahrani MY, Aboshanab KM. New Insights on Biological Activities, Chemical Compositions, and Classifications of Marine Actinomycetes Antifouling Agents. Microorganisms 2023; 11:2444. [PMID: 37894102 PMCID: PMC10609280 DOI: 10.3390/microorganisms11102444] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Biofouling is the assemblage of undesirable biological materials and macro-organisms (barnacles, mussels, etc.) on submerged surfaces, which has unfavorable impacts on the economy and maritime environments. Recently, research efforts have focused on isolating natural, eco-friendly antifouling agents to counteract the toxicities of synthetic antifouling agents. Marine actinomycetes produce a multitude of active metabolites, some of which acquire antifouling properties. These antifouling compounds have chemical structures that fall under the terpenoids, polyketides, furanones, and alkaloids chemical groups. These compounds demonstrate eminent antimicrobial vigor associated with antiquorum sensing and antibiofilm potentialities against both Gram-positive and -negative bacteria. They have also constrained larval settlements and the acetylcholinesterase enzyme, suggesting a strong anti-macrofouling activity. Despite their promising in vitro and in vivo biological activities, scaled-up production of natural antifouling agents retrieved from marine actinomycetes remains inapplicable and challenging. This might be attributed to their relatively low yield, the unreliability of in vitro tests, and the need for optimization before scaled-up manufacturing. This review will focus on some of the most recent marine actinomycete-derived antifouling agents, featuring their biological activities and chemical varieties after providing a quick overview of the disadvantages of fouling and commercially available synthetic antifouling agents. It will also offer different prospects of optimizations and analysis to scale up their industrial manufacturing for potential usage as antifouling coatings and antimicrobial and therapeutic agents.
Collapse
Affiliation(s)
- Radwa N. Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor St, Cairo 11787, Egypt;
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 9088, Saudi Arabia;
| | - Khaled M. Aboshanab
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo 11566, Egypt
| |
Collapse
|
6
|
Maddela NR, Abiodun AS, Zhang S, Prasad R. Biofouling in Membrane Bioreactors-Mitigation and Current Status: a Review. Appl Biochem Biotechnol 2023; 195:5643-5668. [PMID: 36418712 DOI: 10.1007/s12010-022-04262-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
Biological fouling as termed biofouling is caused by varied living organisms and is difficult to eliminate from the environment thus becoming a major issue during membrane bioreactors. Biofouling in membrane bioreactors (MBRs) is a crucial problem in increasing liquid pressure due to reduced pore diameter, clogging of the membrane pores, and alteration of the chemical composition of the water which greatly limits the growth of MBRs. Thus, membrane biofouling and/or microbial biofilms is a hot research topic to improve the market competitiveness of the MBR technology. Though several antibiofouling strategies (addition of bioflocculant or sponge into MBRs) came to light, biological approaches are sustainable and more practicable. Among the biological approaches, quorum sensing-based biofouling control (so-called quorum quenching) is an interesting and promising tool in combating biofouling issues in the MBRs. Several review articles have been published in the area of membrane biofouling and mitigation approaches. However, there is no single source of information about biofouling and/or biofilm formation in different environmental settings and respective problems, antibiofilm strategies and current status, quorum quenching, and its futurity. Thus, the objectives of the present review were to provide latest insights on mechanism of membrane biofouling, quorum sensing molecules, biofilm-associated problems in different environmental setting and antibiofilm strategies, special emphasis on quorum quenching, and its futurity in the biofilm/biofouling control. We believe that these insights greatly help in the better understanding of biofouling and aid in the development of sustainable antibiofouling strategies.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Departmento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, Ecuador
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - Aransiola Sesan Abiodun
- Bioresources Development Centre, National Biotechnology Development Agency (NABDA), Ogbomoso, Nigeria
| | - Shaoqing Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
7
|
Zhang Z, Sun Y, Yi Y, Bai X, Zhu L, Zhu J, Gu M, Zhu Y, Jiang L. Screening and Identification of a Streptomyces Strain with Quorum-Sensing Inhibitory Activity and Effect of the Crude Extracts on Virulence Factors of Pseudomonas aeruginosa. Microorganisms 2023; 11:2079. [PMID: 37630639 PMCID: PMC10458028 DOI: 10.3390/microorganisms11082079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Quorum-sensing (QS) is involved in numerous physiological processes in bacteria, such as biofilm formation, sporulation, and virulence formation. Therefore, the search for new quorum-sensing inhibitors (QSI) is a promising strategy that opens up a new perspective for controlling QS-mediated bacterial pathogens. To explore new QSIs, a strain named Streptomyces sp. D67 with QS inhibitory activity was isolated from the soil of the arid zone around the Kumutag Desert in Xinjiang. Phylogenetic analyses demonstrated that strain D67 shared the highest similarity with Streptomyces ardesiacus NBRC 15402T (98.39%), which indicated it represented a potential novel species in the Streptomyces genus. The fermentation crude extracts of strain D67 can effectively reduce the violacein production produced by Chromobacterium violaceum CV026 and the swarming and swimming abilities of Pseudomonas aeruginosa. It also has significant inhibitory activity on the production of virulence factors such as biofilm, pyocyanin, and rhamnolipids of P. aeruginosa in a significant concentration-dependent manner, but not on protease activity. A total of 618 compounds were identified from the fermentation crude extracts of strain D67 by LC-MS, and 19 compounds with significant QS inhibitory activity were observed. Overall, the strain with QS inhibitory activity was screened from Kumutag Desert in Xinjiang for the first time, which provided a basis for further research and development of new QSI.
Collapse
Affiliation(s)
- Zhidong Zhang
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China;
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| | - Yang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| | - Yuanyang Yi
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China;
| | - Xiaoyu Bai
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China;
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jing Zhu
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
| | - Meiying Gu
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
| | - Yanlei Zhu
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China;
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| |
Collapse
|
8
|
Effects of Rhapontigenin as a Novel Quorum-Sensing Inhibitor on Exoenzymes and Biofilm Formation of Pectobacterium carotovorum subsp. carotovorum and Its Application in Vegetables. Molecules 2022; 27:molecules27248878. [PMID: 36558013 PMCID: PMC9788590 DOI: 10.3390/molecules27248878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to devise a method to protect Chinese cabbage (Brassica chinensis) and lettuce (Lactuca sativa) from bacterial-disease-induced damage during storage. Thus, the potential of rhapontigenin as a quorum sensing (QS) inhibitor against Pectobacterium carotovorum subsp. carotovorum (P. carotovorum) was evaluated. The QS inhibitory effects of rhapontigenin were confirmed by significant inhibition of the production of violacein in Chromobacterium violaceum CV026 (C. violaceum, CV026). The inhibitory effects of rhapontigenin on the motility, exopolysaccharide (EPS) production, biofilm formation and virulence−exoenzyme synthesis of P. carotovorum were investigated. Acyl-homoserine lactones (AHLs) were quantified using liquid chromatography−mass spectrometry (LC−MS). The inhibitory effects of rhapontigenin on the development of biofilms were observed using fluorescence microscopy and scanning electron microscopy (SEM). A direct-inoculation assay was performed to investigate the QS inhibitory effects of rhapontigenin on P. carotovorum in Chinese cabbage and lettuce. Our results demonstrated that rhapontigenin exhibited significant inhibition (p < 0.05) of the motility, EPS production, biofilm formation, virulence−exoenzyme synthesis and AHL production of P. carotovorum. Additionally, the result of the direct-inoculation assay revealed that rhapontigenin might provide vegetables with significant shelf-life extension and prevent quality loss by controlling the spread of soft-rot symptoms. Consequently, the study provided a significant insight into the potential of rhapontigenin as a QS inhibitor against P. carotovorum.
Collapse
|
9
|
Kang JE, Hwang S, Yoo N, Kim BS, Chung EH. A resveratrol oligomer, hopeaphenol suppresses virulence activity of Pectobacterium atrosepticum via the modulation of the master regulator, FlhDC. Front Microbiol 2022; 13:999522. [DOI: 10.3389/fmicb.2022.999522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Pectobacterium atrosepticum (P. atrosepticum: Pba) which causes potato soft rot and blackleg is a notorious plant pathogen worldwide. Discovery of new types of antimicrobial chemicals that target specifically to virulence factors such as bacterial motility and extracellular enzymes is required for protecting crops from pathogenic infection. A transcriptomic analysis of Pba upon hopeaphenol treatment revealed that bacterial motility-related gene expression, including a master regulator flhDC genes, was significantly influenced by hopeaphenol. We further generated a double knock-out mutant of flhDC genes by CRISPR/Cas9 system and confirmed phenotypic changes in bacterial motility, transcription of extracellular enzymes, and disease development consistent with the result of wild-type treated with hopeaphenol. The hopeaphenol-treated Pba strains, wild-type, double mutant, and complemented strain were unable to secrete the enzymes in vitro, while ΔflhDC double mutant strain reduced the secretion. Thus, our study supports that FlhDC is essential for the virulence of Pba, and proposes that hopeaphenol modulates FlhDC-dependent virulence pathways, suggesting a potential of hopeaphenol as an anti-virulence agent to manage potato soft rot and blackleg diseases.
Collapse
|
10
|
Alam K, Mazumder A, Sikdar S, Zhao YM, Hao J, Song C, Wang Y, Sarkar R, Islam S, Zhang Y, Li A. Streptomyces: The biofactory of secondary metabolites. Front Microbiol 2022; 13:968053. [PMID: 36246257 PMCID: PMC9558229 DOI: 10.3389/fmicb.2022.968053] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Natural products derived from microorganisms serve as a vital resource of valuable pharmaceuticals and therapeutic agents. Streptomyces is the most ubiquitous bacterial genus in the environments with prolific capability to produce diverse and valuable natural products with significant biological activities in medicine, environments, food industries, and agronomy sectors. However, many natural products remain unexplored among Streptomyces. It is exigent to develop novel antibiotics, agrochemicals, anticancer medicines, etc., due to the fast growth in resistance to antibiotics, cancer chemotherapeutics, and pesticides. This review article focused the natural products secreted by Streptomyces and their function and importance in curing diseases and agriculture. Moreover, it discussed genomic-driven drug discovery strategies and also gave a future perspective for drug development from the Streptomyces.
Collapse
Affiliation(s)
- Khorshed Alam
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Arpita Mazumder
- Department of Microbiology, University of Chittagong, Chittagong, Bangladesh
| | - Suranjana Sikdar
- Department of Microbiology, University of Chittagong, Chittagong, Bangladesh
| | - Yi-Ming Zhao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jinfang Hao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chaoyi Song
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yanyan Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Rajib Sarkar
- Industrial Microbiology Research Division, BCSIR Chattogram Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram, Bangladesh
| | - Saiful Islam
- Industrial Microbiology Research Division, BCSIR Chattogram Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram, Bangladesh
- Saiful Islam,
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Youming Zhang,
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Aiying Li,
| |
Collapse
|
11
|
Ruiz CH, Osorio-Llanes E, Trespalacios MH, Mendoza-Torres E, Rosales W, Gómez CMM. Quorum Sensing Regulation as a Target for Antimicrobial Therapy. Mini Rev Med Chem 2021; 22:848-864. [PMID: 34856897 DOI: 10.2174/1389557521666211202115259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 05/20/2021] [Accepted: 09/04/2021] [Indexed: 11/22/2022]
Abstract
Some bacterial species use a cell-to-cell communication mechanism called Quorum Sensing (QS). Bacteria release small diffusible molecules, usually termed signals which allow the activation of beneficial phenotypes that guarantee bacterial survival and the expression of a diversity of virulence genes in response to an increase in population density. The study of the molecular mechanisms that relate signal molecules with bacterial pathogenesis is an area of growing interest due to its use as a possible therapeutic alternative through the development of synthetic analogues of autoinducers as a strategy to regulate bacterial communication as well as the study of bacterial resistance phenomena, the study of these relationships is based on the structural diversity of natural or synthetic autoinducers and their ability to inhibit bacterial QS, which can be approached with a molecular perspective from the following topics: i) Molecular signals and their role in QS regulation; ii) Strategies in the modulation of Quorum Sensing; iii) Analysis of Bacterial QS circuit regulation strategies; iv) Structural evolution of natural and synthetic autoinducers as QS regulators. This mini-review allows a molecular view of the QS systems, showing a perspective on the importance of the molecular diversity of autoinducer analogs as a strategy for the design of new antimicrobial agents.
Collapse
Affiliation(s)
- Caterine Henríquez Ruiz
- Grupo de Investigación en Química Orgánica y Biomédica. Faculty of Basic Sciences. Universidad del Atlántico. Barranquilla. Colombia
| | - Estefanie Osorio-Llanes
- Faculty of Exact and Natural sciences. Grupo de Investigación Avanzada en Biomedicina. Universidad Libre. Barranquilla. Colombia
| | - Mayra Hernández Trespalacios
- Grupo de Investigación en Química Orgánica y Biomédica. Faculty of Basic Sciences. Universidad del Atlántico. Barranquilla. Colombia
| | - Evelyn Mendoza-Torres
- Faculty of Health Sciences. Grupo de Investigación Avanzada en Biomedicina-Universidad Libre. Barranquilla. Colombia
| | - Wendy Rosales
- Faculty of Exact and Natural sciences. Grupo de Investigación Avanzada en Biomedicina. Universidad Libre. Barranquilla. Colombia
| | - Carlos Mario Meléndez Gómez
- Grupo de Investigación en Química Orgánica y Biomédica. Faculty of Basic Sciences. Universidad del Atlántico. Barranquilla. Colombia
| |
Collapse
|
12
|
Tarantini FS, Brunati M, Taravella A, Carrano L, Parenti F, Hong KW, Williams P, Chan KG, Heeb S, Chan WC. Actinomadura graeca sp. nov.: A novel producer of the macrocyclic antibiotic zelkovamycin. PLoS One 2021; 16:e0260413. [PMID: 34847153 PMCID: PMC8631618 DOI: 10.1371/journal.pone.0260413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022] Open
Abstract
As part of a screening programme for antibiotic-producing bacteria, a novel Actinomadura species was discovered from a soil sample collected in Santorini, Greece. Preliminary 16S rRNA gene sequence comparisons highlighted Actinomadura macra as the most similar characterised species. However, whole-genome sequencing revealed an average nucleotide identity (ANI) value of 89% with A. macra, the highest among related species. Further phenotypic and chemotaxonomic analyses confirmed that the isolate represents a previously uncharacterised species in the genus Actinomadura, for which the name Actinomadura graeca sp. nov. is proposed (type strain 32-07T). The G+C content of A. graeca 32-07 is 72.36%. The cell wall contains DL-diaminopimelic acid, intracellular sugars are glucose, ribose and galactose, the predominant menaquinone is MK-9(H6), the major cellular lipid is phosphatidylinositol and fatty acids consist mainly of hexadecanoic acid. No mycolic acid was detected. Furthermore, A. graeca 32-07 has been confirmed as a novel producer of the non-ribosomal peptide antibiotic zelkovamycin and we report herein a provisional description of the unique biosynthetic gene cluster.
Collapse
Affiliation(s)
- Francesco Saverio Tarantini
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Mara Brunati
- Fondazione Istituto Insubrico di Ricerca per la Vita (FIIRV), Gerenzano, Italy
| | - Anna Taravella
- Fondazione Istituto Insubrico di Ricerca per la Vita (FIIRV), Gerenzano, Italy
| | - Lucia Carrano
- Fondazione Istituto Insubrico di Ricerca per la Vita (FIIRV), Gerenzano, Italy
| | - Francesco Parenti
- Fondazione Istituto Insubrico di Ricerca per la Vita (FIIRV), Gerenzano, Italy
| | - Kar Wai Hong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Paul Williams
- Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Stephan Heeb
- Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
- * E-mail: (SH); (WCC)
| | - Weng C. Chan
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
- * E-mail: (SH); (WCC)
| |
Collapse
|
13
|
Azad SM, Jin Y, Ser HL, Goh BH, Lee LH, Thawai C, He YW. Biological insights into the piericidin family of microbial metabolites. J Appl Microbiol 2021; 132:772-784. [PMID: 34260807 DOI: 10.1111/jam.15222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/20/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023]
Abstract
Extensively produced by members of the genus Streptomyces, piericidins are a large family of microbial metabolites, which consist of main skeleton of 4-pyridinol with methylated polyketide side chain. Nonetheless, these metabolites show differences in their bioactive potentials against micro-organisms, insects and tumour cells. Due to its close structural similarity with coenzyme Q, piericidins also possess an inhibitory activity against NADH dehydrogenase as well as Photosystem II. This review studied the latest research progress of piericidins, covering the chemical structure and physical properties of newly identified members, bioactivities, biosynthetic pathway with gene clusters and future prospect. With the increasing incidence of drug-resistant human pathogen strains and cancers, this review aimed to provide clues for the development of either new potential antibiotics or anti-tumour agents.
Collapse
Affiliation(s)
- Sepideh M Azad
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Jin
- School of Biotechnology, East China Science and Technology University, Shanghai, China
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group (NBDD), Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Malaysia
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX),, School of Pharmacy, Monash University Malaysia, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Malaysia
| | - Chitti Thawai
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Disrupting the quorum sensing mediated virulence in soft rot causing Pectobacterium carotovorum by marine sponge associated Bacillus sp. OA10. World J Microbiol Biotechnol 2021; 37:5. [PMID: 33392779 DOI: 10.1007/s11274-020-02982-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
Strains of genus Pectobacterium are major cause of soft rot diseases in fruits and vegetables worldwide. Traditional control methods have not been very successful in combating the pathogenesis. As a result there has been an emerging need for developing an alternative ecofriendly and economical strategy. The pathogenesis of Pectobacterium sp. is mediated by quorum sensing (QS) and approaches based on inhibition of QS system to shut down the virulence genes without affecting growth of the pathogen may serve the purpose. Bacillus sp. OA10 associated with purple sponge Haliclona sp. was found to possess extracellular quorum quenching activity. The OA10 extract inhibited QS dependent virulence of Pectobacterium carotovorum subsp. carotovorum BR1 (PccBR1) at low concentrations (0.2 mg) as evident from 77.56 ± 6.17% reduction in potato maceration with complete inhibition by 0.8 mg. Inhibition of plant cell wall degrading enzymes (PCWDE) and carbapenem production by PccBR1 in presence of OA10 extract indicated disruption of the two QS pathways ExpI/ExpR and CarI/CarR in PccBR1. Bacillus sp. OA10 was not found to degrade acyl homoserine lactone (AHL), instead exhibited QSI activity by probably inhibiting AHL synthesis in PccBR1. Absence of enzymatic principle in quorum sensing inhibitor (QSI) is beneficial as enzymes may get inhibited by various factors during their application. OA10 extract did not affect growth of PccBR1, thereby reducing the chance of developing resistance against the QSI. Thus, Bacillus sp. OA10 can prove to be a good prospective candidate for QSI based novel biocontrol formulations.
Collapse
|
15
|
Application of quorum sensing inhibitors for improving anti-biofouling of polyamide reverse osmosis membranes: Direct injection versus surface modification. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117736] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Kang JE, Jeon BJ, Park MY, Kim BS. Inhibitory Activity of Sedum middendorffianum-Derived 4-Hydroxybenzoic Acid and Vanillic Acid on the Type III Secretion System of Pseudomonas syringae pv. tomato DC3000. THE PLANT PATHOLOGY JOURNAL 2020; 36:608-617. [PMID: 33312096 PMCID: PMC7721535 DOI: 10.5423/ppj.oa.08.2020.0162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 05/12/2023]
Abstract
The type III secretion system (T3SS) is a key virulence determinant in the infection process of Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Pathogen constructs a type III apparatus to translocate effector proteins into host cells, which have various roles in pathogenesis. 4-Hydroxybenozic acid and vanillic acid were identified from root extract of Sedum middendorffianum to have inhibitory effect on promoter activity of hrpA gene encoding the structural protein of the T3SS apparatus. The phenolic acids at 2.5 mM significantly suppressed the expression of hopP1, hrpA, and hrpL in the hrp/hrc gene cluster without growth retardation of Pst DC3000. Auto-agglutination of Pst DC3000 cells, which is induced by T3SS, was impaired by the treatment of 4-hydroxybenzoic acid and vanillic acid. Additionally, 2.5 mM of each two phenolic acids attenuated disease symptoms including chlorosis surrounding bacterial specks on tomato leaves. Our results suggest that 4-hydroxybenzoic acid and vanillic acid are potential anti-virulence agents suppressing T3SS of Pst DC3000 for the control of bacterial diseases.
Collapse
Affiliation(s)
- Ji Eun Kang
- Department of Biosystems and Biotechnology, Korea University Graduate School, Seoul 0284, Korea
| | - Byeong Jun Jeon
- Department of Biosystems and Biotechnology, Korea University Graduate School, Seoul 0284, Korea
| | - Min Young Park
- Department of Biosystems and Biotechnology, Korea University Graduate School, Seoul 0284, Korea
| | - Beom Seok Kim
- Department of Biosystems and Biotechnology, Korea University Graduate School, Seoul 0284, Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 0841, Korea
| |
Collapse
|
17
|
Khan F, Oloketuyi SF, Kim YM. Diversity of Bacteria and Bacterial Products as Antibiofilm and Antiquorum Sensing Drugs Against Pathogenic Bacteria. Curr Drug Targets 2020; 20:1156-1179. [PMID: 31020938 DOI: 10.2174/1389450120666190423161249] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/25/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022]
Abstract
The increase in antibiotic resistance of pathogenic bacteria has led to the development of new therapeutic approaches to inhibit biofilm formation as well as interfere quorum sensing (QS) signaling systems. The QS system is a phenomenon in which pathogenic bacteria produce signaling molecules that are involved in cell to cell communication, production of virulence factors, biofilm maturation, and several other functions. In the natural environment, several non-pathogenic bacteria are present as mixed population along with pathogenic bacteria and they control the behavior of microbial community by producing secondary metabolites. Similarly, non-pathogenic bacteria also take advantages of the QS signaling molecule as a sole carbon source for their growth through catabolism with enzymes. Several enzymes are produced by bacteria which disrupt the biofilm architecture by degrading the composition of extracellular polymeric substances (EPS) such as exopolysaccharide, extracellular- DNA and protein. Thus, the interference of QS system by bacterial metabolic products and enzymatic catalysis, modification of the QS signaling molecules as well as enzymatic disruption of biofilm architecture have been considered as the alternative therapeutic approaches. This review article elaborates on the diversity of different bacterial species with respect to their metabolic products as well as enzymes and their molecular modes of action. The bacterial enzymes and metabolic products will open new and promising perspectives for the development of strategies against the pathogenic bacterial infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea
| | | | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
18
|
Paluch E, Rewak-Soroczyńska J, Jędrusik I, Mazurkiewicz E, Jermakow K. Prevention of biofilm formation by quorum quenching. Appl Microbiol Biotechnol 2020; 104:1871-1881. [PMID: 31927762 PMCID: PMC7007913 DOI: 10.1007/s00253-020-10349-w] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 02/08/2023]
Abstract
Quorum sensing (QS) is a mechanism that enables microbial communication. It is based on the constant secretion of signaling molecules to the environment. The main role of QS is the regulation of vital processes in the cell such as virulence factor production or biofilm formation. Due to still growing bacterial resistance to antibiotics that have been overused, it is necessary to search for alternative antimicrobial therapies. One of them is quorum quenching (QQ) that disrupts microbial communication. QQ-driving molecules can decrease or even completely inhibit the production of virulence factors (including biofilm formation). There are few QQ strategies that comprise the use of the structural analogues of QS receptor autoinductors (AI). They may be found in nature or be designed and synthesized via chemical engineering. Many of the characterized QQ molecules are enzymes with the ability to degrade signaling molecules. They can also impede cellular signaling cascades. There are different techniques used for testing QS/QQ, including chromatography-mass spectroscopy, bioluminescence, chemiluminescence, fluorescence, electrochemistry, and colorimetry. They all enable qualitative and quantitative measurements of QS/QQ molecules. This article gathers the information about the mechanisms of QS and QQ, and their effect on microbial biofilm formation. Basic methods used to study QS/QQ, as well as the medical and biotechnological applications of QQ, are also described. Basis research methods are also described as well as medical and biotechnological application.
Collapse
Affiliation(s)
- E Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chałubińskiego 4, 50-376, Wrocław, Poland.
| | - J Rewak-Soroczyńska
- Institute of Low Temperature and Structure Research, Polish Academy of Science, Okólna 2, 50-422, Wroclaw, Poland
| | - I Jędrusik
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - E Mazurkiewicz
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - K Jermakow
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chałubińskiego 4, 50-376, Wrocław, Poland
| |
Collapse
|
19
|
Heo YM, Lee H, Kim K, Kwon SL, Park MY, Kang JE, Kim GH, Kim BS, Kim JJ. Fungal Diversity in Intertidal Mudflats and Abandoned Solar Salterns as a Source for Biological Resources. Mar Drugs 2019; 17:E601. [PMID: 31652878 PMCID: PMC6891761 DOI: 10.3390/md17110601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Intertidal zones are unique environments that are known to be ecological hot spots. In this study, sediments were collected from mudflats and decommissioned salterns on three islands in the Yellow Sea of South Korea. The diversity analysis targeted both isolates and unculturable fungi via Illumina sequencing, and the natural recovery of the abandoned salterns was assessed. The phylogeny and bioactivities of the fungal isolates were investigated. The community analysis showed that the abandoned saltern in Yongyudo has not recovered to a mudflat, while the other salterns have almost recovered. The results suggested that a period of more than 35 years may be required to return abandoned salterns to mudflats via natural restoration. Gigasporales sp. and Umbelopsis sp. were selected as the indicators of mudflats. Among the 53 isolates, 18 appeared to be candidate novel species, and 28 exhibited bioactivity. Phoma sp., Cladosporium sphaerospermum, Penicillium sp. and Pseudeurotium bakeri, and Aspergillus urmiensis showed antioxidant, tyrosinase inhibition, antifungal, and quorum-sensing inhibition activities, respectively, which has not been reported previously. This study provides reliable fungal diversity information for mudflats and abandoned salterns and shows that they are highly valuable for bioprospecting not only for novel microorganisms but also for novel bioactive compounds.
Collapse
Affiliation(s)
- Young Mok Heo
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Hanbyul Lee
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Kyeongwon Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Sun Lul Kwon
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Min Young Park
- Department of Biosystems & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Ji Eun Kang
- Department of Biosystems & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Gyu-Hyeok Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Beom Seok Kim
- Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
20
|
Sarveswari HB, Solomon AP. Profile of the Intervention Potential of the Phylum Actinobacteria Toward Quorum Sensing and Other Microbial Virulence Strategies. Front Microbiol 2019; 10:2073. [PMID: 31636609 PMCID: PMC6787268 DOI: 10.3389/fmicb.2019.02073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/22/2019] [Indexed: 12/22/2022] Open
Abstract
The rapid dissemination of antimicrobial resistance amongst microorganisms and their deleterious effect on public health has propelled the exploration of alternative interventions that target microbial virulence rather than viability. In several microorganisms, the expression of virulence factors is controlled by quorum sensing systems. A comprehensive understanding into microbial quorum sensing systems, virulence strategies and pathogenesis has exposed potential targets whose attenuation may alleviate infectious diseases. Such virulence attenuating natural products sourced from the different phyla of bacteria from diverse ecosystems have been identified. In this review, we discuss chemical entities derived from the phylum Actinobacteria that have demonstrated the potential to inhibit microbial biofilms, enzymes, and other virulence factors both in vivo and in vitro. We also review Actinobacteria-derived compounds that can degrade quorum sensing signal molecules, and the genes encoding such molecules. As many Actinobacteria-derived compounds have been translated into pharmaceutically important agents including antibiotics, the identification of virulence attenuating compounds from this phylum exemplifies their significance as a prospective source for anti-virulent drugs.
Collapse
Affiliation(s)
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
21
|
Kanugala S, Kumar CG, Rachamalla HKR, Palakeeti B, Kallaganti VSR, Nimmu NV, Cheemalamarri C, Patel HK, Thipparapu G. Chumacin-1 and Chumacin-2 from Pseudomonas aeruginosa strain CGK-KS-1 as novel quorum sensing signaling inhibitors for biocontrol of bacterial blight of rice. Microbiol Res 2019; 228:126301. [PMID: 31422232 DOI: 10.1016/j.micres.2019.126301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 11/19/2022]
Abstract
The in vitro inhibition of quorum sensing signal, xanthan gum secretion, biofilm formation in different Xanthomonas pathovars and biological control of bacterial blight of rice by the two bioactive extrolites produced by Pseudomonas aeruginosa strain CGK-KS-1 were explored. These extrolites were extracted from Diaion HP-20 resin with methanol and purified by preparative-thin layer chromatography. Further, spectroscopic structural elucidation revealed the tentative identity of these extrolites to be (R,3E,5E,9Z,11E)-13-((3S,5R)-5-acetyl-2,6-dimethylheptan-3-yl)-10-hydroxy-4-methyl-1,8-diazabicyclo[9.3.1]pentadeca-3,5,9,11(15),13-pentaen-2-one and (R,3E,5E,8E,11E)-13-((3S,5R)-5-acetyl-2,6-dimethylheptan-3-yl)-4-methyl-1,8-diazabicyclo[9.3.1]pentadeca-3,5,8,11(15),13-pentaene-2,10-dione, named as Chumacin-1 and Chumacin-2, respectively. Antimicrobial assay showed Chumacin-1 and Chumacin-2 exhibited a strong in vitro growth inhibition against various Xanthomonas pathovars. Quorum sensing overlay assay using a reporter strain Chromobacterium violaceum strain CV026 showed that Chumacin-1 and Chumacin-2 inhibited quorum sensing signaling. The mechanistic studies revealed that these extrolites inhibited the production of quorum sensing signaling factor, cis-11-methyl-2-dodecenoic acid; suppressed the xanthan gum secretion and also inhibited the biofilms formed by various Xanthomonas pathovars. Both Chumacin-1 and Chumacin-2 showed ROS generation in the test Xanthomonas strains, resulting in in vitro cell membrane damage was revealed through CSLM and FE-SEM micrographs. Further, greenhouse experiments using Samba Mashuri (BPT-5204) revealed that seed treatment with Chumacin-1 and Chumacin-2 along with foliar spray groups showed up to ˜80% reduction in bacterial blight disease in rice. To the best of our knowledge, this is the first report on new quorum sensing inhibitors, Chumacin-1 and Chumacin-2 produced by Pseudomonas aeruginosa strain CGK-KS-1 exhibiting DSF inhibition activity in Xanthomonas oryzae pv. oryzae.
Collapse
Affiliation(s)
- Sirisha Kanugala
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - C Ganesh Kumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| | - Hari Krishna Reddy Rachamalla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Babji Palakeeti
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
| | | | - Narendra Varma Nimmu
- Department of Analytical Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Chandrasekhar Cheemalamarri
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Hitendra Kumar Patel
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Ganapathi Thipparapu
- Stem Cell Research Division, Department of Biochemistry, ICMR-National Institute of Nutrition, Tarnaka, Hyderabad 500007, India
| |
Collapse
|
22
|
Cui W, He P, Munir S, He P, He Y, Li X, Yang L, Wang B, Wu Y, He P. Biocontrol of Soft Rot of Chinese Cabbage Using an Endophytic Bacterial Strain. Front Microbiol 2019; 10:1471. [PMID: 31333608 PMCID: PMC6616379 DOI: 10.3389/fmicb.2019.01471] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/12/2019] [Indexed: 11/25/2022] Open
Abstract
Soft rot caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) is a major constraint in the production of Chinese cabbage. The objective of this study was to demonstrate that the causative agent Pcc may be successfully managed by Bacillus amyloliquefaciens KC-1, both in vitro and in vivo. Chinese cabbage seedlings were cultivated in organic substrate termed bio-organic substrate using a floating-seedling system with B. amyloliquefaciens KC-1. This approach was applied in a greenhouse to evaluate the management of soft rot. The results showed that the extent of soft rot, as well as the transmission of Pcc to the stem progeny and its survival in the rhizosphere, was reduced following inoculation with B. amyloliquefaciens KC-1. In contrast, the population diversity of B. amyloliquefaciens KC-1 persisted in the Chinese cabbage stems after germination. These findings revealed that B. amyloliquefaciens KC-1 was able to survive and suppress the growth of Pcc in Chinese cabbage and its rhizosphere, protecting the host from the pathogen. The use of B. amyloliquefaciens KC-1 throughout the growth period of plants may be an effective strategy for the prevention of soft rot in Chinese cabbage.
Collapse
Affiliation(s)
- Wenyan Cui
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Faculty of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Pengjie He
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Faculty of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Shahzad Munir
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Pengbo He
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yueqiu He
- National and Local Joint Engineering Research Center for Screening and Application of Microbial Strains, Kunming, China.,Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Xingyu Li
- National and Local Joint Engineering Research Center for Screening and Application of Microbial Strains, Kunming, China.,Faculty of Science, Yunnan Agricultural University, Kunming, China
| | - Lijuan Yang
- Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Biao Wang
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yixin Wu
- National and Local Joint Engineering Research Center for Screening and Application of Microbial Strains, Kunming, China.,Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Pengfei He
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, China.,National and Local Joint Engineering Research Center for Screening and Application of Microbial Strains, Kunming, China
| |
Collapse
|
23
|
Muhayimana S, Zhang X, Xu J, Xiong H, Luan S, Zhu Q, Huang Q. Cytotoxic selectivity and apoptosis induction of piericidin A contributes potentially to its insecticidal effect against Mythimna separata (Lepidoptera: Noctuidae) larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:19-25. [PMID: 31153468 DOI: 10.1016/j.pestbp.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
Piericidin A (PIA), an active inhibitor of Complex I, is widely used in studies of the anti-bacterial and anti-disease competence, but its physiological and mechanistic effects have rarely been clearly defined in insect individual or insect cells. The present study reveals the considerable insecticidal activity of PIA on Mythimna separata larvae by using a comparison with Aphis craccivora adult, and the cytotoxic selectivity induced by PIA on lepidopteran Tn5B1-4 cells. We demonstrate that the viability of Tn5B1-4 cells is inhibited by PIA in a time- and concentration-dependent manner with IC50 value of 0.061 μM, whilst PIA shows slight inhibitory effect on the viability of HepG2 and Hek293 cells with IC50 value of 233.97 and 228.96 μM, respectively. The inhibitory effect of PIA on the proliferation of Tn5B1-4 cells is significant and persistent, causing a series of morphological changes including cell shrinkage, condensed and fragmented nuclei. Intracellular biochemical assays show that PIA induces apoptosis of Tn5B1-4 cells coincides with a decrease in the mitochondrial membrane potential. PIA in Tn5B1-4 cells can be chelated by EDTA, thereby losing cytotoxicity, whereas exogenous Ca2+ restores the cytotoxicity of PIA by chelating with EDTA in a competitive manner. Our findings highlight the importance of the long-lasting cytotoxicity and the cytoxic selectivity on Tn5B1-4 cells caused by PIA, which ensure the identification of insecticidal effect of PIA against insect pests.
Collapse
Affiliation(s)
- Solange Muhayimana
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xianfei Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiuyong Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Xiong
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shaorong Luan
- Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China.
| | - Qiqi Zhu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
24
|
Reina JC, Torres M, Llamas I. Stenotrophomonas maltophilia AHL-Degrading Strains Isolated from Marine Invertebrate Microbiota Attenuate the Virulence of Pectobacterium carotovorum and Vibrio coralliilyticus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:276-290. [PMID: 30762152 DOI: 10.1007/s10126-019-09879-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Many Gram-negative aquacultural and agricultural pathogens control virulence factor expression through a quorum-sensing (QS) mechanism involving the production of N-acylhomoserine (AHL) signalling molecules. Thus, the interruption of QS systems by the enzymatic degradation of signalling molecules, known as quorum quenching (QQ), has been proposed as a novel strategy to combat these infections. Given that the symbiotic bacteria of marine invertebrates are considered to be an important source of new bioactive molecules, this study explores the presence of AHL-degrading bacteria among 827 strains previously isolated from the microbiota of anemones and holothurians. Four of these strains (M3-1, M1-14, M3-13 and M9-54-2), belonging to the species Stenotrophomonas maltophilia, were selected on the basis of their ability to degrade a broad range of AHLs, and the enzymes involved in their activity were identified. Strain M9-54-2, which showed the strongest AHL-degrading activity, was selected for further study. High-performance liquid chromatography-mass-spectrometry confirmed that the QQ enzyme is not a lactonase. Strain M9-54-2 degraded AHL accumulation and reduced the production of enzymatic activity in Pectobacterium carotovorum CECT 225T and Vibrio coralliilyticus VibC-Oc-193 in in vitro co-cultivation experiments. The effect of AHL inactivation was confirmed by a reduction in potato tuber maceration and brine shrimp (Artemia salina) mortality caused by P. carotovorum and Vibrio coralliilyticus, respectively. This study strengthens the evidence of marine organisms as an underexplored and promising source of QQ enzymes, useful to prevent infections in aquaculture and agriculture. To our knowledge, this is the first time that anemones and holothurians have been studied for this purpose.
Collapse
Affiliation(s)
- José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18071, Granada, Spain
- Institute for Integrative Biology of the Cell, CEA, CNRS, University Paris-Sud, University Paris-Saclay, Gif sur Yvette, France
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18071, Granada, Spain.
| |
Collapse
|
25
|
Zhang J, Wang J, Feng T, Du R, Tian X, Wang Y, Zhang XH. Heterologous Expression of the Marine-Derived Quorum Quenching Enzyme MomL Can Expand the Antibacterial Spectrum of Bacillus brevis. Mar Drugs 2019; 17:E128. [PMID: 30795579 PMCID: PMC6409708 DOI: 10.3390/md17020128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
Quorum sensing (QS) is closely associated with the production of multiple virulence factors in bacterial pathogens. N-acyl homoserine lactones (AHLs) are important QS signal molecules that modulate the virulence of gram-negative pathogenic bacteria. Enzymatic degradation of AHLs to interrupt QS, termed quorum quenching (QQ), has been considered a novel strategy for reduction of pathogenicity and prevention of bacterial disease. However, the low expression levels of QQ proteins in the original host bacteria has affected the applications of these proteins. Previously, we identified a novel marine QQ enzyme, named MomL, with high activity and promising biocontrol function. In this study, we linked the target fragment momL to pNCMO2, which provided a basis for the first heterologous expression of MomL in the antifungal and anti-gram-positive-bacteria biocontrol strain Bacillus brevis, and obtaining the recombinant strain named BbMomL. The QQ activity of BbMomL was confirmed using a series of bioassays. BbMomL could not only degrade the exogenous signal molecule C6-HSL, but also the AHL signal molecules produced by the gram-negative pathogens Pectobacterium carotovorum subsp. carotovorum (Pcc) and Pseudomonas aeruginosa PAO1. In addition, BbMomL significantly reduced the secretion of pathogenic factors and the pathogenicity of Pcc and P. aeruginosa PAO1. We tested the biocontrol function of BbMomL for prevention of plant diseases in vitro. The result indicates that BbMomL has a broad antibacterial spectrum. Compared with wild-type B. brevis, BbMomL not only inhibited fungi and gram-positive bacterial pathogens but also considerably inhibited gram-negative bacterial pathogens. Moreover, the Bacillus brevis expression system has good application prospects and is an ideal host for expression and secretion of foreign proteins.
Collapse
Affiliation(s)
- Jingjing Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Jiayi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Tao Feng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Rui Du
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xiaorong Tian
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Xiao-Hua Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
26
|
Diversity and Ecology of Marine Algicolous Arthrinium Species as a Source of Bioactive Natural Products. Mar Drugs 2018; 16:md16120508. [PMID: 30558255 PMCID: PMC6315899 DOI: 10.3390/md16120508] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 11/17/2022] Open
Abstract
In our previous study, all Arthrinium isolates from Sargassum sp. showed high bioactivities, but studies on marine Arthrinium spp. are insufficient. In this study, a phylogenetic analysis of 28 Arthrinium isolates from seaweeds and egg masses of Arctoscopus japonicus was conducted using internal transcribed spacers, nuclear large subunit rDNA, β-tubulin, and translation elongation factor region sequences, and their bioactivities were investigated. They were analyzed as 15 species, and 11 of them were found to be new species. Most of the extracts exhibited radical-scavenging activity, and some showed antifungal activities, tyrosinase inhibition, and quorum sensing inhibition. It was implied that marine algicolous Arthrinium spp. support the regulation of reactive oxygen species in symbiotic algae and protect against pathogens and bacterial biofilm formation. The antioxidant from Arthrinium sp. 10 KUC21332 was separated by bioassay-guided isolation and identified to be gentisyl alcohol, and the antioxidant of Arthrinium saccharicola KUC21221 was identical. These results demonstrate that many unexploited Arthrinium species still exist in marine environments and that they are a great source of bioactive compounds.
Collapse
|
27
|
Li Y, Kong L, Shen J, Wang Q, Liu Q, Yang W, Deng Z, You D. Characterization of the positive SARP family regulator PieR for improving piericidin A1 production in Streptomyces piomogeues var. Hangzhouwanensis. Synth Syst Biotechnol 2018; 4:16-24. [PMID: 30560207 PMCID: PMC6290260 DOI: 10.1016/j.synbio.2018.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 01/06/2023] Open
Abstract
Piericidin A1, a member of ɑ-pyridone antibiotic, exhibits various biological activities such as antimicrobial, antifungal, and antitumor properties and possesses potent respiration-inhibitory activity against insects due to its competitive binding capacity to mitochondrial complex I. The biosynthetic pathway of piericidin A1 has been reported in Streptomyces piomogeues var. Hangzhouwanensis, while the regulatory mechanism remains poorly understood. In this study, a Streptomyces antibiotic regulatory protein (SARP) family transcriptional regulator PieR was characterized. Genetic disruption and complementation manipulations revealed that PieR positively regulated the production of piericidin A1. Moreover, the overexpression of pieR contributed to the improvement of piericidin A1 productivity. The real-time quantitative PCR (RT-qPCR) was carried out and the data showed that pieR stimulated the transcription of all the biosynthesis-related genes for piericidin A1. In order to explore the regulatory mechanism, electrophoresis mobility shift assays (EMSA) and DNase I footprinting experiments have been conducted. A protected region covering 50 nucleotides within the upstream region of pieR was identified and two 5-nt direct repeat sequences (5′-CCGGA-3′) in the protected region were found. These findings, taken together, set stage for transcriptional control engineering in the view of optimizing piericidin A1 production and thus provide a viable potent route for the construction of strains with high productivity.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingxin Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jufang Shen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Weinan Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Delin You
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Kalia VC, Patel SKS, Kang YC, Lee JK. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 2018; 37:68-90. [PMID: 30471318 DOI: 10.1016/j.biotechadv.2018.11.006] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/19/2018] [Accepted: 11/18/2018] [Indexed: 12/20/2022]
Abstract
The mechanisms through which microbes communicate using signal molecules has inspired a great deal of research. Microbes use this exchange of information, known as quorum sensing (QS), to initiate and perpetuate infectious diseases in eukaryotic organisms, evading the eukaryotic defense system by multiplying and expressing their pathogenicity through QS regulation. The major issue to arise from such networks is increased bacterial resistance to antibiotics, resulting from QS-dependent mediation of the formation of biofilm, the induction of efflux pumps, and the production of antibiotics. QS inhibitors (QSIs) of diverse origins have been shown to act as potential antipathogens. In this review, we focus on the use of QSIs to counter diseases in humans as well as plants and animals of economic importance. We also discuss the challenges encountered in the potential applications of QSIs.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
29
|
Hongman H, Yifang W, Gongliang Z, Yaolei Z, Longquan X, Hongshun H, Yue W, Meishan L. Effects of Sulfide Flavors on AHL-Mediated Quorum Sensing and Biofilm Formation of Hafnia alvei. J Food Sci 2018; 83:2550-2559. [PMID: 30221799 DOI: 10.1111/1750-3841.14345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/01/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022]
Abstract
In this study, 10 different sulfide flavor compounds commonly used as food additives were screened for antiquorum-sensing activity. Among these, diallyl disulfide (DADS) and methyl 2-methyl-3-furyl disulfide (MMFDS) were found to exert the strongest inhibition against violacein production in Chromobacterium violaceum 026, the tested biosensor strain. DADS and MMFDS also inhibited the growth of Hafnia alvei H4, yielding MIC values of 48 and 41.6 mM, respectively. In addition, DADS and MMFDS also inhibited the ability of H. alvei H4 to produce acyl-homoserine lactone as demonstrated by the reduced level of C6-HSL in the supernatant of DADS-treated culture. At concentrations corresponding to 1/4 MIC, DADS, and MMFDS inhibited the swarming ability of H. alvei H4 by 73.50% and 76.43%, respectively, while having virtually no effect on cell growth. The same concentrations of DADS and MMFDS also completely inhibited the formation of biofilm. These antiquorum sensing effects of DADS and MMFDS involved changes in the expression of the quorum-sensing genes luxI and luxR. Quantitative RT-PCR analysis showed that the mRNA levels of both genes were significantly reduced by DADS and MMDFS at concentrations below their MICs. However, further test using a mutant strain of H. alvei lacking luxR (ΔluxR) revealed significant reduction in luxI mRNA level upon treatment of the strain with DADS or MMDFS, but no change in luxR mRNA level occurred when a luxI-lacking mutant (ΔluxI) was treated with these compounds. The result therefore suggested that the antiquorum-sensing effect of DADS and MMFDS against H. alvei H4 might operate mainly through the inhibition of luxI expression in the cells. PRACTICAL APPLICATION The sulfide flavors compounds used in this paper are commonly used in food processing in China and are listed in the national standard of Chinese food additives GB2760-2014. The application of sulfide flavors in food processing can enhance aroma and prevent food spoilage.
Collapse
Affiliation(s)
- Hou Hongman
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Wang Yifang
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Zhang Gongliang
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Zhu Yaolei
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Xu Longquan
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Hao Hongshun
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Wang Yue
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Lu Meishan
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| |
Collapse
|
30
|
Haque S, Ahmad F, Dar SA, Jawed A, Mandal RK, Wahid M, Lohani M, Khan S, Singh V, Akhter N. Developments in strategies for Quorum Sensing virulence factor inhibition to combat bacterial drug resistance. Microb Pathog 2018; 121:293-302. [PMID: 29857121 DOI: 10.1016/j.micpath.2018.05.046] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022]
Abstract
Quorum sensing (QS) is a complex bacterial intercellular communication system. It is mediated by molecules called auto-inducers (AIs) and allows coordinated responses to a variety of environmental signals by inducing alterations in gene expression. Communication through QS can tremendously stimulate the pathogenicity and virulence via multiple mechanisms in pathogenic bacteria. The present review explores the major types of multitudinous QS systems known in Gram-positive and Gram-negative bacteria and their roles in bacterial pathogenesis and drug resistance. Because bacterial resistance to antibiotics is increasingly becoming a significant clinical challenge to human health; alternate strategies to combat drug resistance are warranted. Targeting bacterial pathogenicity by interruptions in QS using natural QS inhibitors and synthetic quorum-quenching analogs are being increasingly considered for development of next generation antimicrobials. The review highlights the recent advancements in discovery of promising new QS modulators and their efficiency in controlling infections caused by multidrug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia.
| | - Faraz Ahmad
- Department of Public Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Sajad A Dar
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohtashim Lohani
- Department of Emergency Medical Services, College of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Saif Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Ha'il, 2440, Saudi Arabia
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering & Technology, Lucknow, 226021, Uttar Pradesh, India
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, 65431, Saudi Arabia
| |
Collapse
|
31
|
Zhang Y, Kong J, Huang F, Xie Y, Guo Y, Cheng Y, Qian H, Yao W. Hexanal as a QS inhibitor of extracellular enzyme activity of Erwinia carotovora and Pseudomonas fluorescens and its application in vegetables. Food Chem 2018; 255:1-7. [PMID: 29571454 DOI: 10.1016/j.foodchem.2018.02.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 01/16/2023]
Abstract
To prevent the postharvest disease of Chinese cabbage and lettuce, hexanal was used as a control measure to inhibit N-acyl homoserine lactone (AHL) production and extracellular enzymes regulated by quorum-sensing (QS) in their main spoilage strains of Erwinia carotovora and Pseudomonas fluorescens. Firstly, the QS inhibition of hexanal was verified by significantly inhibiting violacein production (p < 0.05) in Chromobacterium violaceum CV026 at sub-MICs. β-Galactosidase activities which reflected AHL production, were significantly inhibited by hexanal, its inhibitory effect was concentration-dependent under minimal inhibitory concentration (MIC) (p < 0.05). The detected extracellular enzymes activities decreased with the increase of hexanal concentration (p < 0.05), including cellulase, xylanase, pectate lyase, polygalacturonase, and protease. Chinese cabbage soft rot and lettuce leaf scorch could be significantly inhibited by hexanal (p < 0.05) without any phytotoxicity effect, the 1/2 MIC of hexanal showed the best inhibitory effect. And all the above effects showed a dose-dependent. A novel preservation technique in reducing the loss of vegetables due to spoilage based on the QS inhibitor was developed.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Jie Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Fei Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
32
|
Abstract
Increasing extent of pathogenic resistance to drugs has encouraged the seeking for new anti-virulence drugs. Many pharmacological and pharmacognostical researches are performed to identify new drugs or discover new structures for the development of novel therapeutic agents in the antibiotic treatments. Although many phytochemicals show prominent antimicrobial activity, their power lies in their anti-virulence properties. Quorum sensing (QS) is a bacterial intercellular communication mechanism, which depends on bacterial cell population density and controls the pathogenesis of many organisms by regulating gene expression, including virulence determinants. QS has become an attractive target for the development of novel anti-infective agents that do not rely on the use of antibiotics. Anti-QS compounds are known to have the ability to prohibit bacterial pathogenicity. Medicinal plants offer an attractive repertoire of phytochemicals with novel microbial disease-controlling potential, due to the spectrum of secondary metabolites present in extracts, which include phenolics, quinones, flavonoids, alkaloids, terpenoids, and polyacetylenes. They have recently received considerable attention as a new source of safe and effective QS inhibitory substances. The objective of this review is to give a brief account of the research reports on the plants and natural compounds with anti-QS potential.
Collapse
Affiliation(s)
- Hani Z Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
33
|
Nature to the natural rescue: Silencing microbial chats. Chem Biol Interact 2017; 280:86-98. [PMID: 29247642 DOI: 10.1016/j.cbi.2017.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
Communication is the sole means by which effective networking and co-existence is accomplished amongst living beings. Microbes have their own chit-chats. Science has overheard these microbial gossips and have concluded that these aren't just informal communications, but carefully coordinated signals that plan their effective strategies. Tracking one such signal molecule, N-acyl homoserine lactone (AHL), led to a fundamental understanding to microbial quorum sensing (QS). Furtherance of research sought for ways to cut off communication between these virulent forms, so as to hinder their combinatorial attacks through quorum sensing inhibitors (QSIs). A clear understanding of the inhibitors of these microbial communication systems is vital to destroy their networking and co-working. The current review, consolidates the solutions for QSIs offered from natural sources against these micro components, that are capable of slaughtering even nature's most fit entity-man. The applications of effective out sourcing of this QSI technologies and the need for development are discussed. The importance of silencing this microbial chatter to various aspects of human life and their implications are discussed and elaborated.
Collapse
|
34
|
Zhang DW, Zhang YM, Li J, Zhao TQ, Gu Q, Lin F. Ultrasonic-assisted synthesis of 1,4-disubstituted 1,2,3-triazoles via various terminal acetylenes and azide and their quorum sensing inhibition. ULTRASONICS SONOCHEMISTRY 2017; 36:343-353. [PMID: 28069219 DOI: 10.1016/j.ultsonch.2016.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 05/28/2023]
Abstract
An efficient synthesis of 1,4-disubstituted 1,2,3-triazole derivatives was studied. 1,4-Disubstituted 1,2,3-triazoles containing isoxazole and thymidine structures were synthesized in 84-96% yields starting from various terminal isoxazole ether alkynes and β-thymidine azide derivatives via a 1,3-dispolar cycloaddition using copper acetate, sodium ascorbate as the catalyst under ultrasonic assisted condition. All the target compounds were characterized by HRMS, FT-IR, 1H NMR and 13C NMR spectroscopy. Furthermore, the quorum sensing inhibitory activities of synthesized compounds were evaluated with Chromobacterium violaceum (C. Violaceum CV026) based on their inhibition of violacein production, with compound C10-HSL as a positive control. The compounds 8a, 8c and 8f exhibited considerable levels of inhibitory activity against violacein production, and IC50 values were 217±19, 223±20 and 42.8±4.5μM, respectively, which highlighted the potential of these compounds as lead structures for further research towards the development of novel QS inhibitors.
Collapse
Affiliation(s)
- Da-Wei Zhang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yu-Min Zhang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Jing Li
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Tian-Qi Zhao
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Qiang Gu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| | - Feng Lin
- College of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
35
|
Quorum quenching properties of Actinobacteria isolated from Malaysian tropical soils. Arch Microbiol 2017; 199:897-906. [PMID: 28364274 DOI: 10.1007/s00203-017-1371-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/25/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
In this study, a total of 147 soil actinobacterial strains were screened for their ability to inhibit response of Chromobacterium violaceum CV026 to short chain N-acyl homoserine lactone (AHL) which is a quorum sensing molecule. Of these, three actinobacterial strains showed positive for violacein inhibition. We further tested these strains for the inhibition of Pseudomonas aeruginosa PAO1 quorum sensing-regulated phenotypes, namely, swarming and pyocyanin production. The three strains were found to inhibit at least one of the quorum sensing-regulated phenotypes of PAO1. Phylogenetic analysis of the 16S rRNA gene sequences indicated that these strains belong to the genera Micromonospora, Rhodococcus and Streptomyces. This is the first report presenting quorum quenching activity by a species of the genus Micromonospora. Our data suggest that Actinobacteria may be a rich source of active compounds that can act against bacterial quorum sensing system.
Collapse
|
36
|
Betancur LA, Naranjo-Gaybor SJ, Vinchira-Villarraga DM, Moreno-Sarmiento NC, Maldonado LA, Suarez-Moreno ZR, Acosta-González A, Padilla-Gonzalez GF, Puyana M, Castellanos L, Ramos FA. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach. PLoS One 2017; 12:e0170148. [PMID: 28225766 PMCID: PMC5321270 DOI: 10.1371/journal.pone.0170148] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/29/2016] [Indexed: 11/30/2022] Open
Abstract
Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea) with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities.
Collapse
Affiliation(s)
- Luz A. Betancur
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
- Universidad de Caldas. Departamento de Química. Edificio Orlando Sierra, Bloque B, Sede Palogrande Calle. Manizales, Caldas, Colombia
| | - Sandra J. Naranjo-Gaybor
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
- Universidad de las Fuerzas Armadas, ESPE Carrera de Ingeniería Agropecuaria IASA II Av. General Rumiñahui s/n, Sangolquí- Ecuador
| | - Diana M. Vinchira-Villarraga
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| | - Nubia C. Moreno-Sarmiento
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| | - Luis A. Maldonado
- Universidad Autónoma Metropolitana Rectoría—Secretaría General, Prolongación Canal de Miramontes, Col. Ex-hacienda San Juan de Dios, Tlalpan, México DF
| | - Zulma R. Suarez-Moreno
- Investigación y Desarrollo, Empresa Colombiana de Productos Veterinarios VECOL S.A., Bogotá D.C
| | | | - Gillermo F. Padilla-Gonzalez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do de Sao Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, Ribeirão Preto–SP, Brazil
| | - Mónica Puyana
- Departamento de Ciencias Biológicas y Ambientales, Programa de Biología Marina, Universidad Jorge Tadeo Lozano, Carrera, Modulo, Oficina, Bogotá, Colombia
| | - Leonardo Castellanos
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| | - Freddy A. Ramos
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| |
Collapse
|
37
|
|
38
|
Morgan JM, Duncan MC, Johnson KS, Diepold A, Lam H, Dupzyk AJ, Martin LR, Wong WR, Armitage JP, Linington RG, Auerbuch V. Piericidin A1 Blocks Yersinia Ysc Type III Secretion System Needle Assembly. mSphere 2017; 2:e00030-17. [PMID: 28217742 PMCID: PMC5311113 DOI: 10.1128/msphere.00030-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 11/20/2022] Open
Abstract
The type III secretion system (T3SS) is a bacterial virulence factor expressed by dozens of Gram-negative pathogens but largely absent from commensals. The T3SS is an attractive target for antimicrobial agents that may disarm pathogenic bacteria while leaving commensal populations intact. We previously identified piericidin A1 as an inhibitor of the Ysc T3SS in Yersinia pseudotuberculosis. Piericidins were first discovered as inhibitors of complex I of the electron transport chain in mitochondria and some bacteria. However, we found that piericidin A1 did not alter Yersinia membrane potential or inhibit flagellar motility powered by the proton motive force, indicating that the piericidin mode of action against Yersinia type III secretion is independent of complex I. Instead, piericidin A1 reduced the number of T3SS needle complexes visible by fluorescence microscopy at the bacterial surface, preventing T3SS translocator and effector protein secretion. Furthermore, piericidin A1 decreased the abundance of higher-order YscF needle subunit complexes, suggesting that piericidin A1 blocks YscF needle assembly. While expression of T3SS components in Yersinia are positively regulated by active type III secretion, the block in secretion by piericidin A1 was not accompanied by a decrease in T3SS gene expression, indicating that piericidin A1 may target a T3SS regulatory circuit. However, piericidin A1 still inhibited effector protein secretion in the absence of the T3SS regulator YopK, YopD, or YopN. Surprisingly, while piericidin A1 also inhibited the Y. enterocolitica Ysc T3SS, it did not inhibit the SPI-1 family Ysa T3SS in Y. enterocolitica or the Ysc family T3SS in Pseudomonas aeruginosa. Together, these data indicate that piericidin A1 specifically inhibits Yersinia Ysc T3SS needle assembly. IMPORTANCE The bacterial type III secretion system (T3SS) is widely used by both human and animal pathogens to cause disease yet remains incompletely understood. Deciphering how some natural products, such as the microbial metabolite piericidin, inhibit type III secretion can provide important insight into how the T3SS functions or is regulated. Taking this approach, we investigated the ability of piericidin to block T3SS function in several human pathogens. Surprisingly, piericidin selectively inhibited the Ysc family T3SS in enteropathogenic Yersinia but did not affect the function of a different T3SS within the same species. Furthermore, piericidin specifically blocked the formation of T3SS needles on the bacterial surface without altering the localization of several other T3SS components or regulation of T3SS gene expression. These data show that piericidin targets a mechanism important for needle assembly that is unique to the Yersinia Ysc T3SS.
Collapse
Affiliation(s)
- Jessica M. Morgan
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | - Miles C. Duncan
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Kevin S. Johnson
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Andreas Diepold
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Hanh Lam
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | - Allison J. Dupzyk
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Lexi R. Martin
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Weng Ruh Wong
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | - Judith P. Armitage
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Roger G. Linington
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|