1
|
Bioaccumulation of Heavy Metals by Suaeda salsa in the Tidal Flat of the Liaohe Estuary. SEPARATIONS 2022. [DOI: 10.3390/separations9110374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to explore the bioaccumulation of heavy metals by Suaeda salsa and its ecological restoration capacity in the tidal flat of the Liaohe estuary, the absorption and reduction effect of Suaeda salsa on heavy metals was determined via a combination of on-site monitoring and experimental tests. The results showed that, under a high-salt environment, Suaeda salsa had a decreasing effect on heavy metals zinc, copper and lead, and the bioaccumulation coefficient BCFSs–Zn > BCFSs–Cu > BCFSs–Pb. When the concentration of heavy metal ions was high, Suaeda salsa could still survive, but the absorptivity was low, reducing its ability to repair heavy metal pollution. By correlating the research data with the population density of Suaeda salsa, the total removal of heavy metals was obtained, about 2008.6 kg Zn2+, 347.5 kg Cu2+, 376.1 kg Pb2+. This paper could provide a theoretical basis and technical support for the promotion and application of ecological restoration via Suaeda salsa.
Collapse
|
2
|
Kumar M, Bolan N, Jasemizad T, Padhye LP, Sridharan S, Singh L, Bolan S, O'Connor J, Zhao H, Shaheen SM, Song H, Siddique KHM, Wang H, Kirkham MB, Rinklebe J. Mobilization of contaminants: Potential for soil remediation and unintended consequences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156373. [PMID: 35649457 DOI: 10.1016/j.scitotenv.2022.156373] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Land treatment has become an essential waste management practice. Therefore, soil becomes a major source of contaminants including organic chemicals and potentially toxic elements (PTEs) which enter the food chain, primarily through leaching to potable water sources, plant uptake, and animal transfer. A range of soil amendments are used to manage the mobility of contaminants and subsequently their bioavailability. Various soil amendments, like desorbing agents, surfactants, and chelating agents, have been applied to increase contaminant mobility and bioavailability. These mobilizing agents are applied to increase the contaminant removal though phytoremediation, bioremediation, and soil washing. However, possible leaching of the mobilized pollutants during soil washing is a major limitation, particularly when there is no active plant uptake. This leads to groundwater contamination and toxicity to plants and soil biota. In this context, the present review provides an overview on various soil amendments used to enhance the bioavailability and mobility of organic and inorganic contaminants, thereby facilitating increased risk when soil is remediated in polluted areas. The unintended consequences of the mobilization methods, when used to remediate polluted sites, are discussed in relation to the leaching of mobilized contaminants when active plant growth is absent. The toxicity of targeted and non-targeted contaminants to microbial communities and higher plants is also discussed. Finally, this review work summarizes the existing research gaps in various contaminant mobilization approaches, and prospects for future research.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia.
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Srinidhi Sridharan
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shiv Bolan
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - James O'Connor
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Haochen Zhao
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia
| | - Hocheol Song
- Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, United States
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India.
| |
Collapse
|
3
|
Kiamarsi Z, Kafi M, Soleimani M, Nezami A, Lutts S. Evaluating the bio-removal of crude oil by vetiver grass ( Vetiveria zizanioides L.) in interaction with bacterial consortium exposed to contaminated artificial soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:483-492. [PMID: 34340621 DOI: 10.1080/15226514.2021.1954876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Remediation of crude oil-impacted areas is a major pervasive concern in various environmental conditions. The major aim of this study was to investigate the collaboration of vetiver grass (Vetiveria zizanioides L.) and petroleum hydrocarbon-degrading bacteria to clean up contaminated soils. Vetiver grass and five native bacterial isolates were used in one consortium to remediate contaminated soil by crude oil at various concentrations (2.0, 4.0, 6.0 8.0, 10, and 12.0% woil/wsoil). The presence of isolated bacteria caused a significant (p < 0.05) increment of root-shoot ratio of vetiver in contaminated soils in comparison to non-contaminated soil. The combination of vetiver and bacterial consortium revealed efficient dissipation of more than 30% of low-molecular-weight polycyclic aromatic hydrocarbons (PAHs) and more than 50% of high-molecular-weight PAHs in all crude oil concentrations. The removal of n-alkanes in the simultaneous presence of the bacteria and plant was more than 70.0% at 10.0% of oil concentration, whereas the removals in control were 20.7, 13.7 and 9.2%, respectively. The hydrocarbons dissipation efficiency of applied treatments decreased at 12.0% of contamination. It is concluded that a combination of vetiver grass and the isolated bacteria could be a feasible strategy for remediation of crude oil-polluted soils. Novelty statementDetermination of the responses of vetiver grass under different crude oil concentrations is one of the novelties of the present study, which is helpful for demonstrating plant tolerance on polluted environments. Also, it adds information about the potential of this grass to clean up crude oil-polluted soils solely as well as in the presence of promising selected bacterial strains.
Collapse
Affiliation(s)
- Zahra Kiamarsi
- Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Kafi
- Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohsen Soleimani
- Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran
| | - Ahmad Nezami
- Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Stanley Lutts
- Life Sciences Institute, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Zhang X, Ji Z, Shao Y, Guo C, Zhou H, Liu L, Qu Y. Seasonal variations of soil bacterial communities in Suaeda wetland of Shuangtaizi River estuary, Northeast China. J Environ Sci (China) 2020; 97:45-53. [PMID: 32933739 DOI: 10.1016/j.jes.2020.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Estuarine wetland is the transitional interface linking terrestrial with marine ecosystems, and wetland microbes are crucial to the biogeochemical cycles of nutrients. The soil samples were collected in four seasons (spring, S1; summer, S2; autumn, S3; and winter, S4) from Suaeda wetland of Shuangtaizi River estuary, Northeast China, and the variations of bacterial community were evaluated by high-throughput sequencing. Soil properties presented a significant seasonal change, including pH, carbon (C) and total nitrogen (TN), and the microbial diversity, richness and structure also differed with seasons. Canonical correspondence analysis (CCA) and Mantel tests implied that soil pH, C and TN were the key factors structuring the microbial community. Gillisia (belonging to Bacteroidetes) and Woeseia (affiliating with Gammaproteobacteria) were the two primary components in the rhizosphere soils, displaying opposite variations with seasons. Based on PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) prediction, the xenobiotics biodegradation related genes exhibited a seasonal decline, while the majority of biomarker genes involved in nitrogen cycle showed an ascending trend. These findings could advance the understanding of rhizosphere microbiota of Suaeda in estuarine wetland.
Collapse
Affiliation(s)
- Xuwang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China.
| | - Zhe Ji
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Yating Shao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Chaochen Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Liu H, Gao H, Wu M, Ma C, Wu J, Ye X. Distribution Characteristics of Bacterial Communities and Hydrocarbon Degradation Dynamics During the Remediation of Petroleum-Contaminated Soil by Enhancing Moisture Content. MICROBIAL ECOLOGY 2020; 80:202-211. [PMID: 31955225 DOI: 10.1007/s00248-019-01476-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/16/2019] [Indexed: 05/25/2023]
Abstract
Microorganisms are the driver of petroleum hydrocarbon degradation in soil micro-ecological systems. However, the distribution characteristics of microbial communities and hydrocarbon degradation dynamics during the remediation of petroleum-contaminated soil by enhancing moisture content are not clear. In this study, polymerase chain reaction and high-throughput sequencing of soil microbial DNA were applied to investigate the compositions of microorganisms and alpha diversity in the oil-polluted soil, and the hydrocarbon removal also being analyzed using ultrasonic extraction and gravimetric method in a laboratory simulated ex-situ experiment. Results showed the distribution of petroleum hydrocarbon degrading microorganisms in the petroleum-contaminated loessal soil mainly was Proteobacteria phylum (96.26%)-Gamma-proteobacteria class (90.03%)-Pseudomonadales order (89.98%)-Pseudomonadaceae family (89.96%)-Pseudomonas sp. (87.22%). After 15% moisture content treatment, Actinobacteria, Proteobacteria, and Firmicutes still were the predominant phyla, but their relative abundances changed greatly. Also Bacillus sp. and Promicromonospora sp. became the predominant genera. Maintaining 15% moisture content increased the relative abundance of Firmicutes phylum and Bacillus sp. As the moisture-treated time increases, the uniformity and the richness of the soil bacterial community were decreased and increased respectively; the relative abundance of Pseudomonas sp. increased. Petroleum hydrocarbon degradation by enhancing soil moisture accorded with the pseudo-first-order reaction kinetic model (correlation coefficient of 0.81; half-life of 56 weeks). The richness of Firmicutes phylum and Bacillus sp. may be a main reason for promoting the removal of 18% petroleum hydrocarbons responded to 15% moisture treatment. Our results provided some beneficial microbiological information of oil-contaminated soil and will promote the exploration of remediation by changing soil moisture content for increasing petroleum hydrocarbon degradation efficiency.
Collapse
Affiliation(s)
- Heng Liu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Huan Gao
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Manli Wu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China.
| | - Chuang Ma
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Jialuo Wu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Xiqiong Ye
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| |
Collapse
|
6
|
Abtahi H, Parhamfar M, Saeedi R, Villaseñor J, Sartaj M, Kumar V, Coulon F, Parhamfar M, Didehdar M, Koolivand A. Effect of competition between petroleum-degrading bacteria and indigenous compost microorganisms on the efficiency of petroleum sludge bioremediation: Field application of mineral-based culture in the composting process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 258:110013. [PMID: 31929055 DOI: 10.1016/j.jenvman.2019.110013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/08/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
The effect of competition between isolated petroleum-degrading bacteria (PDB) and indigenous compost microorganisms (ICM) on the efficiency of composting process in bioremediation of petroleum waste sludge (PWS) was investigated. After isolating two native PDB (Acinetobacter radioresistens strain KA5 and Enterobacter hormaechei strain KA6) from PWS, their ability for growth and crude oil degradation was examined in the mineral-based culture (MBC). Then, the PDB isolate were inoculated into the composting experiments and operated for 12 weeks. The results showed that the PDB degraded 21.65-68.73% of crude oil (1-5%) in the MBC after 7 days. The PDB removed 84.30% of total petroleum hydrocarbon (TPHs) in the composting bioreactor containing the initial TPH level of 20 g kg-1. Removal of petroleum hydrocarbons (PHCs) in the composting experiments proceeded according to the first-order kinetics. The computed values of degradation rate constants and half-lives showed a better performance of the PDB than ICM for TPHs removal. This finding suggests that simultaneous application of the PDB and ICM in the composting reactors resulted in a decline in the effectiveness of the PDB which is due to competition between them. The study also verified that the capability of PDB in degrading PHCs can be successfully scaled-up from MBC to composting process.
Collapse
Affiliation(s)
- Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Milad Parhamfar
- Faculty of Science, Department of Chemistry, Duissburg-Essen University, Essen, Germany
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - José Villaseñor
- Department of Chemical Engineering, Institute of Chemical&Environmental Technologies, University of Castilla-La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - Majid Sartaj
- University of Ottawa, Department of Civil Engineering, 161 Louis Pasteur, Ottawa, Ontario, K1N 6N5, Canada
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Maryam Parhamfar
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Ali Koolivand
- Department of Environmental Health Engineering, Faculty of Health, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
7
|
Khoshkholgh Sima NA, Ebadi A, Reiahisamani N, Rasekh B. Bio-based remediation of petroleum-contaminated saline soils: Challenges, the current state-of-the-art and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109476. [PMID: 31476519 DOI: 10.1016/j.jenvman.2019.109476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/17/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Exploiting synergism between plants and microbes offers a potential means of remediating soils contaminated with petroleum hydrocarbons (PHCs). Salinity alters the physicochemical characteristics of soils and suppresses the growth of both plants and soil microbes, so the bioremediation of saline soils requires the use of plants and in microbes which can tolerate salinity. This review focuses on the management of PHC-contaminated saline soils, surveying what is currently known with respect to the potential of halophytes (plants adapted to saline environments) acting in concert with synergistic microbes to degrade PHCs. The priority is to identify optimal combinations of halophyte(s) and the bacteria present as endophytes and/or associated with the rhizosphere, and to determine what are the factors which most strongly affect their viability.
Collapse
Affiliation(s)
- Nayer Azam Khoshkholgh Sima
- Agricultural Biotechnology Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Ali Ebadi
- Agricultural Biotechnology Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Narges Reiahisamani
- Agricultural Biotechnology Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Behnam Rasekh
- Microbiology and Biotechnology Research Group, Research Institute of Petroleum Industry, Tehran, Iran.
| |
Collapse
|