1
|
Soto-Varela ZE, Orozco-Sánchez CJ, Bolívar-Anillo HJ, Martínez JM, Rodríguez N, Consuegra-Padilla N, Robledo-Meza A, Amils R. Halotolerant Endophytic Bacteria Priestia flexa 7BS3110 with Hg 2+ Tolerance Isolated from Avicennia germinans in a Caribbean Mangrove from Colombia. Microorganisms 2024; 12:1857. [PMID: 39338530 PMCID: PMC11434322 DOI: 10.3390/microorganisms12091857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 09/30/2024] Open
Abstract
The mangrove ecosystems of the Department of Atlántico (Colombian Caribbean) are seriously threatened by problems of hypersalinization and contamination, especially by heavy metals from the Magdalena River. The mangrove plants have developed various mechanisms to adapt to these stressful conditions, as well as the associated microbial populations that favor their growth. In the present work, the tolerance and detoxification capacity to heavy metals, especially to mercury, of a halotolerant endophytic bacterium isolated from the species Avicennia germinans located in the Balboa Swamp in the Department of Atlántico was characterized. Diverse microorganisms were isolated from superficially sterilized A. germinans leaves. Tolerance to NaCl was evaluated for each of the obtained isolates, and the most resistant was selected to assess its tolerance to Pb2+, Cu2+, Hg2+, Cr3+, Co2+, Ni2+, Zn2+, and Cd2+, many of which have been detected in high concentrations in the area of study. According to the ANI and AAI percentages, the most halotolerant strain was identified as Priestia flexa, named P. flexa 7BS3110, which was able to tolerate up to 12.5% (w/v) NaCl and presented a minimum inhibitory concentrations (MICs) of 0.25 mM for Hg, 10 mM for Pb, and 15 mM for Cr3+. The annotation of the P. flexa 7BS3110 genome revealed the presence of protein sequences associated with exopolysaccharide (EPS) production, thiol biosynthesis, specific proteins for chrome efflux, non-specific proteins for lead efflux, and processes associated with sulfur and iron homeostasis. Scanning electron microscopy (SEM) analysis showed morphological cellular changes and the transmission electron microscopy (TEM) showed an electrodense extracellular layer when exposed to 0.25 mM Hg2+. Due to the high tolerance of P. flexa 7BS3110 to Hg2+ and NaCl, its ability to grow when exposed to both stressors was tested, and it was able to thrive in the presence of 5% (w/v) NaCl and 0.25 mM of Hg2+. In addition, it was able to remove 98% of Hg2+ from the medium when exposed to a concentration of 14 mg/L of this metalloid. P. flexa 7BS3110 has the potential to bioremediate Hg2+ halophilic contaminated ecosystems.
Collapse
Affiliation(s)
- Zamira E Soto-Varela
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
| | - Christian J Orozco-Sánchez
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Institute of Applied Microbiology, Justus-Liebig-University, 35392 Giessen, Germany
| | - Hernando José Bolívar-Anillo
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - José M Martínez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
| | - Nuria Rodríguez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
- Centro de Astrobiología (INTA-CSIC), Carretera, Ajalvir km 4, 28850 Torrejón de Ardoz, Spain
| | - Natalia Consuegra-Padilla
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
| | - Alfredo Robledo-Meza
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
- Centro de Astrobiología (INTA-CSIC), Carretera, Ajalvir km 4, 28850 Torrejón de Ardoz, Spain
| |
Collapse
|
2
|
Majeed A, Liu J, Knight AJ, Pajerowska-Mukhtar KM, Mukhtar MS. Bacterial Communities Associated with the Leaves and the Roots of Salt Marsh Plants of Bayfront Beach, Mobile, Alabama, USA. Microorganisms 2024; 12:1595. [PMID: 39203436 PMCID: PMC11356468 DOI: 10.3390/microorganisms12081595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Salt marshes are highly dynamic and biologically diverse ecosystems that serve as natural habitats for numerous salt-tolerant plants (halophytes). We investigated the bacterial communities associated with the roots and leaves of plants growing in the coastal salt marshes of the Bayfront Beach, located in Mobile, Alabama, United States. We compared external (epiphytic) and internal (endophytic) communities of both leaf and root plant organs. Using 16S rDNA amplicon sequencing methods, we identified 10 bacterial phyla and 59 different amplicon sequence variants (ASVs) at the genus level. Bacterial strains belonging to the phyla Proteobacteria, Bacteroidetes, and Firmicutes were highly abundant in both leaf and root samples. At the genus level, sequences of the genus Pseudomonas were common across all four sample types, with the highest abundance found in the leaf endophytic community. Additionally, Pantoea was found to be dominant in leaf tissue compared to roots. Our study revealed that plant habitat (internal vs. external for leaves and roots) was a determinant of the bacterial community structure. Co-occurrence network analyses enabled us to discern the intricate characteristics of bacterial taxa. Our network analysis revealed varied levels of ASV complexity in the epiphytic networks of roots and leaves compared to the endophytic networks. Overall, this study advances our understanding of the intricate composition of the bacterial microbiota in habitats (epiphytic and endophytic) and organs (leaf and root) of coastal salt marsh plants and suggests that plants might recruit habitat- and organ-specific bacteria to enhance their tolerance to salt stress.
Collapse
Affiliation(s)
- Aqsa Majeed
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL 35294, USA; (A.M.); (J.L.); (A.J.K.); (K.M.P.-M.)
- Department of Genetics & Biochemistry, Biosystems Research Complex, Clemson University, 105 Collings St., Clemson, SC 29634, USA
| | - Jinbao Liu
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL 35294, USA; (A.M.); (J.L.); (A.J.K.); (K.M.P.-M.)
| | - Adelle J. Knight
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL 35294, USA; (A.M.); (J.L.); (A.J.K.); (K.M.P.-M.)
| | - Karolina M. Pajerowska-Mukhtar
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL 35294, USA; (A.M.); (J.L.); (A.J.K.); (K.M.P.-M.)
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL 35294, USA; (A.M.); (J.L.); (A.J.K.); (K.M.P.-M.)
- Department of Genetics & Biochemistry, Biosystems Research Complex, Clemson University, 105 Collings St., Clemson, SC 29634, USA
| |
Collapse
|
3
|
Xie X, Gan L, Wang C, He T. Salt-tolerant plant growth-promoting bacteria as a versatile tool for combating salt stress in crop plants. Arch Microbiol 2024; 206:341. [PMID: 38967784 DOI: 10.1007/s00203-024-04071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
Soil salinization poses a great threat to global agricultural ecosystems, and finding ways to improve the soils affected by salt and maintain soil health and sustainable productivity has become a major challenge. Various physical, chemical and biological approaches are being evaluated to address this escalating environmental issue. Among them, fully utilizing salt-tolerant plant growth-promoting bacteria (PGPB) has been labeled as a potential strategy to alleviate salt stress, since they can not only adapt well to saline soil environments but also enhance soil fertility and plant development under saline conditions. In the last few years, an increasing number of salt-tolerant PGPB have been excavated from specific ecological niches, and various mechanisms mediated by such bacterial strains, including but not limited to siderophore production, nitrogen fixation, enhanced nutrient availability, and phytohormone modulation, have been intensively studied to develop microbial inoculants in agriculture. This review outlines the positive impacts and growth-promoting mechanisms of a variety of salt-tolerant PGPB and opens up new avenues to commercialize cultivable microbes and reduce the detrimental impacts of salt stress on plant growth. Furthermore, considering the practical limitations of salt-tolerant PGPB in the implementation and potential integration of advanced biological techniques in salt-tolerant PGPB to enhance their effectiveness in promoting sustainable agriculture under salt stress are also accentuated.
Collapse
Affiliation(s)
- Xue Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Longzhan Gan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Chengyang Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
4
|
Alam M, Pandit B, Moin A, Iqbal UN. Invisible Inhabitants of Plants and a Sustainable Planet: Diversity of Bacterial Endophytes and their Potential in Sustainable Agriculture. Indian J Microbiol 2024; 64:343-366. [PMID: 39011025 PMCID: PMC11246410 DOI: 10.1007/s12088-024-01225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/07/2024] [Indexed: 07/17/2024] Open
Abstract
Uncontrolled usage of chemical fertilizers, climate change due to global warming, and the ever-increasing demand for food have necessitated sustainable agricultural practices. Removal of ever-increasing environmental pollutants, treatment of life-threatening diseases, and control of drug-resistant pathogens are also the need of the present time to maintain the health and hygiene of nature, as well as human beings. Research on plant-microbe interactions is paving the way to ameliorate all these sustainably. Diverse bacterial endophytes inhabiting the internal tissues of different parts of the plants promote the growth and development of their hosts by different mechanisms, such as through nutrient acquisition, phytohormone production and modulation, protection from biotic or abiotic challenges, assisting in flowering and root development, etc. Notwithstanding, efficient exploitation of endophytes in human welfare is hindered due to scarce knowledge of the molecular aspects of their interactions, community dynamics, in-planta activities, and their actual functional potential. Modern "-omics-based" technologies and genetic manipulation tools have empowered scientists to explore the diversity, dynamics, roles, and functional potential of endophytes, ultimately empowering humans to better use them in sustainable agricultural practices, especially in future harsh environmental conditions. In this review, we have discussed the diversity of bacterial endophytes, factors (biotic as well as abiotic) affecting their diversity, and their various plant growth-promoting activities. Recent developments and technological advancements for future research, such as "-omics-based" technologies, genetic engineering, genome editing, and genome engineering tools, targeting optimal utilization of the endophytes in sustainable agricultural practices, or other purposes, have also been discussed.
Collapse
Affiliation(s)
- Masrure Alam
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| | - Baishali Pandit
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
- Department of Botany, Surendranath College, 24/2 MG Road, Kolkata, West Bengal 700009 India
| | - Abdul Moin
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| | - Umaimah Nuzhat Iqbal
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| |
Collapse
|
5
|
Hnamte L, Vanlallawmzuali, Kumar A, Yadav MK, Zothanpuia, Singh PK. An updated view of bacterial endophytes as antimicrobial agents against plant and human pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100241. [PMID: 39091295 PMCID: PMC11292266 DOI: 10.1016/j.crmicr.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Bacterial endophytes are a crucial component of the phytomicrobiome, playing an essential role in agriculture and industries. Endophytes are a rich source of bioactive compounds, serving as natural antibiotics that can be effective in combating antibiotic resistance in pathogens. These bacteria interact with host plants through various processes such as quorum sensing, chemotaxis, antibiosis, and enzymatic activity. The current paper focuses on how plants benefit extensively from endophytic bacteria and their symbiotic relationship in which the microbes enhance plant growth, nitrogen fixation, increase nutrient uptake, improve defense mechanisms, and act as antimicrobial agents against pathogens. Moreover, it highlights some of the bioactive compounds produced by endophytes.
Collapse
Affiliation(s)
- Lalhmangaihmawia Hnamte
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Vanlallawmzuali
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Ajay Kumar
- Amity institute of Biotechnology, Amity University, Noida-201313, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Zothanpuia
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Prashant Kumar Singh
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| |
Collapse
|
6
|
Wang Y, Yang Y, Zhao D, Li Z, Sui X, Zhang H, Liu J, Li Y, Zhang CS, Zheng Y. Ensifer sp. GMS14 enhances soybean salt tolerance for potential application in saline soil reclamation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119488. [PMID: 37939476 DOI: 10.1016/j.jenvman.2023.119488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
Rhizosphere microbiomes play an important role in enhancing plant salt tolerance and are also commonly employed as bio-inoculants in soil remediation processes. Cultivated soybean (Glycine max) is one of the major oilseed crops with moderate salt tolerance. However, the response of rhizosphere microbes me to salt stress in soybean, as well as their potential application in saline soil reclamation, has been rarely reported. In this study, we first investigated the microbial communities of salt-treated and non-salt-treated soybean by 16S rRNA gene amplicon sequencing. Then, the potential mechanism of rhizosphere microbes in enhancing the salt tolerance of soybean was explored based on physiological analyses and transcriptomic sequencing. Our results suggested that Ensifer and Novosphingobium were biomarkers in salt-stressed soybean. One corresponding strain, Ensifer sp. GMS14, showed remarkable growth promoting characteristics. Pot experiments showed that GMS14 significantly improved the growth performance of soybean in saline soils. Strain GMS14 alleviated sodium ions (Na+) toxicity by maintaining low a Na+/K+ ratio and promoted nitrogen (N) and phosphorus (P) uptake by soybean in nutrient-deficient saline soils. Transcriptome analyses indicated that GMS14 improved plant salt tolerance mainly by ameliorating salt stress-mediated oxidative stress. Interestingly, GMS14 was evidenced to specifically suppress hydrogen peroxide (H2O2) production to maintain reactive oxygen species (ROS) homeostasis in plants under salt stress. Field experiments with GMS14 applications showed its great potential in saline soil reclamation, as evidenced by the increased biomass and nodulation capacity of GMS14-inoculated soybean. Overall, our findings provided valuable insights into the mechanisms underlying plant-microbes interactions, and highlighted the importance of microorganisms recruited by salt-stressed plant in the saline soil reclamation.
Collapse
Affiliation(s)
- Youqiang Wang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Yanzhe Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Donglin Zhao
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Zhe Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiaona Sui
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Han Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jin Liu
- Shandong Baiwo Bio-technology Co., Ltd., Linyi, 273423, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Cheng-Sheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| | - Yanfen Zheng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| |
Collapse
|
7
|
Nguyen NL, Van Dung V, Van Tung N, Nguyen TKL, Quan ND, Giang TTH, Ngan NTT, Hien NT, Nguyen HH. Draft genome sequencing of halotolerant bacterium Salinicola sp. DM10 unravels plant growth-promoting potentials. 3 Biotech 2023; 13:416. [PMID: 38009164 PMCID: PMC10667196 DOI: 10.1007/s13205-023-03833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2023] [Indexed: 11/28/2023] Open
Abstract
In this study, strain DM10 was isolated from mangrove roots and characterized as a halotolerant plant growth-promoting bacterium. Strain DM10 exhibited the ability to solubilize phosphate, produce siderophore, show 1-aminocyclopropane-1-carboxylic acid deaminase activity, and hydrolyze starch. The rice plants subjected to a treatment of NaCl (200 mM) and inoculated with strain DM10 showed an improvement in the shoot length, root length, and dried weight, when compared to those exposed solely to saline treatment. The comprehensive genome sequencing of strain DM10 revealed a genome spanning of 4,171,745 bp, harboring 3626 protein coding sequences. Within its genome, strain DM10 possesses genes responsible for both salt-in and salt-out strategies, indicative of a robust genetic adaptation aimed at fostering salt tolerance. Additionally, the genome encodes genes involved in phosphate solubilization, such as the synthesis of gluconic acid, high-affinity phosphate transport systems, and alkaline phosphatase. In the genome of DM10, we identified the acdS gene, responsible for encoding 1-aminocyclopropane-1-carboxylate deaminase, as well as the amy1A gene, which encodes α-amylase. Furthermore, the genome of DM10 contains sequences associated with the iron (3+)-hydroxamate and iron uptake clusters, responsible for siderophore production. Such data provide a deep understanding of the mechanism employed by strain DM10 to combat osmotic and salinity stress, facilitate plant growth, and elucidate its molecular-level behaviors.
Collapse
Affiliation(s)
- Ngoc-Lan Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Vu Van Dung
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Thi Kim Lien Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Nguyen Duc Quan
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Tran Thi Huong Giang
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Nguyen Thi Thanh Ngan
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Nguyen Thanh Hien
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Huy-Hoang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| |
Collapse
|
8
|
Rathod K, Rana S, Dhandukia P, Thakker JN. Investigating marine Bacillus as an effective growth promoter for chickpea. J Genet Eng Biotechnol 2023; 21:137. [PMID: 37999862 PMCID: PMC10673802 DOI: 10.1186/s43141-023-00608-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Microorganisms have characteristics that aid plant growth and raise the level of vital metabolites in plants for better growth including primary and secondary metabolites as well as several developmental enzymes. Marine bacteria must endure harsh environmental circumstances for their survival so it produces several secondary metabolites to protect themselves. Such metabolites might likewise be advantageous for a plant's growth. However, the effectiveness of marine microbes on plant growth remains unexplored. In the present study, we aim to evaluate such marine microbe both in vitro and in vivo as a plant growth promoter. RESULT Marine Bacillus licheniformis was found positive for vital plant growth-promoting traits like gibberellin and ammonia production, phosphate and potassium solubilization in vitro. Due to the presence of such traits, it was able to increase germination in chickpea. As it can colonize with the roots, it will be able to help plants absorb more nutrients. Additionally, in vivo study shows that B. licheniformis treatment caused rise in vital factors involved in plant growth and development like chlorophyll, POX, phenol, proline, carotenoid, flavonoid, total proteins and SOD which resulted in increase of chickpea height by 26.23% and increase in biomass by 33.85% in pot trials. CONCLUSION Marine B. licheniformis was able to promote plant growth and increased chickpea production in both number and weight for both in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Khushbu Rathod
- Department of Biotechnology, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Shruti Rana
- Department of Biotechnology, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Pinakin Dhandukia
- Department of Microbiology, School of Science and Technology, Vanita Vishram Women's University, Surat, Gujarat, India
| | - Janki N Thakker
- Department of Biotechnology, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India.
| |
Collapse
|
9
|
Qu H, Wang Y, Wang B, Li C. Pulsed electric field treatment of seeds altered the endophytic bacterial community and promotes early growth of roots in buckwheat. BMC Microbiol 2023; 23:290. [PMID: 37833633 PMCID: PMC10571398 DOI: 10.1186/s12866-023-02943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/12/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Endophytic bacteria provide nutrients and stimulate systemic resistance during seed germination and plant growth and development, and their functional properties in combating various stresses make them a powerful tool in green agricultural production. In this paper we explored the function of the endophyte community in buckwheat seeds in order to provide a theoretical basis for the application and scientific research of endophytes in buckwheat cultivation. We used pulsed electric field (PEF) technology to treat buckwheat seeds, monitored the effect of high-voltage pulse treatment on buckwheat seed germination, and analyzed the diversity of endophytic bacteria in buckwheat seeds using the amplicon sequencing method. RESULTS PEF treatment promoted root development during buckwheat seed germination. A total of 350 Operational taxonomic units (OTUs) that were assigned into 103 genera were obtained from control and treatment groups using 16SrRNA amplicon sequencing technology. Additionally, PEF treatment also caused a significant decrease in the abundance of Actinobacteria, Proteobacteria, and Bacteroidetes. The abundance of 28 genera changed significantly as well: 11 genera were more abundant, and 17 were less abundant. The number of associated network edges was reduced from 980 to 117, the number of positive correlations decreased by 89.1%, and the number of negative correlations decreased by 86.6%. CONCLUSION PEF treatment promoted early root development in buckwheat and was able to alter the seed endophytic bacterial community. This study thus makes a significant contribution to the field of endophyte research and to the application of PEF technology in plant cultivation.
Collapse
Affiliation(s)
- Hao Qu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, China
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Trans-boundary Pests, Yunnan Agricultural University, Kunming, China
| | - Baijuan Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, China.
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Trans-boundary Pests, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
10
|
Yao S, Zhang X, Lin A, Xia X, Lin L, Yang G, Zhuang L. Characterization of two novel Fe(III)-reducing and electrogenic bacteria, Shewanella ferrihydritica sp. nov. and Shewanella electrica sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2023; 73. [PMID: 37823787 DOI: 10.1099/ijsem.0.006044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Three novel strains in the genus Shewanella, designated A3AT, C31T and C32, were isolated from mangrove sediment samples. They were facultative anaerobic, Gram-stain-negative, rod-shaped, flagellum-harbouring, oxidase- and catalase-positive, electrogenic and capable of using Fe(III) as an electron acceptor during anaerobic growth. Results of phylogenetic analysis based on 16S rRNA gene and genomic sequences revealed that the strains should be assigned to the genus Shewanella. The 16S rRNA gene similarity, average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the isolates and their closely related species were below the respective cut-off values for species differentiation. The 16S rRNA gene similarity, ANI and dDDH values between strains C31T and C32 were 99.7, 99.9 and 99.9 %, respectively, indicating that they should belong to the same genospecies. Based on polyphasic taxonomic approach, two novel species are proposed, Shewanella ferrihydritica sp. nov. with type strain A3AT (GDMCC 1.2732T=JCM 34899T) and Shewanella electrica sp. nov. with type strain C31T (GDMCC 1.2736T=JCM 34902T).
Collapse
Affiliation(s)
- Sijie Yao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, PR China
| | - Xueying Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, PR China
| | - Annian Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, PR China
| | - Xue Xia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, PR China
| | - Lijun Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, PR China
| | - Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, PR China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, PR China
| |
Collapse
|
11
|
Anand U, Pal T, Yadav N, Singh VK, Tripathi V, Choudhary KK, Shukla AK, Sunita K, Kumar A, Bontempi E, Ma Y, Kolton M, Singh AK. Current Scenario and Future Prospects of Endophytic Microbes: Promising Candidates for Abiotic and Biotic Stress Management for Agricultural and Environmental Sustainability. MICROBIAL ECOLOGY 2023; 86:1455-1486. [PMID: 36917283 PMCID: PMC10497456 DOI: 10.1007/s00248-023-02190-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Globally, substantial research into endophytic microbes is being conducted to increase agricultural and environmental sustainability. Endophytic microbes such as bacteria, actinomycetes, and fungi inhabit ubiquitously within the tissues of all plant species without causing any harm or disease. Endophytes form symbiotic relationships with diverse plant species and can regulate numerous host functions, including resistance to abiotic and biotic stresses, growth and development, and stimulating immune systems. Moreover, plant endophytes play a dominant role in nutrient cycling, biodegradation, and bioremediation, and are widely used in many industries. Endophytes have a stronger predisposition for enhancing mineral and metal solubility by cells through the secretion of organic acids with low molecular weight and metal-specific ligands (such as siderophores) that alter soil pH and boost binding activity. Finally, endophytes synthesize various bioactive compounds with high competence that are promising candidates for new drugs, antibiotics, and medicines. Bioprospecting of endophytic novel secondary metabolites has given momentum to sustainable agriculture for combating environmental stresses. Biotechnological interventions with the aid of endophytes played a pivotal role in crop improvement to mitigate biotic and abiotic stress conditions like drought, salinity, xenobiotic compounds, and heavy metals. Identification of putative genes from endophytes conferring resistance and tolerance to crop diseases, apart from those involved in the accumulation and degradation of contaminants, could open new avenues in agricultural research and development. Furthermore, a detailed molecular and biochemical understanding of endophyte entry and colonization strategy in the host would better help in manipulating crop productivity under changing climatic conditions. Therefore, the present review highlights current research trends based on the SCOPUS database, potential biotechnological interventions of endophytic microorganisms in combating environmental stresses influencing crop productivity, future opportunities of endophytes in improving plant stress tolerance, and their contribution to sustainable remediation of hazardous environmental contaminants.
Collapse
Affiliation(s)
- Uttpal Anand
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreshet Ben-Gurion, Israel.
| | - Tarun Pal
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreshet Ben-Gurion, Israel
| | - Niraj Yadav
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8499000, Midreshet Ben-Gurion, Israel
| | - Vipin Kumar Singh
- Department of Botany, K.S. Saket P.G. College, Ayodhya affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya, 224123, Uttar Pradesh, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| | - Krishna Kumar Choudhary
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Awadhesh Kumar Shukla
- Department of Botany, K.S. Saket P.G. College, Ayodhya affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya, 224123, Uttar Pradesh, India
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Ajay Kumar
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, 7505101, Rishon, Lezion, Israel
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, Via Branze 38, 25123, Brescia, Italy.
| | - Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Max Kolton
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8499000, Midreshet Ben-Gurion, Israel
| | - Amit Kishore Singh
- Department of Botany, Bhagalpur National College (A constituent unit of Tilka Manjhi Bhagalpur University), Bhagalpur, 812007, Bihar, India.
| |
Collapse
|
12
|
Petrosyan K, Thijs S, Piwowarczyk R, Ruraż K, Kaca W, Vangronsveld J. Diversity and potential plant growth promoting capacity of seed endophytic bacteria of the holoparasite Cistanche phelypaea (Orobanchaceae). Sci Rep 2023; 13:11835. [PMID: 37481658 PMCID: PMC10363106 DOI: 10.1038/s41598-023-38899-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023] Open
Abstract
Salt marshes are highly dynamic, biologically diverse ecosystems with a broad range of ecological functions. We investigated the endophytic bacterial community of surface sterilized seeds of the holoparasitic Cistanche phelypaea growing in coastal salt marshes of the Iberian Peninsula in Portugal. C. phelypaea is the only representative of the genus Cistanche that was reported in such habitat. Using high-throughput sequencing methods, 23 bacterial phyla and 263 different OTUs on genus level were found. Bacterial strains belonging to phyla Proteobacteria and Actinobacteriota were dominating. Also some newly classified or undiscovered bacterial phyla, unclassified and unexplored taxonomic groups, symbiotic Archaea groups inhabited the C. phelypaea seeds. γ-Proteobacteria was the most diverse phylogenetic group. Sixty-three bacterial strains belonging to Bacilli, Actinomycetes, α-, γ- and β-Proteobacteria and unclassified bacteria were isolated. We also investigated the in vitro PGP traits and salt tolerance of the isolates. Among the Actinobacteria, Micromonospora spp. showed the most promising endophytes in the seeds. Taken together, the results indicated that the seeds were inhabited by halotolerant bacterial strains that may play a role in mitigating the adverse effects of salt stress on the host plant. In future research, these bacteria should be assessed as potential sources of novel and unique bioactive compounds or as novel bacterial species.
Collapse
Affiliation(s)
- Kristine Petrosyan
- Department of Microbiology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland.
- Environmental Biology Research Group, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| | - Sofie Thijs
- Environmental Biology Research Group, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Renata Piwowarczyk
- Department of Environmental Biology, Center for Research and Conservation of Biodiversity, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| | - Karolina Ruraż
- Department of Environmental Biology, Center for Research and Conservation of Biodiversity, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| | - Wiesław Kaca
- Department of Microbiology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| | - Jaco Vangronsveld
- Environmental Biology Research Group, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka, 19, 20-033, Lublin, Poland
| |
Collapse
|
13
|
Choudhary N, Dhingra N, Gacem A, Yadav VK, Verma RK, Choudhary M, Bhardwaj U, Chundawat RS, Alqahtani MS, Gaur RK, Eltayeb LB, Al Abdulmonem W, Jeon BH. Towards further understanding the applications of endophytes: enriched source of bioactive compounds and bio factories for nanoparticles. FRONTIERS IN PLANT SCIENCE 2023; 14:1193573. [PMID: 37492778 PMCID: PMC10364642 DOI: 10.3389/fpls.2023.1193573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/31/2023] [Indexed: 07/27/2023]
Abstract
The most significant issues that humans face today include a growing population, an altering climate, an growing reliance on pesticides, the appearance of novel infectious agents, and an accumulation of industrial waste. The production of agricultural goods has also been subject to a great number of significant shifts, often known as agricultural revolutions, which have been influenced by the progression of civilization, technology, and general human advancement. Sustainable measures that can be applied in agriculture, the environment, medicine, and industry are needed to lessen the harmful effects of the aforementioned problems. Endophytes, which might be bacterial or fungal, could be a successful solution. They protect plants and promote growth by producing phytohormones and by providing biotic and abiotic stress tolerance. Endophytes produce the diverse type of bioactive compounds such as alkaloids, saponins, flavonoids, tannins, terpenoids, quinones, chinones, phenolic acids etc. and are known for various therapeutic advantages such as anticancer, antitumor, antidiabetic, antifungal, antiviral, antimicrobial, antimalarial, antioxidant activity. Proteases, pectinases, amylases, cellulases, xylanases, laccases, lipases, and other types of enzymes that are vital for many different industries can also be produced by endophytes. Due to the presence of all these bioactive compounds in endophytes, they have preferred sources for the green synthesis of nanoparticles. This review aims to comprehend the contributions and uses of endophytes in agriculture, medicinal, industrial sectors and bio-nanotechnology with their mechanism of action.
Collapse
Affiliation(s)
- Nisha Choudhary
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Naveen Dhingra
- Department of Agriculture, Medi-Caps University, Pigdamber Road, Rau, Indore, Madhya Pradesh, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Virendra Kumar Yadav
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Rakesh Kumar Verma
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Mahima Choudhary
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Uma Bhardwaj
- Department of Biotechnology, Noida International University, Noida, U.P., India
| | - Rajendra Singh Chundawat
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Leicester, United Kingdom
| | - Rajarshi Kumar Gaur
- Department of Biotechnology, Deen Dayal Upadhyaya (D.D.U.) Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin AbdulAziz University- Al-Kharj, Riyadh, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Booth JM, Fusi M, Marasco R, Daffonchio D. The microbial landscape in bioturbated mangrove sediment: A resource for promoting nature-based solutions for mangroves. Microb Biotechnol 2023. [PMID: 37209285 PMCID: PMC10364319 DOI: 10.1111/1751-7915.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/22/2023] Open
Abstract
Globally, soils and sediments are affected by the bioturbation activities of benthic species. The consequences of these activities are particularly impactful in intertidal sediment, which is generally anoxic and nutrient-poor. Mangrove intertidal sediments are of particular interest because, as the most productive forests and one of the most important stores of blue carbon, they provide global-scale ecosystem services. The mangrove sediment microbiome is fundamental for ecosystem functioning, influencing the efficiency of nutrient cycling and the abundance and distribution of key biological elements. Redox reactions in bioturbated sediment can be extremely complex, with one reaction creating a cascade effect on the succession of respiration pathways. This facilitates the overlap of different respiratory metabolisms important in the element cycles of the mangrove sediment, including carbon, nitrogen, sulphur and iron cycles, among others. Considering that all ecological functions and services provided by mangrove environments involve microorganisms, this work reviews the microbial roles in nutrient cycling in relation to bioturbation by animals and plants, the main mangrove ecosystem engineers. We highlight the diversity of bioturbating organisms and explore the diversity, dynamics and functions of the sediment microbiome, considering both the impacts of bioturbation. Finally, we review the growing evidence that bioturbation, through altering the sediment microbiome and environment, determining a 'halo effect', can ameliorate conditions for plant growth, highlighting the potential of the mangrove microbiome as a nature-based solution to sustain mangrove development and support the role of this ecosystem to deliver essential ecological services.
Collapse
Affiliation(s)
- Jenny M Booth
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Coastal Research Group, Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Centre for Conservation and Restoration Science, School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
- Joint Nature Conservation Committee, Peterborough, UK
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
15
|
Hussain M, Zahra N, Lang T, Zain M, Raza M, Shakoor N, Adeel M, Zhou H. Integrating nanotechnology with plant microbiome for next-generation crop health. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:703-711. [PMID: 36809731 DOI: 10.1016/j.plaphy.2023.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/02/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Nanotechnology has enormous potential for sustainable agriculture, such as improving nutrient use efficiency, plant health, and food production. Nanoscale modulation of the plant-associated microbiota offers an additional valuable opportunity to increase global crop production and ensure future food and nutrient security. Nanomaterials (NMs) applied to agricultural crops can impact plant and soil microbiota, which offers valuable services to host plants, including the acquisition of nutrients, abiotic stress tolerance, and disease suppression. Dissecting the complex interactions between NMs and plants by integrating multi-omic approaches is providing new insights into how NMs can activate host responses and functionality as well as influence native microbial communities. Such nexus and moving beyond descriptive microbiome studies to hypothesis-driven research will foster microbiome engineering and open up opportunities for the development of synthetic microbial communities to provide agronomic solutions. Herein, we first summarize the significant role of NMs and the plant microbiome in crop productivity and then focus on NMs effects on plant-associated microbiota. We outline three urgent priority research areas and call for a transdisciplinary collaborative approach, involving plant scientists, soil scientists, environmental scientists, ecologists, microbiologists, taxonomists, chemists, physicists, and stakeholders, to advance nano-microbiome research. Detailed understanding of the nanomaterial-plant-microbiome interactions and the mechanisms underlying NMs-mediated shifts in the microbiome assembly and functions may help to exploit the services of both nano-objects and microbiota for next-generation crop health.
Collapse
Affiliation(s)
- Muzammil Hussain
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-resource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, China; College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China.
| | - Nosheen Zahra
- Inservice Agricultural Training Institute, Sargodha, 40100, Punjab, Pakistan
| | - Tao Lang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-resource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, China; College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Muhammad Zain
- Department of Botany, University of LakkiMarwat, LakkiMarwat, Khyber Pakhtunkhwa, 28420, Pakistan
| | - Mubashar Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, China.
| | - Haichao Zhou
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-resource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, China.
| |
Collapse
|
16
|
Aswini K, Suman A, Sharma P, Singh PK, Gond S, Pathak D. Seed endophytic bacterial profiling from wheat varieties of contrasting heat sensitivity. FRONTIERS IN PLANT SCIENCE 2023; 14:1101818. [PMID: 37089648 PMCID: PMC10117849 DOI: 10.3389/fpls.2023.1101818] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
Wheat yield can be limited by many biotic and abiotic factors. Heat stress at the grain filling stage is a factor that reduces wheat production tremendously. The potential role of endophytic microorganisms in mitigating plant stress through various biomolecules like enzymes and growth hormones and also by improving plant nutrition has led to a more in-depth exploration of the plant microbiome for such functions. Hence, we devised this study to investigate the abundance and diversity of wheat seed endophytic bacteria (WSEB) from heatS (heat susceptible, GW322) and heatT (heat tolerant, HD3298 and HD3271) varieties by culturable and unculturable approaches. The results evidenced that the culturable diversity was higher in the heatS variety than in the heatT variety and Bacillus was found to be dominant among the 10 different bacterial genera identified. Though the WSEB population was higher in the heatS variety, a greater number of isolates from the heatT variety showed tolerance to higher temperatures (up to 55°C) along with PGP activities such as indole acetic acid (IAA) production and nutrient acquisition. Additionally, the metagenomic analysis of seed microbiota unveiled higher bacterial diversity, with a predominance of the phyla Proteobacteria covering >50% of OTUs, followed by Firmicutes and Actinobacteria. There were considerable variations in the abundance and diversity between heat sensitivity contrasting varieties, where notably more thermophilic bacterial OTUs were observed in the heatT samples, which could be attributed to conferring tolerance against heat stress. Furthermore, exploring the functional characteristics of culturable and unculturable microbiomes would provide more comprehensive information on improving plant growth and productivity for sustainable agriculture.
Collapse
Affiliation(s)
- Krishnan Aswini
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Archna Suman
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Archna Suman,
| | - Pushpendra Sharma
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pradeep Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shrikant Gond
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Devashish Pathak
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
17
|
Marasco R, Michoud G, Sefrji FO, Fusi M, Antony CP, Seferji KA, Barozzi A, Merlino G, Daffonchio D. The identification of the new species Nitratireductor thuwali sp. nov. reveals the untapped diversity of hydrocarbon-degrading culturable bacteria from the arid mangrove sediments of the Red Sea. Front Microbiol 2023; 14:1155381. [PMID: 37200916 PMCID: PMC10185800 DOI: 10.3389/fmicb.2023.1155381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/04/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction The geological isolation, lack of freshwater inputs and specific internal water circulations make the Red Sea one of the most extreme-and unique-oceans on the planet. Its high temperature, salinity and oligotrophy, along with the consistent input of hydrocarbons due to its geology (e.g., deep-sea vents) and high oil tankers traffic, create the conditions that can drive and influence the assembly of unique marine (micro)biomes that evolved to cope with these multiple stressors. We hypothesize that mangrove sediments, as a model-specific marine environment of the Red Sea, act as microbial hotspots/reservoirs of such diversity not yet explored and described. Methods To test our hypothesis, we combined oligotrophic media to mimic the Red Sea conditions and hydrocarbons as C-source (i.e., crude oil) with long incubation time to allow the cultivation of slow-growing environmentally (rare or uncommon) relevant bacteria. Results and discussion This approach reveals the vast diversity of taxonomically novel microbial hydrocarbon degraders within a collection of a few hundred isolates. Among these isolates, we characterized a novel species, Nitratireductor thuwali sp. nov., namely, Nit1536T. It is an aerobic, heterotrophic, Gram-stain-negative bacterium with optimum growth at 37°C, 8 pH and 4% NaCl, whose genome and physiological analysis confirmed the adaptation to extreme and oligotrophic conditions of the Red Sea mangrove sediments. For instance, Nit1536T metabolizes different carbon substrates, including straight-chain alkanes and organic acids, and synthesizes compatible solutes to survive in salty mangrove sediments. Our results showed that the Red Sea represent a source of yet unknown novel hydrocarbon degraders adapted to extreme marine conditions, and their discovery and characterization deserve further effort to unlock their biotechnological potential.
Collapse
|
18
|
Scherer BP, Mast A. Red Mangrove Propagule Bacterial Communities Vary With Geographic, But Not Genetic Distance. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02147-w. [PMID: 36441249 DOI: 10.1007/s00248-022-02147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Bacterial communities associated with plant propagules remain understudied, despite the opportunities that propagules represent as dispersal vectors for bacteria to new sites. These communities may be the product of a combination of environmental influence and inheritance from parent to offspring. The relative role of these mechanisms could have significant implications for our understanding of plant-microbe interactions. We studied the correlates of microbiome community similarities across an invasion front of red mangroves (Rhizophora mangle L.) in Florida, where the species is expanding northward. We collected georeferenced propagule samples from 110 individuals of red mangroves across 11 populations in Florida and used 16S rRNA gene (iTag) sequencing to describe their bacterial communities. We found no core community of bacterial amplicon sequence variants (ASVs) across the Florida range of red mangroves, though there were some ASVs shared among individuals within most populations. Populations differed significantly as measured by Bray-Curtis dissimilarity, but not Unifrac distance. We generated data from 6 microsatellite loci from 60 individuals across 9 of the 11 populations. Geographic distance was correlated with beta diversity, but genetic distance was not. We conclude that red mangrove propagule bacterial communities are likely influenced more by local environmental acquisition than by inheritance.
Collapse
Affiliation(s)
- Brendan P Scherer
- Department of Biological Science, Florida State University, King Life Sciences Building, 319 Stadium Drive, Tallahassee, Fl, 32304, USA.
| | - Austin Mast
- Department of Biological Science, Florida State University, King Life Sciences Building, 319 Stadium Drive, Tallahassee, Fl, 32304, USA
| |
Collapse
|
19
|
Kandasamy GD, Kathirvel P. Insights into bacterial endophytic diversity and isolation with a focus on their potential applications –A review. Microbiol Res 2022; 266:127256. [DOI: 10.1016/j.micres.2022.127256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/14/2022]
|
20
|
Tripathi A, Pandey P, Tripathi SN, Kalra A. Perspectives and potential applications of endophytic microorganisms in cultivation of medicinal and aromatic plants. FRONTIERS IN PLANT SCIENCE 2022; 13:985429. [PMID: 36247631 PMCID: PMC9560770 DOI: 10.3389/fpls.2022.985429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Ensuring food and nutritional security, it is crucial to use chemicals in agriculture to boost yields and protect the crops against biotic and abiotic perturbations. Conversely, excessive use of chemicals has led to many deleterious effects on the environment like pollution of soil, water, and air; loss of soil fertility; and development of pest resistance, and is now posing serious threats to biodiversity. Therefore, farming systems need to be upgraded towards the use of biological agents to retain agricultural and environmental sustainability. Plants exhibit a huge and varied niche for endophytic microorganisms inside the planta, resulting in a closer association between them. Endophytic microorganisms play pivotal roles in plant physiological and morphological characteristics, including growth promotion, survival, and fitness. Their mechanism of action includes both direct and indirect, such as mineral phosphate solubilization, fixating nitrogen, synthesis of auxins, production of siderophore, and various phytohormones. Medicinal and aromatic plants (MAPs) hold a crucial position worldwide for their valued essential oils and several phytopharmaceutically important bioactive compounds since ancient times; conversely, owing to the high demand for natural products, commercial cultivation of MAPs is on the upswing. Furthermore, the vulnerability to various pests and diseases enforces noteworthy production restraints that affect both crop yield and quality. Efforts have been made towards enhancing yields of plant crude drugs by improving crop varieties, cell cultures, transgenic plants, etc., but these are highly cost-demanding and time-consuming measures. Thus, it is essential to evolve efficient, eco-friendly, cost-effective simpler approaches for improvement in the yield and health of the plants. Harnessing endophytic microorganisms as biostimulants can be an effective and alternative step. This review summarizes the concept of endophytes, their multidimensional interaction inside the host plant, and the salient benefits associated with endophytic microorganisms in MAPs.
Collapse
Affiliation(s)
- Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Shakti Nath Tripathi
- Department of Botany, Nehru Gram Bharati Deemed to be University, Prayagraj, India
| | - Alok Kalra
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
21
|
Schillaci M, Raio A, Sillo F, Zampieri E, Mahmood S, Anjum M, Khalid A, Centritto M. Pseudomonas and Curtobacterium Strains from Olive Rhizosphere Characterized and Evaluated for Plant Growth Promoting Traits. PLANTS (BASEL, SWITZERLAND) 2022; 11:2245. [PMID: 36079627 PMCID: PMC9460707 DOI: 10.3390/plants11172245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Plant growth promoting (PGP) bacteria are known to enhance plant growth and protect them from environmental stresses through different pathways. The rhizosphere of perennial plants, including olive, may represent a relevant reservoir of PGP bacteria. Here, seven bacterial strains isolated from olive rhizosphere have been characterized taxonomically by 16S sequencing and biochemically, to evaluate their PGP potential. Most strains were identified as Pseudomonas or Bacillus spp., while the most promising ones belonged to genera Pseudomonas and Curtobacterium. Those strains have been tested for their capacity to grow under osmotic or salinity stress and to improve the germination and early development of Triticum durum subjected or not to those stresses. The selected strains had the ability to grow under severe stress, and a positive effect has been observed in non-stressed seedlings inoculated with one of the Pseudomonas strains, which showed promising characteristics that should be further evaluated. The biochemical and taxonomical characterization of bacterial strains isolated from different niches and the evaluation of their interaction with plants under varying conditions will help to increase our knowledge on PGP microorganisms and their use in agriculture.
Collapse
Affiliation(s)
- Martino Schillaci
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135 Torino, Italy
| | - Aida Raio
- National Research Council, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Fabiano Sillo
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135 Torino, Italy
| | - Elisa Zampieri
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135 Torino, Italy
| | - Shahid Mahmood
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Muzammil Anjum
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Azeem Khalid
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Mauro Centritto
- National Research Council, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
22
|
Zhang X, Yang G, Yao S, Zhuang L. Shewanella shenzhenensis sp. nov., a novel Fe(III)-reducing bacterium with abundant possible cytochrome genes, isolated from mangrove sediment. Antonie Van Leeuwenhoek 2022; 115:1245-1252. [PMID: 35951251 DOI: 10.1007/s10482-022-01763-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
A facultative anaerobic bacterium, designated as A25T, was isolated from a mangrove sediment sample collected in Shenzhen, China. Cells of strain A25T were found to be Gram-staining negative, rod-shaped, flagella-harboring, and oxidase- and catalase-positive. The isolate was able to grow at 4-40 °C (optimum 28 °C) and pH 5.0-9.0 (optimum pH 6.0), and in 0-10% NaCl concentration (w/v) (optimum 1%). Strain A25T was capable of reducing Fe(III) citrate under anaerobic conditions. The major fatty acids of this strain was C16:1ω7c/C16:1ω6c (summed feature 3), C17:1ω8c and iso-C15:0. Results of phylogenetic analyses based on 16S rRNA gene sequences indicated that strain A25T is affiliated with the genus Shewanella, showing the highest similarity to Shewanella seohaensis S7-3T (98.4% similarity). The average nucleotide identity and digital DNA-DNA hybridization values between the genomes of strain A25T and its closely related strains were ≤ 79.0% and ≤ 22.8%, respectively. Based on its phenotypic, phylogenetic properties and physiological and biochemical characteristics, strain A25T (= JCM 34900T = GDMCC 1.2731T) was designated as the type strain of a novel species of the genus Shewanella, for which the name Shewanella shenzhenensis sp. nov. was proposed.
Collapse
Affiliation(s)
- Xueying Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Sijie Yao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
23
|
Francioli D, Cid G, Hajirezaei MR, Kolb S. Leaf bacterial microbiota response to flooding is controlled by plant phenology in wheat (Triticum aestivum L.). Sci Rep 2022; 12:11197. [PMID: 35778470 PMCID: PMC9249782 DOI: 10.1038/s41598-022-15133-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
Leaf microbiota mediates foliar functional traits, influences plant fitness, and contributes to various ecosystem functions, including nutrient and water cycling. Plant phenology and harsh environmental conditions have been described as the main determinants of leaf microbiota assembly. How climate change may modulate the leaf microbiota is unresolved and thus, we have a limited understanding on how environmental stresses associated with climate change driven weather events affect composition and functions of the microbes inhabiting the phyllosphere. Thus, we conducted a pot experiment to determine the effects of flooding stress on the wheat leaf microbiota. Since plant phenology might be an important factor in the response to hydrological stress, flooding was induced at different plant growth stages (tillering, booting and flowering). Using a metabarcoding approach, we monitored the response of leaf bacteria to flooding, while key soil and plant traits were measured to correlate physiological plant and edaphic factor changes with shifts in the bacterial leaf microbiota assembly. In our study, plant growth stage represented the main driver in leaf microbiota composition, as early and late plants showed distinct bacterial communities. Overall, flooding had a differential effect on leaf microbiota dynamics depending at which developmental stage it was induced, as a more pronounced disruption in community assembly was observed in younger plants.
Collapse
Affiliation(s)
- Davide Francioli
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research E.V. (ZALF), Müncheberg, Germany.
| | - Geeisy Cid
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Mohammad-Reza Hajirezaei
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research E.V. (ZALF), Müncheberg, Germany.,Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
24
|
Rani S, Kumar P, Dahiya P, Maheshwari R, Dang AS, Suneja P. Endophytism: A Multidimensional Approach to Plant-Prokaryotic Microbe Interaction. Front Microbiol 2022; 13:861235. [PMID: 35633681 PMCID: PMC9135327 DOI: 10.3389/fmicb.2022.861235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Plant growth and development are positively regulated by the endophytic microbiome via both direct and indirect perspectives. Endophytes use phytohormone production to promote plant health along with other added benefits such as nutrient acquisition, nitrogen fixation, and survival under abiotic and biotic stress conditions. The ability of endophytes to penetrate the plant tissues, reside and interact with the host in multiple ways makes them unique. The common assumption that these endophytes interact with plants in a similar manner as the rhizospheric bacteria is a deterring factor to go deeper into their study, and more focus was on symbiotic associations and plant–pathogen reactions. The current focus has shifted on the complexity of relationships between host plants and their endophytic counterparts. It would be gripping to inspect how endophytes influence host gene expression and can be utilized to climb the ladder of “Sustainable agriculture.” Advancements in various molecular techniques have provided an impetus to elucidate the complexity of endophytic microbiome. The present review is focused on canvassing different aspects concerned with the multidimensional interaction of endophytes with plants along with their application.
Collapse
Affiliation(s)
- Simran Rani
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pradeep Kumar
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Priyanka Dahiya
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Rajat Maheshwari
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Amita Suneja Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Suneja
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
25
|
Teo HM, A. A, A. WA, Bhubalan K, S. SNM, C. I. MS, Ng LC. Setting a Plausible Route for Saline Soil-Based Crop Cultivations by Application of Beneficial Halophyte-Associated Bacteria: A Review. Microorganisms 2022; 10:microorganisms10030657. [PMID: 35336232 PMCID: PMC8953261 DOI: 10.3390/microorganisms10030657] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
The global scale of land salinization has always been a considerable concern for human livelihoods, mainly regarding the food-producing agricultural industries. The latest update suggested that the perpetual salinity problem claimed up to 900 million hectares of agricultural land worldwide, inducing salinity stress among salt-sensitive crops and ultimately reducing productivity and yield. Moreover, with the constant growth of the human population, sustainable solutions are vital to ensure food security and social welfare. Despite that, the current method of crop augmentations via selective breeding and genetic engineering only resulted in mild success. Therefore, using the biological approach of halotolerant plant growth-promoting bacteria (HT-PGPB) as bio-inoculants provides a promising crop enhancement strategy. HT-PGPB has been proven capable of forming a symbiotic relationship with the host plant by instilling induced salinity tolerance (IST) and multiple plant growth-promoting traits (PGP). Nevertheless, the mechanisms and prospects of HT-PGPB application of glycophytic rice crops remains incomprehensively reported. Thus, this review describes a plausible strategy of halophyte-associated HT-PGPB as the future catalyst for rice crop production in salt-dominated land and aims to meet the global Sustainable Development Goals (SDGs) of zero hunger.
Collapse
Affiliation(s)
- Han Meng Teo
- Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (H.M.T.); (S.N.M.S.); (M.S.C.I.)
| | - Aziz A.
- Biological Security and Sustainability Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Wahizatul A. A.
- Institute of Marine Biotechnology, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (W.A.A.); (K.B.)
| | - Kesaven Bhubalan
- Institute of Marine Biotechnology, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (W.A.A.); (K.B.)
| | - Siti Nordahliawate M. S.
- Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (H.M.T.); (S.N.M.S.); (M.S.C.I.)
| | - Muhamad Syazlie C. I.
- Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (H.M.T.); (S.N.M.S.); (M.S.C.I.)
| | - Lee Chuen Ng
- Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (H.M.T.); (S.N.M.S.); (M.S.C.I.)
- Correspondence:
| |
Collapse
|
26
|
Subedi SC, Allen P, Vidales R, Sternberg L, Ross M, Afkhami ME. Salinity legacy: Foliar microbiome's history affects mutualist-conferred salinity tolerance. Ecology 2022; 103:e3679. [PMID: 35302649 DOI: 10.1002/ecy.3679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
Abstract
The rapid human-driven changes in the environment during the Anthropocene have placed extreme stress on many plants and animals. Beneficial interactions with microorganisms may be crucial for ameliorating these stressors and facilitating the ecosystem services host organisms provide. Foliar endophytes, microorganisms that reside within leaves, are found in essentially all plants and can provide important benefits (e.g., enhanced drought tolerance or resistance to herbivory). However, it remains unclear how important the legacy effects of the abiotic stressors that select on these microbiomes are for affecting the degree of stress amelioration provided to their hosts. To elucidate foliar endophytes' role in host plant salt-tolerance, especially if salinity experienced in the field selects for endophytes that are better suited to improve salt-tolerance of their hosts, we combined field collections of 90 endophyte communities from 30 sites across the coastal Everglades with a manipulative growth experiment assessing endophyte inoculation effects on host plant performance. Specifically, we grew >350 red mangrove (Rhizophora mangle) seedlings in a factorial design that manipulated the salinity environment the seedlings experienced (freshwater vs. saltwater), the introduction of field-collected endophytes (live vs. sterilized inoculum), and the legacy of salinity stress experienced by these introduced endophytes [ranging from no salt stress (0 ppt salinity) to high salt stress (40 ppt) environments]. We found that inoculation with field-collected endophytes significantly increased mangrove performance across almost all metrics examined (15-20% increase on average) and these beneficial effects typically occurred when grown in saltwater. Importantly, our study revealed the novel result that endophyte-conferred salinity tolerance depended on microbiome salinity legacy in a key coastal foundation species. Salt-stressed mangroves inoculated with endophyte microbiomes from high salinity environments performed, on average, as well as plants grown in low-stress freshwater, while endophytes from freshwater environments did not relieve host salinity stress. Given the increasing salinity stress imposed by sea level rise and the importance of foundation species like mangroves for ecosystem services, our results indicate that consideration of endophytic associations and their salinity legacy may be critical for successful restoration and management of coastal habitats.
Collapse
Affiliation(s)
- Suresh C Subedi
- Department of Biology, University of Miami, Coral Gables, Florida
| | - Preston Allen
- Department of Biology, University of Miami, Coral Gables, Florida
| | - Rosario Vidales
- Department of Earth and environment, Florida International University, Miami, Florida
| | - Leonel Sternberg
- Department of Biology, University of Miami, Coral Gables, Florida
| | - Michael Ross
- Department of Earth and environment, Florida International University, Miami, Florida.,Institute of Environment, Florida International University, Miami, Florida
| | | |
Collapse
|
27
|
Thomson T, Fusi M, Bennett-Smith MF, Prinz N, Aylagas E, Carvalho S, Lovelock CE, Jones BH, Ellis JI. Contrasting Effects of Local Environmental and Biogeographic Factors on the Composition and Structure of Bacterial Communities in Arid Monospecific Mangrove Soils. Microbiol Spectr 2022; 10:e0090321. [PMID: 34985338 PMCID: PMC8729789 DOI: 10.1128/spectrum.00903-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/11/2021] [Indexed: 12/23/2022] Open
Abstract
Mangrove forests are important biotic sinks of atmospheric CO2 and play an integral role in nutrient-cycling and decontamination of coastal waters, thereby mitigating climatic and anthropogenic stressors. These services are primarily regulated by the activity of the soil microbiome. To understand how environmental changes may affect this vital part of the ecosystem, it is key to understand the patterns that drive microbial community assembly in mangrove forest soils. High-throughput amplicon sequencing (16S rRNA) was applied on samples from arid Avicennia marina forests across different spatial scales from local to regional. Alongside conventional analyses of community ecology, microbial co-occurrence networks were assessed to investigate differences in composition and structure of the bacterial community. The bacterial community composition varied more strongly along an intertidal gradient within each mangrove forest, than between forests in different geographic regions (Australia/Saudi Arabia). In contrast, co-occurrence networks differed primarily between geographic regions, illustrating that the structure of the bacterial community is not necessarily linked to its composition. The local diversity in mangrove forest soils may have important implications for the quantification of biogeochemical processes and is important to consider when planning restoration activities. IMPORTANCE Mangrove ecosystems are increasingly being recognized for their potential to sequester atmospheric carbon, thereby mitigating the effects of anthropogenically driven greenhouse gas emissions. The bacterial community in the soils plays an important role in the breakdown and recycling of carbon and other nutrients. To assess and predict changes in carbon storage, it is important to understand how the bacterial community is shaped by its environment. Here, we compared the bacterial communities of mangrove forests on different spatial scales, from local within-forest to biogeographic comparisons. The bacterial community composition differed more between distinct intertidal zones of the same forest than between forests in distant geographic regions. The calculated network structure of theoretically interacting bacteria, however, differed most between the geographic regions. Our findings highlight the importance of local environmental factors in shaping the microbial soil community in mangroves and highlight a disconnect between community composition and structure in microbial soil assemblages.
Collapse
Affiliation(s)
- T. Thomson
- University of Waikato, School of Science, Tauranga, New Zealand
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - M. Fusi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - M. F. Bennett-Smith
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - N. Prinz
- University of Waikato, School of Science, Tauranga, New Zealand
| | - E. Aylagas
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - S. Carvalho
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - C. E. Lovelock
- School of Biological Sciences, The University of Queensland, St Lucida, Australia
| | - B. H. Jones
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - J. I. Ellis
- University of Waikato, School of Science, Tauranga, New Zealand
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| |
Collapse
|
28
|
Sefrji FO, Marasco R, Michoud G, Seferji KA, Merlino G, Daffonchio D. Insights Into the Cultivable Bacterial Fraction of Sediments From the Red Sea Mangroves and Physiological, Chemotaxonomic, and Genomic Characterization of Mangrovibacillus cuniculi gen. nov., sp. nov., a Novel Member of the Bacillaceae Family. Front Microbiol 2022; 13:777986. [PMID: 35250919 PMCID: PMC8894767 DOI: 10.3389/fmicb.2022.777986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/28/2022] [Indexed: 12/28/2022] Open
Abstract
Mangrove forests are dynamic and productive ecosystems rich in microbial diversity; it has been estimated that microbial cells in the mangrove sediments constitute up to 91% of the total living biomass of these ecosystems. Despite in this ecosystem many of the ecological functions and services are supported and/or carried out by microorganisms (e.g., nutrient cycling and eukaryotic-host adaptation), their diversity and function are overlooked and poorly explored, especially for the oligotrophic mangrove of the Red Sea coast. Here, we investigated the cultivable fraction of bacteria associated with the sediments of Saudi Arabian Red Sea mangrove forest by applying the diffusion-chamber-based approach in combination with oligotrophic medium and long incubation time to allow the growth of bacteria in their natural environment. Cultivation resulted in the isolation of numerous representatives of Isoptericola (n = 51) and Marinobacter (n = 38), along with several less abundant and poorly study taxa (n = 25) distributed across ten genera. Within the latest group, we isolated R1DC41T, a novel member of the Bacillaceae family in the Firmicutes phylum. It showed 16S rRNA gene similarity of 94.59–97.36% with closest relatives of Rossellomorea (which was formerly in the Bacillus genus), Domibacillus, Bacillus, and Jeotgalibacillus genera. Based on the multilocus sequence analysis (MLSA), R1DC41T strain formed a separated branch from the listed genera, representing a novel species of a new genus for which the name Mangrovibacillus cuniculi gen. nov., sp. nov. is proposed. Genomic, morphological, and physiological characterizations revealed that R1DC41T is an aerobic, Gram-stain-variable, rod-shaped, non-motile, endospore-forming bacterium. A reduced genome and the presence of numerous transporters used to import the components necessary for its growth and resistance to the stresses imposed by the oligotrophic and salty mangrove sediments make R1DC41T extremely adapted to its environment of origin and to the competitive conditions present within.
Collapse
|
29
|
Shi P, Zhang J, Li X, Zhou L, Luo H, Wang L, Zhang Y, Chou M, Wei G. Multiple Metabolic Phenotypes as Screening Criteria Are Correlated With the Plant Growth-Promoting Ability of Rhizobacterial Isolates. Front Microbiol 2022; 12:747982. [PMID: 35069464 PMCID: PMC8767003 DOI: 10.3389/fmicb.2021.747982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Efficient screening method is the prerequisite for getting plant growth-promoting (PGP) rhizobacteria (PGPR) which may play an important role in sustainable agriculture from the natural environment. Many current traditional preliminary screening criteria based on knowledge of PGP mechanisms do not always work well due to complex plant-microbe interactions and may lead to the low screening efficiency. More new screening criteria should be evaluated to establish a more effective screening system. However, the studies focused on this issue were not enough, and few new screening criteria had been proposed. The aim of this study was to analyze the correlation between the metabolic phenotypes of rhizobacterial isolates and their PGP ability. The feasibility of using these phenotypes as preliminary screening criteria for PGPR was also evaluated. Twenty-one rhizobacterial isolates were screened for their PGP ability, traditional PGP traits, and multiple metabolic phenotypes that are not directly related to PGP mechanisms, but are possibly related to rhizosphere colonization. Correlations between the PGP traits or metabolic phenotypes and increases in plant agronomic parameters were analyzed to find the indicators that are most closely related to PGP ability. The utilization of 11 nutrient substrates commonly found in root exudates, such as D-salicin, β-methyl-D-glucoside, and D-cellobiose, was significantly positively correlated with the PGP ability of the rhizobacterial isolates. The utilization of one amino acid and two organic acids, namely L-aspartic acid, α-keto-glutaric acid, and formic acid, was negatively correlated with PGP ability. There were no significant correlations between four PGP traits tested in this study and the PGP ability. The ability of rhizobacterial isolates to metabolize nutrient substrates that are identical or similar to root exudate components may act as better criteria than PGP traits for the primary screening of PGPR, because rhizosphere colonization is a prerequisite for PGPR to affect plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
30
|
Kumar K, Verma A, Pal G, Anubha, White JF, Verma SK. Seed Endophytic Bacteria of Pearl Millet ( Pennisetum glaucum L.) Promote Seedling Development and Defend Against a Fungal Phytopathogen. Front Microbiol 2021; 12:774293. [PMID: 34956137 PMCID: PMC8696672 DOI: 10.3389/fmicb.2021.774293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Seed endophytic bacteria (SEB) are primary symbionts that play crucial roles in plant growth and development. The present study reports the isolation of seven culturable SEB including Kosakonia cowanii (KAS1), Bacillus subtilis (KAS2), Bacillus tequilensis (KAS3), Pantoea stewartii (KAS4), Paenibacillus dendritiformis (KAS5), Pseudomonas aeruginosa (KAS6), and Bacillus velezensis (KAS7) in pearl millet seeds. All the isolates were characterized for their plant growth promoting activities. Most of the SEB also inhibited the growth of tested fungal phytopathogens in dual plate culture. Removal of these SEB from seeds compromised the growth and development of seedlings, however, re-inoculation with the SEB (Kosakonia cowanii, Pantoea stewartii, and Pseudomonas aeruginosa) restored the growth and development of seedlings significantly. Fluorescence microscopy showed inter and intracellular colonization of SEB in root parenchyma and root hair cells. Lipopeptides were extracted from all three Bacillus spp. which showed strong antifungal activity against tested fungal pathogens. Antifungal lipopeptide genes were also screened in Bacillus spp. After lipopeptide treatment, live-dead staining with fluorescence microscopy along with bright-field and scanning electron microscopy (SEM) revealed structural deformation and cell death in Fusarium mycelia and spores. Furthermore, the development of pores in the membrane and leakages of protoplasmic substances from cells and ultimately death of hyphae and spores were also confirmed. In microcosm assays, treatment of seeds with Bacillus subtilis or application of its lipopeptide alone significantly protected seedlings from Fusarium sp. infection.
Collapse
Affiliation(s)
- Kanchan Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anand Verma
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Gaurav Pal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anubha
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - James F White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Satish K Verma
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
31
|
Sharma P, Kumar S. Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: Recent advances. BIORESOURCE TECHNOLOGY 2021; 339:125589. [PMID: 34304098 DOI: 10.1016/j.biortech.2021.125589] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 05/22/2023]
Abstract
Worldwide, heavy metals pollution is mostly caused by rapid population growth and industrial development which is accumulated in food webs causing a serious public health risk. Endophytic microorganisms have a variety of mechanisms for metal sequestration having metal biosorption capacities.Endophytic organisms like bacteria and fungi provide beneficial qualities that help plants to improve their health, reduce stress, and detoxify metals. Endophytes have a higher proclivity for improving metal and mineral solubility by cells that secrete low-molecular-weight organic acids and metal-specific ligands like siderophores, which change the pH of the soil and improve binding activity. Protein-related approaches like chromatin immunoprecipitation sequencing (ChIP-Seq) and modified enzyme-linked immunosorbent assay (ELISA test) can represent endophytic bacterial community and DNA-protein interactions during metal reduction. This review explored the role of endophytes in bioremediation approaches that can help in analyzing the potential and prospects in response to industrial effluents' detoxification.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Sunil Kumar
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India.
| |
Collapse
|
32
|
Liu GH, Zhang Q, Narsing Rao MP, Yang S, Tang R, Shi H, Wang JP, Huang GM, Liu B, Zhou SG, Li WJ. Stress response mechanisms and description of three novel species Shewanella avicenniae sp. nov., Shewanella sedimentimangrovi sp. nov. and Shewanella yunxiaonensis sp. nov., isolated from mangrove ecosystem. Antonie van Leeuwenhoek 2021; 114:2123-2131. [PMID: 34623539 DOI: 10.1007/s10482-021-01666-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Three Gram-staining negative, facultatively anaerobic, rod-shaped and motile strains, FJAT-51800T, FJAT-52962T and FJAT-54481T were isolated from the sediment samples of Zhangjiang Estuary Mangrove National Nature Reserve in Fujian Province, China. The 16S rRNA gene sequencing results indicated they could be novel members of the genus Shewanella. The optimum temperature for growth was 30 °C. The respiratory quinones of the strains were ubiquinone Q-7 or Q-8, and menaquinone MK-7. Polar lipids of the strains FJAT-52962T and FJAT-51800T were phosphatidyl glycerol, phosphatidyl ethanolamine, and unidentified aminophospholipids while strain FJAT-54481 consist of phosphatidylglycerol, phosphatidylethanolamine, unidentified aminophospholipids, two unidentified aminolipids and four unidentified lipids. The major fatty acid of the three strains was iso-C15:0. The genomic DNA G + C contents of strains FJAT-51800T, FJAT-52962T and FJAT-54481T were 48.2, 55.3 and 48.1%, respectively. The average nucleotide identity and digital DNA-DNA hybridization values between strains FJAT-51800T, FJAT-52962T and FJAT-54481T and other closely related Shewanella members were below the cut-off level (95-96%) for species identification. Genome analysis showed that these strains encode genes for osmo-regulation. Based on the results of phenotypic, chemotaxonomic and genome analyses, strains FJAT-51800T, FJAT-52962T and FJAT-54481T represent three novel species of the genus Shewanella, for which the names Shewanella avicenniae sp. nov., Shewanella sedimentimangrovi sp. nov., and Shewanella yunxiaonensis sp. nov., are proposed. The type strains are FJAT-51800T (= GDMCC 1.2204T = KCTC 82448T), FJAT-52962T (= MCCC 1K05496T = KCTC 82445T) and FJAT-54481T (= GDMCC 1.2348T = KCTC 82646T).
Collapse
Affiliation(s)
- Guo-Hong Liu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350003, People's Republic of China
| | - Qi Zhang
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350003, People's Republic of China.,Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, People's Republic of China
| | - Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shang Yang
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350003, People's Republic of China.,Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, People's Republic of China
| | - Rong Tang
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350003, People's Republic of China.,Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, People's Republic of China
| | - Huai Shi
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350003, People's Republic of China
| | - Jie-Ping Wang
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350003, People's Republic of China
| | - Guan-Min Huang
- Administrative Bureau of Zhangjiang Estuary Mangrove National Nature Reserve Yunxiao Town, Yunxiao, Fujian, 363300, People's Republic of China
| | - Bo Liu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350003, People's Republic of China
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, People's Republic of China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
33
|
Li H, La S, Zhang X, Gao L, Tian Y. Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress. THE ISME JOURNAL 2021; 15:2865-2882. [PMID: 33875820 PMCID: PMC8443564 DOI: 10.1038/s41396-021-00974-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 02/01/2023]
Abstract
Salinity is a major abiotic stress threatening crop production. Root-derived bacteria (RDB) are hypothesized to play a role in enhancing plant adaptability to various stresses. However, it is still unclear whether and how plants build up specific RDB when challenged by salinity. In this study, we measured the composition and variation in the rhizosphere and endophyte bacteria of salt-sensitive (SSs) and salt-resistant (SRs) plants under soil conditions with/without salinity. The salt-induced RDB (both rhizobiomes and endophytes) were isolated to examine their effects on the physiological responses of SSs and SRs to salinity challenge. Moreover, we examined whether functional redundancy exists among salt-induced RDB in enhancing plant adaptability to salt stress. We observed that although SSs and SRs recruited distinct RDB and relevant functions when challenged by salinity, salt-induced recruitment of specific RDB led to a consistent growth promotion in plants regardless of their salinity tolerance capacities. Plants employed a species-specific strategy to recruit beneficial soil bacteria in the rhizosphere rather than in the endosphere. Furthermore, we demonstrated that the consortium, but not individual members of the salt-induced RDB, provided enduring resistance against salt stress. This study confirms the critical role of salt-induced RDB in enhancing plant adaptability to salt stress.
Collapse
Affiliation(s)
- Hong Li
- grid.22935.3f0000 0004 0530 8290Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Shikai La
- grid.22935.3f0000 0004 0530 8290Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Xu Zhang
- grid.22935.3f0000 0004 0530 8290Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Lihong Gao
- grid.22935.3f0000 0004 0530 8290Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Yongqiang Tian
- grid.22935.3f0000 0004 0530 8290Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
34
|
Bioprospecting Desert Plants for Endophytic and Biostimulant Microbes: A Strategy for Enhancing Agricultural Production in a Hotter, Drier Future. BIOLOGY 2021; 10:biology10100961. [PMID: 34681060 PMCID: PMC8533330 DOI: 10.3390/biology10100961] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/14/2023]
Abstract
Simple Summary Endophytes are microbes that live inside plants without causing negative effects in their hosts. All land plants are known to have endophytes, and these endophytes have the capacity to be transferred between plants. Taking endophytes from desert plants, which grow in low-nutrient, high-stress environments, and transferring them to crop plants may alleviate some of the challenges being faced by the agricultural industry, such as increasing drought frequency and rising opposition to chemical use in agriculture. Studies have shown that desert endophytes have the capacity to increase nutrient uptake and increase plant resistance to drought and heat stress, salt stress, and pathogen attack. Currently, the agricultural industry focuses on using irrigation, chemical fertilizers, and chemical pesticides to solve such issues, which can be extremely damaging to the environment. While there is still a lot that is unknown about endophytes, particularly desert plant endophytes, current research provides evidence that desert plant endophytes could be an environmentally friendly alternative to the conventional solutions being applied today. Abstract Deserts are challenging places for plants to survive in due to low nutrient availability, drought and heat stress, water stress, and herbivory. Endophytes—microbes that colonize and infect plant tissues without causing apparent disease—may contribute to plant success in such harsh environments. Current knowledge of desert plant endophytes is limited, but studies performed so far reveal that they can improve host nutrient acquisition, increase host tolerance to abiotic stresses, and increase host resistance to biotic stresses. When considered in combination with their broad host range and high colonization rate, there is great potential for desert endophytes to be used in a commercial agricultural setting, especially as croplands face more frequent and severe droughts due to climate change and as the agricultural industry faces mounting pressure to break away from agrochemicals towards more environmentally friendly alternatives. Much is still unknown about desert endophytes, but future studies may prove fruitful for the discovery of new endophyte-based biofertilizers, biocontrol agents, and abiotic stress relievers of crops.
Collapse
|
35
|
Soldan R, Fusi M, Cardinale M, Daffonchio D, Preston GM. The effect of plant domestication on host control of the microbiota. Commun Biol 2021; 4:936. [PMID: 34354230 PMCID: PMC8342519 DOI: 10.1038/s42003-021-02467-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Macroorganisms are colonized by microbial communities that exert important biological and ecological functions, the composition of which is subject to host control and has therefore been described as "an ecosystem on a leash". However, domesticated organisms such as crop plants are subject to both artificial selection and natural selection exerted by the agricultural ecosystem. Here, we propose a framework for understanding how host control of the microbiota is influenced by domestication, in which a double leash acts from domesticator to host and host to microbes. We discuss how this framework applies to a plant compartment that has demonstrated remarkable phenotypic changes during domestication: the seed.
Collapse
Affiliation(s)
- Riccardo Soldan
- University of Oxford, Department of Plant Sciences, Oxford, UK.
| | - Marco Fusi
- Edinburgh Napier University, School of Applied Sciences, Edinburgh, UK
| | - Massimiliano Cardinale
- University of Salento, Department of Biological and Environmental Sciences and Technologies, Lecce, Italy
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia
| | - Gail M Preston
- University of Oxford, Department of Plant Sciences, Oxford, UK.
| |
Collapse
|
36
|
Kennedy JP, Antwis RE, Preziosi RF, Rowntree JK. Evidence for the genetic similarity rule at an expanding mangrove range limit. AMERICAN JOURNAL OF BOTANY 2021; 108:1331-1342. [PMID: 34458987 DOI: 10.1002/ajb2.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Host-plant genetic variation can shape associated communities of organisms. These community-genetic effects include (1) genetically similar hosts harboring similar associated communities (i.e., the genetic similarity rule) and (2) host-plant heterozygosity increasing associated community diversity. Community-genetic effects are predicted to be less prominent in plant systems with limited genetic variation, such as those at distributional range limits. Yet, empirical evidence from such systems is limited. METHODS We sampled a natural population of a mangrove foundation species (Avicennia germinans) at an expanding range limit in Florida, USA. We measured genetic variation within and among 40 host trees with 24 nuclear microsatellite loci and characterized their foliar endophytic fungal communities with internal transcribed spacer (ITS1) gene amplicon sequencing. We evaluated relationships among host-tree genetic variation, host-tree spatial location, and the associated fungal communities. RESULTS Genetic diversity was low across all host trees (mean: 2.6 alleles per locus) and associated fungal communities were relatively homogeneous (five sequence variants represented 78% of all reads). We found (1) genetically similar host trees harbored similar fungal communities, with no detectable effect of interhost geographic distance. (2) Host-tree heterozygosity had no detectable effect, while host-tree absolute spatial location affected community alpha diversity. CONCLUSIONS This research supports the genetic similarity rule within a range limit population and helps broaden the current scope of community genetics theory by demonstrating that community-genetic effects can occur even at expanding distributional limits where host-plant genetic variation may be limited. Our findings also provide the first documentation of community-genetic effects in a natural mangrove system.
Collapse
Affiliation(s)
- John Paul Kennedy
- Ecology and Environment Research Centre, Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Rachael E Antwis
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Richard F Preziosi
- Ecology and Environment Research Centre, Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Jennifer K Rowntree
- Ecology and Environment Research Centre, Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
37
|
Sefrji FO, Michoud G, Marasco R, Merlino G, Daffonchio D. Mangrovivirga cuniculi gen. nov., sp. nov., a moderately halophilic bacterium isolated from bioturbated Red Sea mangrove sediment, and proposal of the novel family Mangrovivirgaceae fam. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 34214025 PMCID: PMC8489838 DOI: 10.1099/ijsem.0.004866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A strictly aerobic, Gram-stain-negative, non-motile, rod-shaped bacterium, designated strain R1DC9T, was isolated from sediments of a mangrove stand on the Red Sea coast of Saudi Arabia via diffusion chamber cultivation. Strain R1DC9T grew at 20-40 °C (optimum, 37 °C), pH 6-10 (optimum, pH 8) and 3-11 % NaCl (optimum, 7-9 %) in the cultivation medium. The genome of R1DC9T was 4 661 901 bp long and featured a G+C content of 63.1 mol%. Phylogenetic analyses based on the 16S rRNA gene sequence and whole-genome multilocus sequence analysis using 120 concatenated single-copy genes revealed that R1DC9T represents a distinct lineage in the order Cytophagales and the phylum Bacteroidetes separated from the Roseivirgaceae and Marivirgaceae families. R1DC9T displayed 90 and 89 % 16S rRNA gene sequence identities with Marivirga sericea DSM 4125T and Roseivirga ehrenbergii KMM 6017T, respectively. The predominant quinone was MK7. The polar lipids were phosphatidylethanolamine, two unknown phospholipids and two unknown lipids. The predominant cellular fatty acids were the saturated branch chain fatty acids iso-C15 : 0, iso-C17 : 0 3-OH and iso-C17 : 0, along with a low percentage of the monounsaturated fatty acid C16 : 1 ω5c. Based on differences in phenotypic, physiological and biochemical characteristics from known relatives, and the results of phylogenetic analyses, R1DC9T (=KCTC 72349T=JCM 33609T=NCCB 100698T) is proposed to represent a novel species in a new genus, and the name Mangrovivirga cuniculi gen. nov., sp. nov. is proposed. The distinct phylogenetic lineage among the families in the order Cytophagales indicates that R1DC9T represents a new family for which the name Mangrovivirgaceae fam. nov. is proposed.
Collapse
Affiliation(s)
- Fatmah O Sefrji
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Grégoire Michoud
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Giuseppe Merlino
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
38
|
Riva V, Mapelli F, Dragonetti G, Elfahl M, Vergani L, Crepaldi P, La Maddalena N, Borin S. Bacterial Inoculants Mitigating Water Scarcity in Tomato: The Importance of Long-Term in vivo Experiments. Front Microbiol 2021; 12:675552. [PMID: 34211447 PMCID: PMC8239394 DOI: 10.3389/fmicb.2021.675552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Global population growth and climate change raise a challenge to agriculture, which, combined with the issues concerning the use of chemical fertilizers, have generated increasing attention in the use of plant-associated bacteria as a sustainable strategy in agri-food systems. The objective of this study is to evaluate the ability of five bacterial strains, previously isolated from the rhizosphere or endosphere of plants adapted to harsh environmental conditions, to act as potential plant biofertilizers in different conditions of water availability. The strain biosafety for a deliberate environmental release was investigated through a literature survey and antibiotic resistance testing. The selected strains were first characterized for their plant growth–promoting (PGP) and rhizocompetence-related traits through in vitro assays and then on short-term in vivo experiments on tomato plants. A long-term greenhouse experiment was further conducted to monitor the PGP effect of the bacteria during the entire life cycle of tomato plants subjected to full irrigation or to severe water deficit conditions, aiming to assess their actual effect on plant productivity, which is the ultimate target of the agricultural sector. Some of the strains showed a potential in improving water use efficiency and mitigating plant water stress. Under severe irrigation deficit, four of the tested strains, Micrococcus yunnanensis M1, Bacillus simplex RP-26, Pseudomonas stutzeri SR7-77, and Paenarthrobacter nitroguajacolicus 2–50, significantly increased the number of productive plants in comparison to non-bacterized control ones. Two of them, Bacillus simplex RP-26 and Paenarthrobacter nitroguajacolicus 2–50, demonstrated also, under full irrigation, to significantly improve the water productivity in comparison with non-bacterized plants. Despite all the strains showed promising PGP potential in short-term assays, the positive effect of the bacterial inoculants on plant physiology and fruit yield was observed in some cases but never corroborated by statistical significance. These results highlight the importance of performing long-term in vivo experiments to define the real PGP ability of a bacterial inoculant to positively impact plant production.
Collapse
Affiliation(s)
- Valentina Riva
- Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giovanna Dragonetti
- Department of Land and Water Division, Mediterranean Agronomic Institute of Bari, IAMB, Bari, Italy
| | - Mustafa Elfahl
- Department of Land and Water Division, Mediterranean Agronomic Institute of Bari, IAMB, Bari, Italy
| | - Lorenzo Vergani
- Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paola Crepaldi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Nicola La Maddalena
- Department of Land and Water Division, Mediterranean Agronomic Institute of Bari, IAMB, Bari, Italy
| | - Sara Borin
- Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
39
|
Gorrens E, Van Moll L, Frooninckx L, De Smet J, Van Campenhout L. Isolation and Identification of Dominant Bacteria From Black Soldier Fly Larvae ( Hermetia illucens) Envisaging Practical Applications. Front Microbiol 2021; 12:665546. [PMID: 34054771 PMCID: PMC8155639 DOI: 10.3389/fmicb.2021.665546] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/15/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to establish a representative strain collection of dominant aerobic bacteria from black soldier fly larvae (Hermetia illucens, BSFL). The larvae were fed either chicken feed or fiber-rich substrates to obtain a collection of BSFL-associated microorganisms. Via an approach based on only considering the highest serial dilutions of BSFL extract (to select for the most abundant strains), a total of 172 bacteria were isolated. Identification of these isolates revealed that all bacteria belonged to either the Proteobacteria (66.3%), the Firmicutes (30.2%), the Bacteroidetes (2.9%) or the Actinobacteria (0.6%). Twelve genera were collected, with the most abundantly present ones (i.e., minimally present in at least three rearing cycles) being Enterococcus (29.1%), Escherichia (22.1%), Klebsiella (19.8%), Providencia (11.6%), Enterobacter (7.6%), and Morganella (4.1%). Our collection of dominant bacteria reflects largely the bacterial profiles of BSFL already described in literature with respect to the most important phyla and genera in the gut, but some differences can be noticed depending on substrate, biotic and abiotic factors. Furthermore, this bacterial collection will be the starting point to improve in vitro digestion models for BSFL, to develop mock communities and to find symbionts that can be added during rearing cycles to enhance the larval performances, after functional characterization of the isolates, for instance with respect to enzymatic potential.
Collapse
Affiliation(s)
- Ellen Gorrens
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Laurence Van Moll
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium.,Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Lotte Frooninckx
- Thomas More University of Applied Sciences, RADIUS, Geel, Belgium
| | - Jeroen De Smet
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Leen Van Campenhout
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Eid AM, Fouda A, Abdel-Rahman MA, Salem SS, Elsaied A, Oelmüller R, Hijri M, Bhowmik A, Elkelish A, Hassan SED. Harnessing Bacterial Endophytes for Promotion of Plant Growth and Biotechnological Applications: An Overview. PLANTS (BASEL, SWITZERLAND) 2021; 10:935. [PMID: 34067154 PMCID: PMC8151188 DOI: 10.3390/plants10050935] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
Endophytic bacteria colonize plants and live inside them for part of or throughout their life without causing any harm or disease to their hosts. The symbiotic relationship improves the physiology, fitness, and metabolite profile of the plants, while the plants provide food and shelter for the bacteria. The bacteria-induced alterations of the plants offer many possibilities for biotechnological, medicinal, and agricultural applications. The endophytes promote plant growth and fitness through the production of phytohormones or biofertilizers, or by alleviating abiotic and biotic stress tolerance. Strengthening of the plant immune system and suppression of disease are associated with the production of novel antibiotics, secondary metabolites, siderophores, and fertilizers such as nitrogenous or other industrially interesting chemical compounds. Endophytic bacteria can be used for phytoremediation of environmental pollutants or the control of fungal diseases by the production of lytic enzymes such as chitinases and cellulases, and their huge host range allows a broad spectrum of applications to agriculturally and pharmaceutically interesting plant species. More recently, endophytic bacteria have also been used to produce nanoparticles for medical and industrial applications. This review highlights the biotechnological possibilities for bacterial endophyte applications and proposes future goals for their application.
Collapse
Affiliation(s)
- Ahmed M. Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Mohamed Ali Abdel-Rahman
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Salem S. Salem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Albaraa Elsaied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany; (R.O.); (A.E.)
| | - Mohamed Hijri
- Biodiversity Centre, Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin botanique de Montréal, Montréal, QC 22001, Canada;
- African Genome Center, Mohammed VI Polytechnic University (UM6P), 43150 Ben Guerir, Morocco
| | - Arnab Bhowmik
- Department of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Amr Elkelish
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany; (R.O.); (A.E.)
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| |
Collapse
|
41
|
Sefrji FO, Marasco R, Michoud G, Seferji KA, Merlino G, Daffonchio D. Kaustia mangrovi gen. nov., sp. nov. isolated from Red Sea mangrove sediments belongs to the recently proposed Parvibaculaceae family within the order Rhizobiales. Int J Syst Evol Microbiol 2021; 71:004806. [PMID: 33999795 PMCID: PMC8289202 DOI: 10.1099/ijsem.0.004806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/09/2021] [Indexed: 12/17/2022] Open
Abstract
We isolated a novel strain, R1DC25T, described as Kaustia mangrovi gen. nov. sp. nov. from the sediments of a mangrove forest on the coast of the Red Sea in Saudi Arabia. This isolate is a moderately halophilic, aerobic/facultatively anaerobic Gram-stain-negative bacterium showing optimum growth at between 30 and 40 °C, at a pH of 8.5 and with 3-5 % NaCl. The genome of R1DC25T comprises a circular chromosome that is 4 630 536 bp in length, with a DNA G+C content of 67.3 mol%. Phylogenetic analyses based on the 16S rRNA gene sequence and whole-genome multilocus sequence analysis of 120 concatenated single-copy genes revealed that R1DC25T represents a distinct lineage within the family Parvibaculaceae in the order Rhizobiales within the class Alphaproteobacteria. R1DC25T showing 95.8, 95.3 and 94.5 % 16S rRNA gene sequence identity with Rhodoligotrophos appendicifer, Rhodoligotrophos jinshengii and Rhodoligotrophos defluvii, respectively. The predominant quinone was Q-10, and the polar lipids were phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, as well as several distinct aminolipids and lipids. The predominant cellular fatty acids were C19 : 0 cyclo ω8c, a combination of C18 : 1ω7c and/or C18 : 1ω6c and C16 : 0. On the basis of the differences in the phenotypic, physiological and biochemical characteristics from its known relatives and the results of our phylogenetic analyses, R1DC25T (=KCTC 72348T;=JCM 33619T;=NCCB 100699T) is proposed to represent a novel species in a novel genus, and we propose the name Kaustia mangrovi gen. nov., sp. nov. (Kaustia, subjective name derived from the abbreviation KAUST for King Abdullah University of Science and Technology; mangrovi, of a mangrove).
Collapse
Affiliation(s)
- Fatmah O. Sefrji
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Grégoire Michoud
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kholoud A. Seferji
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Giuseppe Merlino
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
42
|
Soldan R, Sanguankiattichai N, Bach-Pages M, Bervoets I, Huang WE, Preston GM. From macro to micro: a combined bioluminescence-fluorescence approach to monitor bacterial localization. Environ Microbiol 2021; 23:2070-2085. [PMID: 33103833 PMCID: PMC8614114 DOI: 10.1111/1462-2920.15296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/13/2023]
Abstract
Bacterial bioluminescence is widely used to study the spatiotemporal dynamics of bacterial populations and gene expression in vivo at a population level but cannot easily be used to study bacterial activity at the level of individual cells. In this study, we describe the development of a new library of mini‐Tn7‐lux and lux::eyfp reporter constructs that provide a wide range of lux expression levels, and which combine the advantages of both bacterial bioluminescence and fluorescent proteins to bridge the gap between macro‐ and micro‐scale imaging techniques. We demonstrate that a dual bioluminescence‐fluorescence approach using the lux operon and eYFP can be used to monitor bacterial movement in plants both macro‐ and microscopically and demonstrate that Pseudomonas syringae pv phaseolicola can colonize the leaf vascular system and systemically infect leaves of common bean (Phaseolus vulgaris). We also show that bacterial bioluminescence can be used to study the impact of plant immune responses on bacterial multiplication, viability and spread within plant tissues. The constructs and approach described in this study can be used to study the spatiotemporal dynamics of bacterial colonization and to link population dynamics and cellular interactions in a wide range of biological contexts.
Collapse
Affiliation(s)
- Riccardo Soldan
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | | | | - Indra Bervoets
- Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wei E Huang
- Department of Engineering, University of Oxford, Oxford, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Mapelli F, Riva V, Vergani L, Choukrallah R, Borin S. Unveiling the Microbiota Diversity of the Xerophyte Argania spinosa L. Skeels Root System and Residuesphere. MICROBIAL ECOLOGY 2020; 80:822-836. [PMID: 32583006 PMCID: PMC7550381 DOI: 10.1007/s00248-020-01543-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
The microbiota associated to xerophyte is a "black box" that might include microbes involved in plant adaptation to the extreme conditions that characterize their habitat, like water shortage. In this work, we studied the bacterial communities inhabiting the root system of Argania spinosa L. Skeels, a tree of high economic value and ecological relevance in Northern Africa. Illumina 16S rRNA gene sequencing and cultivation techniques were applied to unravel the bacterial microbiota's structure in environmental niches associated to argan plants (i.e., root endosphere, rhizosphere, root-surrounding soil), not associated to the plant (i.e., bulk soil), and indirectly influenced by the plant being partially composed by its leafy residue and the associated microbes (i.e., residuesphere). Illumina dataset indicated that the root system portions of A. spinosa hosted different bacterial communities according to their degree of association with the plant, enriching for taxa typical of the plant microbiome. Similar alpha- and beta-diversity trends were observed for the total microbiota and its cultivable fraction, which included 371 isolates. In particular, the residuesphere was the niche with the highest bacterial diversity. The Plant Growth Promotion (PGP) potential of 219 isolates was investigated in vitro, assessing several traits related to biofertilization and biocontrol, besides the production of exopolysaccharides. Most of the multivalent isolates showing the higher PGP score were identified in the residuesphere, suggesting it as a habitat that favor their proliferation. We hypothesized that these bacteria can contribute, in partnership with the argan root system, to the litter effect played by this tree in its native arid lands.
Collapse
Affiliation(s)
- Francesca Mapelli
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133, Milan, Italy.
| | - Valentina Riva
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133, Milan, Italy
| | - Lorenzo Vergani
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133, Milan, Italy
| | - Redouane Choukrallah
- Hassan II, Salinity and Plant Nutrition Laboratory, Institut Agronomique et Vétérinaire, Agadir, Morocco
| | - Sara Borin
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133, Milan, Italy
| |
Collapse
|
44
|
Introducing the Mangrove Microbiome Initiative: Identifying Microbial Research Priorities and Approaches To Better Understand, Protect, and Rehabilitate Mangrove Ecosystems. mSystems 2020; 5:5/5/e00658-20. [PMID: 33082281 PMCID: PMC7577295 DOI: 10.1128/msystems.00658-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mangrove ecosystems provide important ecological benefits and ecosystem services, including carbon storage and coastline stabilization, but they also suffer great anthropogenic pressures. Microorganisms associated with mangrove sediments and the rhizosphere play key roles in this ecosystem and make essential contributions to its productivity and carbon budget. Understanding this nexus and moving from descriptive studies of microbial taxonomy to hypothesis-driven field and lab studies will facilitate a mechanistic understanding of mangrove ecosystem interaction webs and open opportunities for microorganism-mediated approaches to mangrove protection and rehabilitation. Mangrove ecosystems provide important ecological benefits and ecosystem services, including carbon storage and coastline stabilization, but they also suffer great anthropogenic pressures. Microorganisms associated with mangrove sediments and the rhizosphere play key roles in this ecosystem and make essential contributions to its productivity and carbon budget. Understanding this nexus and moving from descriptive studies of microbial taxonomy to hypothesis-driven field and lab studies will facilitate a mechanistic understanding of mangrove ecosystem interaction webs and open opportunities for microorganism-mediated approaches to mangrove protection and rehabilitation. Such an effort calls for a multidisciplinary and collaborative approach, involving chemists, ecologists, evolutionary biologists, microbiologists, oceanographers, plant scientists, conservation biologists, and stakeholders, and it requires standardized methods to support reproducible experiments. Here, we outline the Mangrove Microbiome Initiative, which is focused around three urgent priorities and three approaches for advancing mangrove microbiome research.
Collapse
|
45
|
Shultana R, Kee Zuan AT, Yusop MR, Saud HM. Characterization of salt-tolerant plant growth-promoting rhizobacteria and the effect on growth and yield of saline-affected rice. PLoS One 2020; 15:e0238537. [PMID: 32886707 PMCID: PMC7473536 DOI: 10.1371/journal.pone.0238537] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
In this study, we characterized, identified, and determined the effect of salt-tolerant PGPR isolated from coastal saline areas on rice growth and yield. A total of 44 bacterial strains were isolated, and 5 were found to be tolerant at high salt concentration. These isolates were further characterized for salinity tolerance and beneficial traits through a series of quantitative tests. Biochemical characterization showed that bacterial survivability decreases gradually with the increase of salt concentration. One of the strains, UPMRB9, produced the highest amount of exopolysaccharides when exposed to 1.5M of NaCl. Moreover, UPMRB9 absorbed the highest amount of sodium from the 1.5M of NaCl-amended media. The highest floc yield and biofilm were produced by UPMRE6 and UPMRB9 respectively, at 1M of NaCl concentration. The SEM observation confirmed the EPS production of UPMRB9 and UPMRE6 at 1.5M of NaCl concentration. These two isolates were identified as Bacillus tequilensis and Bacillus aryabhattai based on the 16S rRNA gene sequence. The functional group characterization of EPS showed the presence of hydroxyl, carboxyl, and amino groups. This corresponded to the presence of carbohydrates and proteins in the EPS and glucose was identified as the major type of carbohydrate. The functional groups of EPS can help to bind and chelate Na+ in the soil and thereby reduces the plant’s exposure to the ion under saline conditions. The plant inoculation study revealed significant beneficial effects of bacterial inoculation on photosynthesis, transpiration, and stomatal conductance of the plant which leads to a higher yield. The Bacillus tequilensis and Bacillus aryabhattai strains showed good potential as PGPR for salinity mitigation practice for coastal rice cultivation.
Collapse
Affiliation(s)
- Rakiba Shultana
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Agronomy Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Rafii Yusop
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Halimi Mohd Saud
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
46
|
Pang Z, Xu P, Yu D. Environmental adaptation of the root microbiome in two rice ecotypes. Microbiol Res 2020; 241:126588. [PMID: 32892063 DOI: 10.1016/j.micres.2020.126588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 01/28/2023]
Abstract
The root microbiome plays a key role that can influence host plant growth and abiotic stress. While there has been extensive characterization of community structure, spatial compartmentalization, and the impact of drought stresses on the root microbiome in rice and other plants, there is relatively little known about the differences in root microbiome among rice ecotypes in natural upland and lowland fields. Herein, we used two rice ecotypes, upland and irrigated ecotype rice (two Indica and two Japonica genotypes), as a model to explore the responses of the root microbiome under different environmental conditions. We aimed to identify environment-induced adaptation in the root bacterial and fungal composition of rice ecotypes by high-throughput sequencing. Rice from lowland field or upland had significantly altered overall bacterial and fungal community compositions of the two ecotypes, with diversity of both ecotypes greatly decreased from lowland field to upland. The overall response of the root microbiome to upland conditions was taxonomically driven by the enrichment of family Enterobacteriaceae and genera Serratia, and phylum Ascomycota. Interestingly, rice ecotypes specifically enriched root microbes when they were transferred from their original environment, such as the enrichment of class Thermoleophilia and phylum Actinobacteria when the irrigated ecotype rice was moved from lowland to upland field. These results revealed that different environmental conditions and rice ecotypes resulted in a restructuring of root microbiome communities, and suggested the possibility that components responsible for the beneficial attributes in the altered root microbiome might contribute to the adaptation of different ecotypes in natural fields.
Collapse
Affiliation(s)
- Zhiqiang Pang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China.
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091 China.
| |
Collapse
|
47
|
Callegari M, Jucker C, Fusi M, Leonardi MG, Daffonchio D, Borin S, Savoldelli S, Crotti E. Hydrolytic Profile of the Culturable Gut Bacterial Community Associated With Hermetia illucens. Front Microbiol 2020; 11:1965. [PMID: 32903451 PMCID: PMC7434986 DOI: 10.3389/fmicb.2020.01965] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Larvae of the black soldier fly (BSF) Hermetia illucens (L.) convert organic waste into high valuable insect biomass that can be used as alternative protein source for animal nutrition or as feedstock for biodiesel production. Since insect biology and physiology are influenced by the gut microbiome, knowledge about the functional role of BSF-associated microorganisms could be exploited to enhance the insect performance and growth. Although an increasing number of culture-independent studies are unveiling the microbiota structure and composition of the BSF gut microbiota, a knowledge gap remains on the experimental validation of the contribution of the microorganisms to the insect growth and development. We aimed at assessing if BSF gut-associated bacteria potentially involved in the breakdown of diet components are able to improve host nutrition. A total of 193 bacterial strains were obtained from guts of BSF larvae reared on a nutritious diet using selective and enrichment media. Most of the bacterial isolates are typically found in the insect gut, with major representatives belonging to the Gammaproteobacteria and Bacilli classes. The hydrolytic profile of the bacterial collection was assessed on compounds typically present in the diet. Finally, we tested the hypothesis that the addition to a nutritionally poor diet of the two isolates Bacillus licheniformis HI169 and Stenotrophomonas maltophilia HI121, selected for their complementary metabolic activities, could enhance BSF growth. B. licheniformis HI169 positively influenced the larval final weight and growth rate when compared to the control. Conversely, the addition of S. maltophilia HI121 to the nutritionally poor diet did not result in a growth enhancement in terms of larval weight and pupal weight and length in comparison to the control, whereas the combination of the two strains positively affected the larval final weight and the pupal weight and length. In conclusion, we isolated BSF-associated bacterial strains with potential positive properties for the host nutrition and we showed that selected isolates may enhance BSF growth, suggesting the importance to evaluate the effect of the bacterial administration on the insect performance.
Collapse
Affiliation(s)
- Matteo Callegari
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Costanza Jucker
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Marco Fusi
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Maria Giovanna Leonardi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sara Borin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Sara Savoldelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
48
|
Adeleke BS, Babalola OO. The endosphere microbial communities, a great promise in agriculture. Int Microbiol 2020; 24:1-17. [PMID: 32737846 DOI: 10.1007/s10123-020-00140-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
Agricultural food production and sustainability need intensification to address the current global food supply to meet human demand. The continuous human population increase and other anthropogenic activities threaten food security. Agrochemical inputs have long been used in conventional agricultural systems to boost crop productivity, but they are disadvantageous to a safe environment. Towards developing environmentally friendly agriculture, efforts are being directed in exploring biological resources from soil and plant microbes. The survival of the rhizosphere and endosphere microbiota is influenced by biotic and abiotic factors. Plant microbiota live interdependently with the host plants. Endophytes are regarded as colonizer microbes inhabiting and establishing microbial communities within the plant tissue. Their activities are varied and include fixing atmospheric nitrogen, solubilizing phosphate, synthesis of siderophores, secretion of metabolite-like compounds containing active biocontrol agents in the control of phytopathogens, and induced systemic resistance that stimulates plant response to withstand stress. Exploring beneficial endophyte resources in the formulation of bio-inoculants, such as biofertilizers, as an alternative to agrochemicals (fertilizers and pesticides) in developing environmentally friendly agriculture and for incorporation into crop breeding and disease control program is promising. Therefore, in this review, endosphere microbial ecology, associating environmental factors, and their roles that contribute to their effectiveness in promoting plant growth for maximum agricultural crop productivity were highlighted.
Collapse
Affiliation(s)
- Bartholomew Saanu Adeleke
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
49
|
Kushwaha P, Kashyap PL, Bhardwaj AK, Kuppusamy P, Srivastava AK, Tiwari RK. Bacterial endophyte mediated plant tolerance to salinity: growth responses and mechanisms of action. World J Microbiol Biotechnol 2020; 36:26. [PMID: 31997078 DOI: 10.1007/s11274-020-2804-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Salinity stress is one of the key constraints for sustainable crop production. It has gained immense importance in the backdrop of climate change induced imbalanced terrestrial water budgets. The traditional agronomic approaches and breeding salt-tolerant genotypes have often proved insufficient to alleviate salinity stress. Newer approaches like the use of bacterial endophytes associated with agricultural crops have occupied center place recently, owing to their advantageous role in improving crop growth, health and yield. Research evidences have revealed that bacterial endophytes can promote plant growth by accelerating availability of mineral nutrients, helping in production of phytohormones, siderophores, and enzymes, and also by activating systemic resistance against insect pest and pathogens in plants. These research developments have opened an innovative boulevard in agriculture for capitalizing bacterial endophytes, single species or consortium, to enhance plant salt tolerance capabilities, and ultimately lead to translational refinement of crop-production business under salty environments. This article reviews the latest research progress on the identification and functional characterization of salt tolerant endophytic bacteria and illustrates various mechanisms triggered by them for plant growth promotion under saline environment.
Collapse
Affiliation(s)
- Prity Kushwaha
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Mau, 275103, India
| | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, India.
| | - Ajay Kumar Bhardwaj
- ICAR-Central Soil Salinity Research Institute (CSSRI), Karnal, 132001, India.
| | - Pandiyan Kuppusamy
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Mau, 275103, India
| | - Alok Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Mau, 275103, India
| | - Rajesh Kumar Tiwari
- AMITY University, Uttar Pradesh Lucknow Campus, Malhaur, Gomti Nagar Extension, Lucknow, 227105, India
| |
Collapse
|
50
|
Bacterial and Fungal Endophytes: Tiny Giants with Immense Beneficial Potential for Plant Growth and Sustainable Agricultural Productivity. Microorganisms 2019; 7:microorganisms7110481. [PMID: 31652843 PMCID: PMC6921065 DOI: 10.3390/microorganisms7110481] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 11/17/2022] Open
Abstract
The conventional means of achieving enhanced agricultural productivity are not ecologically balanced and sustainable. The excessive use of synthetic agrochemicals, declining soil nutrients, and water-use issues, amongst others, are threats to the ecosystem. Additionally, environmental degradation and an increasing global population that will reach 9 billion by 2030 are further considerations. These issues mean a decline in the volume of food resources available to feed the world. Therefore, sustainably increasing agricultural productivity is a necessity for restoring soil fertility, feeding the populace, and improving the ecosystem. A way to achieve this is by using eco-friendly microbial inoculants. Endophytes inhabit the tissues of plants asymptomatically without causing adverse effects. Bacterial and fungal endophytes benefit plants by promoting growth, suppressing pathogens, and improving the stress tolerance and immunity of plants. Despite this vital role played by endophytes in their interactions with host plants, there is still a paucity of relevant review data. More importantly, the prospective use of endophytes as an alternative to synthetic agrochemicals to ensure agro-ecological crop productivity has not been well reviewed in the literature. Therefore, this review sought to highlight the potential use of endophytic microbial resources to achieve enhancements in agro-food system crops in a sustainable manner.
Collapse
|