1
|
Meliana C, Liu J, Show PL, Low SS. Biosensor in smart food traceability system for food safety and security. Bioengineered 2024; 15:2310908. [PMID: 38303521 PMCID: PMC10841032 DOI: 10.1080/21655979.2024.2310908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
The burden of food contamination and food wastage has significantly contributed to the increased prevalence of foodborne disease and food insecurity all over the world. Due to this, there is an urgent need to develop a smarter food traceability system. Recent advancements in biosensors that are easy-to-use, rapid yet selective, sensitive, and cost-effective have shown great promise to meet the critical demand for onsite and immediate diagnosis and treatment of food safety and quality control (i.e. point-of-care technology). This review article focuses on the recent development of different biosensors for food safety and quality monitoring. In general, the application of biosensors in agriculture (i.e. pre-harvest stage) for early detection and routine control of plant infections or stress is discussed. Afterward, a more detailed advancement of biosensors in the past five years within the food supply chain (i.e. post-harvest stage) to detect different types of food contaminants and smart food packaging is highlighted. A section that discusses perspectives for the development of biosensors in the future is also mentioned.
Collapse
Affiliation(s)
- Catarina Meliana
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, Zhejiang Province, China
| | - Jingjing Liu
- College of Automation Engineering, Northeast Electric Power University, Jilin, Jilin Province, China
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, Abu Dhabi Municipality, United Arab Emirates
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sze Shin Low
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, Zhejiang Province, China
| |
Collapse
|
2
|
Sharma KP, Shin M, Awasthi GP, Cho S, Yu C. One-step hydrothermal synthesis of CuS/MoS 2 composite for use as an electrochemical non-enzymatic glucose sensor. Heliyon 2024; 10:e23721. [PMID: 38312675 PMCID: PMC10835264 DOI: 10.1016/j.heliyon.2023.e23721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 02/06/2024] Open
Abstract
Early diagnosis may be crucial for the prevention of chronic diabetes mellitus. For that herein, we prepared a CuS/MoS2 composite for a non-enzymatic glucose sensor through a one-step hydrothermal method owing to the synergetic effect of CuS/MoS2. The surface morphology of CuS/MoS2 was studied by Field Emission Scanning Electron Microscopy (FESEM) and Cs-corrected Scanning Transmission Electron Microscopy (Cs-STEM). The crystallinity and surface composition of CuS/MoS2 were analyzed by X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) respectively. The working electrode was prepared from CuS/MoS2 electrocatalyst, and for that dispersed solution of electrocatalyst was used to fabricate the material-loaded glassy carbon electrode (GC). CuS/MoS2 composite shows the viability of electrocatalyst to oxidize glucose in an alkaline solution with sensitivity and detection limit of 252.71 μA mM-1 cm-2 and 1.52 μM respectively. The proposed glucose sensor showed reasonable stability and potential selectivity during electrochemical analysis. Accordingly, the CuS/MoS2 composite has potential as a viable material for glucose sensing in diluted human serum.
Collapse
Affiliation(s)
- Krishna Prasad Sharma
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Miyeon Shin
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Ganesh Prasad Awasthi
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Soonhwan Cho
- ENPLUS Co., LTD, 167 Jayumuyeok-gil, Baeksan-myeon, Gimje-si, 54352, Republic of Korea
| | - Changho Yu
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
3
|
Kyomuhimbo HD, Feleni U, Haneklaus NH, Brink H. Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers (Basel) 2023; 15:3492. [PMID: 37631549 PMCID: PMC10460086 DOI: 10.3390/polym15163492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidase and peroxidase enzymes have attracted attention in various biotechnological industries due to their ease of synthesis, wide range of applications, and operation under mild conditions. Their applicability, however, is limited by their poor stability in harsher conditions and their non-reusability. As a result, several approaches such as enzyme engineering, medium engineering, and enzyme immobilization have been used to improve the enzyme properties. Several materials have been used as supports for these enzymes to increase their stability and reusability. This review focusses on the immobilization of oxidase and peroxidase enzymes on metal and metal oxide nanoparticle-polymer composite supports and the different methods used to achieve the immobilization. The application of the enzyme-metal/metal oxide-polymer biocatalysts in biosensing of hydrogen peroxide, glucose, pesticides, and herbicides as well as blood components such as cholesterol, urea, dopamine, and xanthine have been extensively reviewed. The application of the biocatalysts in wastewater treatment through degradation of dyes, pesticides, and other organic compounds has also been discussed.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, Johannesburg 1710, South Africa;
| | - Nils H. Haneklaus
- Transdisciplinarity Laboratory Sustainable Mineral Resources, University for Continuing Education Krems, 3500 Krems, Austria;
| | - Hendrik Brink
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| |
Collapse
|
4
|
Dutta T, Noushin T, Tabassum S, Mishra SK. Road Map of Semiconductor Metal-Oxide-Based Sensors: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:6849. [PMID: 37571634 PMCID: PMC10422562 DOI: 10.3390/s23156849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/22/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Identifying disease biomarkers and detecting hazardous, explosive, flammable, and polluting gases and chemicals with extremely sensitive and selective sensor devices remains a challenging and time-consuming research challenge. Due to their exceptional characteristics, semiconducting metal oxides (SMOxs) have received a lot of attention in terms of the development of various types of sensors in recent years. The key performance indicators of SMOx-based sensors are their sensitivity, selectivity, recovery time, and steady response over time. SMOx-based sensors are discussed in this review based on their different properties. Surface properties of the functional material, such as its (nano)structure, morphology, and crystallinity, greatly influence sensor performance. A few examples of the complicated and poorly understood processes involved in SMOx sensing systems are adsorption and chemisorption, charge transfers, and oxygen migration. The future prospects of SMOx-based gas sensors, chemical sensors, and biological sensors are also discussed.
Collapse
Affiliation(s)
- Taposhree Dutta
- Department of Chemistry, IIEST Shibpur, Howrah 711103, West Bengal, India;
| | - Tanzila Noushin
- Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Shawana Tabassum
- Department of Electrical Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA;
| | - Satyendra K. Mishra
- Danish Offshore Technology Center, Technical University of Denmark, 2800 Lyngby, Denmark
- SRCOM, Centre Technologic de Telecomunicacions de Catalunya, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
5
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
6
|
Zou Y, Chu Z, Guo J, Liu S, Ma X, Guo J. Minimally invasive electrochemical continuous glucose monitoring sensors: Recent progress and perspective. Biosens Bioelectron 2023; 225:115103. [PMID: 36724658 DOI: 10.1016/j.bios.2023.115103] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/25/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Diabetes and its complications are seriously threatening the health and well-being of hundreds of millions of people. Glucose levels are essential indicators of the health conditions of diabetics. Over the past decade, concerted efforts in various fields have led to significant advances in glucose monitoring technology. In particular, the rapid development of continuous glucose monitoring (CGM) based on electrochemical sensing principles has great potential to overcome the limitations of self-monitoring blood glucose (SMBG) in continuously tracking glucose trends, evaluating diabetes treatment options, and improving the quality of life of diabetics. However, the applications of minimally invasive electrochemical CGM sensors are still limited owing to the following aspects: i) invasiveness, ii) short lifespan, iii) biocompatibility, and iv) calibration and prediction. In recent years, the performance of minimally invasive electrochemical CGM systems (CGMSs) has been significantly improved owing to breakthrough developments in new materials and key technologies. In this review, we summarize the history of commercial CGMSs, the development of sensing principles, and the research progress of minimally invasive electrochemical CGM sensors in reducing the invasiveness of implanted probes, maintaining enzyme activity, and improving the biocompatibility of the sensor interface. In addition, this review also introduces calibration algorithms and prediction algorithms applied to CGMSs and describes the application of machine learning algorithms for glucose prediction.
Collapse
Affiliation(s)
- Yuanyuan Zou
- University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Zhengkang Chu
- School of Sensing Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jiuchuan Guo
- University of Electronic Science and Technology of China, 611731, Chengdu, China; Chongqing Medical University, 400016, Chongqing, China
| | - Shan Liu
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Jinhong Guo
- Chongqing Medical University, 400016, Chongqing, China; School of Sensing Science and Engineering, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
7
|
Li G, Zhou Z, Wang Z, Chen S, Liang J, Yao X, Li L. An Efficient Electrochemical Biosensor to Determine 1,5-Anhydroglucitol with Persimmon-Tannin-Reduced Graphene Oxide-PtPd Nanocomposites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2786. [PMID: 37049081 PMCID: PMC10095622 DOI: 10.3390/ma16072786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
1,5-Anhydroglucitol (1,5-AG) is a sensitive biomarker for real-time detection of diabetes mellitus. In this study, an electrochemical biosensor to specifically detect 1,5-AG levels based on persimmon-tannin-reduced graphene oxide-PtPd nanocomposites (PT-rGO-PtPd NCs), which were modified onto the surface of a screen-printed carbon electrode (SPCE), was designed. The PT-rGO-PtPd NCs were prepared by using PT as the film-forming material and ascorbic acid as the reducing agent. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-vis), and X-ray diffraction (XRD) spectroscopy analysis were used to characterise the newly synthesised materials. PT-rGO-PtPd NCs present a synergistic effect not only to increase the active surface area to bio-capture more targets, but also to exhibit electrocatalytic efficiency to catalyze the decomposition of hydrogen peroxide (H2O2). A sensitive layer is formed by pyranose oxidase (PROD) attached to the surface of PT-rGO-PtPd NC/SPCE. In the presence of 1,5-AG, PROD catalyzes the oxidization of 1,5-AG to generate 1,5-anhydrofuctose (1,5-AF) and H2O2 which can be decomposed into H2O under the synergistic catalysis of PT-rGO-PtPd NCs. The redox reaction between PT and its oxidative product (quinones, PTox) can be enhanced simultaneously by PT-rGO-PtPd NCs, and the current signal was recorded by the differential pulse voltammetry (DPV) method. Under optimal conditions, our biosensor shows a wide range (0.1-2.0 mg/mL) for 1,5-AG detection with a detection limit of 30 μg/mL (S/N = 3). Moreover, our electrochemical biosensor exhibits acceptable applicability with recoveries from 99.80 to 106.80%. In summary, our study provides an electrochemical method for the determination of 1,5-AG with simple procedures, lower costs, good reproducibility, and acceptable stability.
Collapse
Affiliation(s)
- Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, China
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhide Zhou
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhongmin Wang
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
| | - Shiwei Chen
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jintao Liang
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xiaoqing Yao
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, China
| | - Liuxun Li
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
8
|
Patra S, Sahu KM, Reddy AA, Swain SK. Polymer and biopolymer based nanocomposites for glucose sensing. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2175824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - A. Amulya Reddy
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Sarat K. Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| |
Collapse
|
9
|
Ahmad M, Nisar A, Sun H. Emerging Trends in Non-Enzymatic Cholesterol Biosensors: Challenges and Advancements. BIOSENSORS 2022; 12:955. [PMID: 36354463 PMCID: PMC9687930 DOI: 10.3390/bios12110955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The development of a highly sensitive and selective non-enzymatic electrochemical biosensor for precise and accurate determination of multiple disease biomarkers has always been challenging and demanding. The synthesis of novel materials has provided opportunities to fabricate dependable biosensors. In this perspective, we have presented and discussed recent challenges and technological advancements in the development of non-enzymatic cholesterol electrochemical biosensors and recent research trends in the utilization of functional nanomaterials. This review gives an insight into the electrochemically active nanomaterials having potential applications in cholesterol biosensing, including metal/metal oxide, mesoporous metal sulfide, conductive polymers, and carbon materials. Moreover, we have discussed the current strategies for the design of electrode material and key challenges for the construction of an efficient cholesterol biosensor. In addition, we have also described the current issues related to sensitivity and selectivity in cholesterol biosensing.
Collapse
Affiliation(s)
- Mashkoor Ahmad
- Nanomaterials Research Group, Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 44000, Pakistan
| | - Amjad Nisar
- Nanomaterials Research Group, Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 44000, Pakistan
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| |
Collapse
|
10
|
Plekhanova YV, Rai M, Reshetilov AN. Nanomaterials in bioelectrochemical devices: on applications enhancing their positive effect. 3 Biotech 2022; 12:231. [PMID: 35996672 PMCID: PMC9391563 DOI: 10.1007/s13205-022-03260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/17/2022] [Indexed: 11/01/2022] Open
Abstract
Electrochemical biosensors and biofuel cells are finding an ever-increasing practical application due to several advantages. Biosensors are miniature measuring devices, which can be used for on-the-spot analyses, with small assay times and sample volumes. Biofuel cells have dual benefits of environmental cleanup and electric energy generation. Application of nanomaterials in biosensor and biofuel-cell devices increases their functioning efficiency and expands spheres of use. This review discusses the potential of nanomaterials in improving the basic parameters of bioelectrochemical systems, including the sensitivity increase, detection lower-limit decrease, detection-range change, lifetime increase, substrate-specificity control. In most cases, the consideration of the role of nanomaterials links a certain type of nanomaterial with its effect on the bioelectrochemical device upon the whole. The review aims at assessing the effects of nanomaterials on particular analytical parameters of a biosensor/biofuel-cell bioelectrochemical device.
Collapse
Affiliation(s)
- Yulia V. Plekhanova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MH 444602 India
| | - Anatoly N. Reshetilov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
- Tula State University, 300012 Tula, Russian Federation
| |
Collapse
|
11
|
Moulahoum H, Ghorbanizamani F, Guler Celik E, Timur S. Nano-Scaled Materials and Polymer Integration in Biosensing Tools. BIOSENSORS 2022; 12:301. [PMID: 35624602 PMCID: PMC9139048 DOI: 10.3390/bios12050301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/27/2022]
Abstract
The evolution of biosensors and diagnostic devices has been thriving in its ability to provide reliable tools with simplified operation steps. These evolutions have paved the way for further advances in sensing materials, strategies, and device structures. Polymeric composite materials can be formed into nanostructures and networks of different types, including hydrogels, vesicles, dendrimers, molecularly imprinted polymers (MIP), etc. Due to their biocompatibility, flexibility, and low prices, they are promising tools for future lab-on-chip devices as both manufacturing materials and immobilization surfaces. Polymers can also allow the construction of scaffold materials and 3D structures that further elevate the sensing capabilities of traditional 2D biosensors. This review discusses the latest developments in nano-scaled materials and synthesis techniques for polymer structures and their integration into sensing applications by highlighting their various structural advantages in producing highly sensitive tools that rival bench-top instruments. The developments in material design open a new door for decentralized medicine and public protection that allows effective onsite and point-of-care diagnostics.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
| | - Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
| | - Emine Guler Celik
- Bioengineering Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey;
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Bornova, 35100 Izmir, Turkey
| |
Collapse
|
12
|
Kuznetsova LS, Arlyapov VA, Kamanina OA, Lantsova EA, Tarasov SE, Reshetilov AN. Development of Nanocomposite Materials Based on Conductive Polymers for Using in Glucose Biosensor. Polymers (Basel) 2022; 14:polym14081543. [PMID: 35458293 PMCID: PMC9026068 DOI: 10.3390/polym14081543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 12/11/2022] Open
Abstract
Electropolymerized neutral red, thionine, and aniline were used as part of hybrid nanocomposite conductive polymers, to create an amperometric reagent-less biosensor for glucose determination. The structure of the obtained polymers was studied using infrared (IR) spectroscopy and scanning electron microscopy. Electrochemical characteristics were studied by cyclic voltammetry and impedance spectroscopy. It was shown that, from the point of view of both the rate of electron transfer to the electrode, and the rate of interaction with the active center of glucose oxidase (GOx), the most promising is a new nanocomposite based on poly(neutral red) (pNR) and thermally expanded graphite (TEG). The sensor based on the created nanocomposite material is characterized by a sensitivity of 1000 ± 200 nA × dm3/mmol; the lower limit of the determined glucose concentrations is 0.006 mmol/L. The glucose biosensor based on this nanocomposite was characterized by a high correlation (R2 = 0.9828) with the results of determining the glucose content in human blood using the standard method. Statistical analysis did not reveal any deviations of the results obtained using this biosensor and the reference method. Therefore, the developed biosensor can be used as an alternative to the standard analysis method and as a prototype for creating sensitive and accurate glucometers, as well as biosensors to assess other metabolites.
Collapse
Affiliation(s)
- Lyubov S. Kuznetsova
- Laboratory of Biologically Active Compounds and Biocomposites, Tula State University, Lenin pr. 92, 300012 Tula, Russia; (L.S.K.); (O.A.K.); (E.A.L.)
| | - Vyacheslav A. Arlyapov
- Laboratory of Biologically Active Compounds and Biocomposites, Tula State University, Lenin pr. 92, 300012 Tula, Russia; (L.S.K.); (O.A.K.); (E.A.L.)
- Correspondence:
| | - Olga A. Kamanina
- Laboratory of Biologically Active Compounds and Biocomposites, Tula State University, Lenin pr. 92, 300012 Tula, Russia; (L.S.K.); (O.A.K.); (E.A.L.)
| | - Elizaveta A. Lantsova
- Laboratory of Biologically Active Compounds and Biocomposites, Tula State University, Lenin pr. 92, 300012 Tula, Russia; (L.S.K.); (O.A.K.); (E.A.L.)
| | - Sergey E. Tarasov
- Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, pr. Science, 5, 142290 Moscow, Russia; (S.E.T.); (A.N.R.)
| | - Anatoly N. Reshetilov
- Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, pr. Science, 5, 142290 Moscow, Russia; (S.E.T.); (A.N.R.)
| |
Collapse
|
13
|
Osuna V, Vega-Rios A, Zaragoza-Contreras EA, Estrada-Moreno IA, Dominguez RB. Progress of Polyaniline Glucose Sensors for Diabetes Mellitus Management Utilizing Enzymatic and Non-Enzymatic Detection. BIOSENSORS 2022; 12:137. [PMID: 35323407 PMCID: PMC8946794 DOI: 10.3390/bios12030137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 05/21/2023]
Abstract
Glucose measurement is a fundamental tool in the daily care of Diabetes Mellitus (DM) patients and healthcare professionals. While there is an established market for glucose sensors, the rising number of DM cases has promoted intensive research to provide accurate systems for glucose monitoring. Polyaniline (PAni) is a conductive polymer with a linear conjugated backbone with sequences of single C-C and double C=C bonds. This unique structure produces attractive features for the design of sensing systems such as conductivity, biocompatibility, environmental stability, tunable electrochemical properties, and antibacterial activity. PAni-based glucose sensors (PBGS) were actively developed in past years, using either enzymatic or non-enzymatic principles. In these devices, PAni played roles as a conductive material for electron transfer, biocompatible matrix for enzymatic immobilization, or sensitive layer for detection. In this review, we covered the development of PBGS from 2015 to the present, and it is not even exhaustive; it provides an overview of advances and achievements for enzymatic and non-enzymatic PBGB PBGS for self-monitoring and continuous blood glucose monitoring. Additionally, the limitations of PBGB PBGS to advance into robust and stable technology and the challenges associated with their implementation are presented and discussed.
Collapse
Affiliation(s)
- Velia Osuna
- CONACYT-CIMAV, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (V.O.); (I.A.E.-M.)
| | - Alejandro Vega-Rios
- Centro de Investigación en Materiales Avanzados, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (A.V.-R.); (E.A.Z.-C.)
| | - Erasto Armando Zaragoza-Contreras
- Centro de Investigación en Materiales Avanzados, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (A.V.-R.); (E.A.Z.-C.)
| | | | - Rocio B. Dominguez
- CONACYT-CIMAV, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (V.O.); (I.A.E.-M.)
| |
Collapse
|
14
|
Chen XX, Liu JH, Kurniawan A, Li KJ, Zhou CH. Inclusion of organic species in exfoliated montmorillonite nanolayers towards hierarchical functional inorganic-organic nanostructures. SOFT MATTER 2021; 17:9819-9841. [PMID: 34698330 DOI: 10.1039/d1sm00975c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Montmorillonite (Mt) can readily undergo spontaneous delamination or exfoliation into nanolayers by various physical and chemical processes, which allow various strategies to engineer hierarchical functional inorganic-organic nanostructures. This review aims to discuss the recent progress in the liquid-phase exfoliation of Mt into individual nanolayers and the inclusion chemistry of functional organic species, ions, or molecules into the exfoliated Mt nanolayers to produce hierarchical functional inorganic-organic nanostructures. The exfoliation methods include mechanical force, ultrasonication, and intercalation-assisted exfoliation. Techniques for quickly assessing the quality of the exfoliated Mt nanolayers are still needed. Layer-by-layer (LbL) deposition, template, and evaporation-induced inclusions are examined to fabricate hierarchical Mt-organic species nanocomposites with unique functionalities and properties. The nanocomposites can be produced as multilayered porous films, brick-and-mortar coatings, hydrogels with a house-of-cards structure, core-shell materials, and hollow and mesoporous spherical nanocomposites, which exhibit significant potential for adsorption, catalysis, targeted delivery and controlled drug release, highly sensitive sensors, flame retardant coatings, and thermal energy storage and release (i.e. phase change materials). Finally, the challenges and prospects for the future development of hierarchical nanocomposites of exfoliated Mt nanolayers and organic species, particularly in hierarchical supramolecular nanostructured composites, are highlighted.
Collapse
Affiliation(s)
- Xi Xi Chen
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Alfin Kurniawan
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Ke Jin Li
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Chun Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
15
|
Bagal-Kestwal DR, Chiang BH. Tamarindus indica seed-shell nanoparticles‑silver nanoparticles-Ceratonia silique bean gum composite for copper-micro mesh grid electrode fabrication and its application for glucose detection in artificial salivary samples. Int J Biol Macromol 2021; 189:993-1007. [PMID: 34455001 DOI: 10.1016/j.ijbiomac.2021.08.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
This study used a new approach to fabricate a glucose detection system based on nano-engineered biomaterials. The fabrication steps included strategic synthesis, integration and stabilization of biological and metal nanoparticles in superabsorbent hydrogel gum matrix. The design of the high-performance electrochemical biosensor platform includes copper-micro mesh grid electrode modified with polymer phase comprising of silver nanoparticles surface coroneted with Ceratonia silique locust bean gum (LBG), Tamarindus indica seed-shell nanoparticles and glucose oxidase (GOx). Fundamental assessment of catalytic properties of the nanobiocomposite films on copper grid probe were performed by cyclic voltammetry, amperometry, differential pulse voltammetry. Probes showed good repeatability, reproducibility, selectivity, and long-term stability. The GOx was well-immobilized and stabilized by C. siliqua nano-matrix, with 85% and 98% activity retention when stored at different condiions for 6 month and 3 months, respectively. The fabricated grid-platform exhibited linear response in a wide range of glucose concentration, with detection limit of 1.0 nM (S/N = 3) and sensitivity 38.7 mA nM-1 cm-2. The bionanomaterial-based sensor was successfully applied for ultra-low glucose detection in artificial salivary samples. The designed sensor, perhaps with further modifications, has potential for the next generation of sensing platform in various biological fluids especially for non-invasive glucose detection for diabetic patients.
Collapse
Affiliation(s)
- Dipali R Bagal-Kestwal
- Institute of Food Science and Technology, National Taiwan University, No.1, Roosevelt Road, section 4, Taipei, Taiwan, ROC.
| | - Been-Huang Chiang
- Institute of Food Science and Technology, National Taiwan University, No.1, Roosevelt Road, section 4, Taipei, Taiwan, ROC.
| |
Collapse
|
16
|
Acharya U, Bober P, Thottappali MA, Morávková Z, Konefał M, Pfleger J. Synthesis and Impedance Spectroscopy of Poly( p-phenylenediamine)/Montmorillonite Composites. Polymers (Basel) 2021; 13:polym13183132. [PMID: 34578038 PMCID: PMC8469202 DOI: 10.3390/polym13183132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Poly(p-phenylenediamine)/montmorillonite (PPDA/MMT) composites were prepared by the oxidative polymerization of monomers intercalated within the MMT gallery, using ammonium peroxydisulfate as an oxidant. The intercalation process was evidenced by X-ray powder diffraction. The FT-IR and Raman spectroscopies revealed that, depending on the initial ratio between monomers and MMT in the polymerization mixture, the polymer or mainly oligomers are created during polymerization. The DC conductivity of composites was found to be higher than the conductivity of pristine polymer, reaching the highest value of 10-6 S cm-1 for the optimal MMT amount used during polymerization. Impedance spectroscopy was performed over wide frequency and temperature ranges to study the charge transport mechanism. The data analyzed in the framework of conductivity formalism suggest different conduction mechanisms for high and low temperature regions.
Collapse
Affiliation(s)
- Udit Acharya
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic; (U.A.); (P.B.); (M.A.T.); (Z.M.); (M.K.)
- Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic
| | - Patrycja Bober
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic; (U.A.); (P.B.); (M.A.T.); (Z.M.); (M.K.)
| | - Muhammed Arshad Thottappali
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic; (U.A.); (P.B.); (M.A.T.); (Z.M.); (M.K.)
- Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic
| | - Zuzana Morávková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic; (U.A.); (P.B.); (M.A.T.); (Z.M.); (M.K.)
| | - Magdalena Konefał
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic; (U.A.); (P.B.); (M.A.T.); (Z.M.); (M.K.)
| | - Jiří Pfleger
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic; (U.A.); (P.B.); (M.A.T.); (Z.M.); (M.K.)
- Correspondence:
| |
Collapse
|
17
|
Guven N, Apetrei RM, Camurlu P. Next step in 2nd generation glucose biosensors: Ferrocene-loaded electrospun nanofibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112270. [PMID: 34474829 DOI: 10.1016/j.msec.2021.112270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 11/29/2022]
Abstract
Glucose determination is one of the most common analyses in clinical chemistry. Employing biosensors for this purpose has become the method of choice for home use for diabetic patients. To limit the impact of dissolved O2 concentration or possible interferences (known hindrances in the classical glucose detection approach), a variety of mediated pathways have been explored. Herein, an ingenious, facile and low-cost approach for immobilization of redox mediator within nanofibrous mats is presented. This '2nd generation' biosensor is able to avoid common issues such as leaching or diffusion barriers whilst providing the necessary close contact between the enzyme and the redox shuttle, for enhancing the detection accuracy and accelerate the response. Polyacrylonitrile nanofibers loaded with carbon nanotubes and ferrocene (PAN/Fc/MWCNT-COOH NFs) have been successfully prepared and applied as biosensing matrices upon cross-linking of glucose oxidase (GOD). The morphology of the NFs was investigated by means of scanning electron microscopy (SEM-EDX) and correlated to the kinetics of mediated electron transfer and to the efficiency in glucose detection, which were evaluated through cyclic voltammetry (CV) and amperometric measurements. The content of Fc was varied from 0.5 to 5.0 wt%, with optimum biosensor performance at 1.0 wt% exhibiting a linear range up to 8.0 × 10-3 M with sensitivity of ~27.1 mAM-1 cm-2 and 4.0 μM LOD. Excellent stability (RSD 2.68%) during 40 consecutive measurements along with insignificant interference and accurate recovery in real sample analysis (~100%) make for a very reliable sensor that can easily render itself to miniaturization and has the potential for a wide range of practical applications.
Collapse
Affiliation(s)
- Nese Guven
- Akdeniz University, Department of Chemistry, 07058 Antalya, Turkey
| | - Roxana-Mihaela Apetrei
- Akdeniz University, Department of Chemistry, 07058 Antalya, Turkey; 'Dunarea de Jos' University of Galati, Domneasca Street, 47, Galati RO-800008, Romania
| | - Pinar Camurlu
- Akdeniz University, Department of Chemistry, 07058 Antalya, Turkey.
| |
Collapse
|
18
|
Phan LMT, Vo TAT, Hoang TX, Selvam SP, Pham HL, Kim JY, Cho S. Trending Technology of Glucose Monitoring during COVID-19 Pandemic: Challenges in Personalized Healthcare. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2100020. [PMID: 34179343 PMCID: PMC8212092 DOI: 10.1002/admt.202100020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/18/2021] [Indexed: 05/11/2023]
Abstract
The COVID-19 pandemic has continued to spread rapidly, and patients with diabetes are at risk of experiencing rapid progression and poor prognosis for appropriate treatment. Continuous glucose monitoring (CGM), which includes accurately tracking fluctuations in glucose levels without raising the risk of coronavirus exposure, becomes an important strategy for the self-management of diabetes during this pandemic, efficiently contributing to the diabetes care and the fight against COVID-19. Despite being less accurate than direct blood glucose monitoring, wearable noninvasive systems can encourage patient adherence by guaranteeing reliable results through high correlation between blood glucose levels and glucose concentrations in various other biofluids. This review highlights the trending technologies of glucose sensors during the ongoing COVID-19 pandemic (2019-2020) that have been developed to make a significant contribution to effective management of diabetes and prevention of coronavirus spread, from off-body systems to wearable on-body CGM devices, including nanostructure and sensor performance in various biofluids. The advantages and disadvantages of various human biofluids for use in glucose sensors are also discussed. Furthermore, the challenges faced by wearable CGM sensors with respect to personalized healthcare during and after the pandemic are deliberated to emphasize the potential future directions of CGM devices for diabetes management.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- Department of Electronic EngineeringGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
- School of Medicine and PharmacyThe University of DanangDanang550000Vietnam
| | - Thuy Anh Thu Vo
- Department of Life ScienceGachon UniversitySeongnam‐siGyeonggi‐do461‐701Republic of Korea
| | - Thi Xoan Hoang
- Department of Life ScienceGachon UniversitySeongnam‐siGyeonggi‐do461‐701Republic of Korea
| | - Sathish Panneer Selvam
- Department of Electronic EngineeringGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
| | - Hoang Lan Pham
- Department of Life ScienceGachon UniversitySeongnam‐siGyeonggi‐do461‐701Republic of Korea
| | - Jae Young Kim
- Department of Life ScienceGachon UniversitySeongnam‐siGyeonggi‐do461‐701Republic of Korea
| | - Sungbo Cho
- Department of Electronic EngineeringGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
- Department of Health Sciences and TechnologyGAIHSTGachon UniversityIncheon21999Republic of Korea
| |
Collapse
|
19
|
Korkut Uru S, Samet Kilic M, Yetiren F. Improved Sensing Performance of Amperometric Urea Biosensor by Using Platinum Nanoparticles. ELECTROANAL 2021. [DOI: 10.1002/elan.202100071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Seyda Korkut Uru
- Department of Environmental Engineering Zonguldak Bulent Ecevit University 67100 Zonguldak Turkey
| | - Muhammet Samet Kilic
- Department of Biomedical Engineering Zonguldak Bulent Ecevit University 67100 Zonguldak Turkey
| | - Fatma Yetiren
- Department of Environmental Engineering Zonguldak Bulent Ecevit University 67100 Zonguldak Turkey
| |
Collapse
|
20
|
Lee H, Kim HO, Kim HS, Kwon O, Rho HW, Huh YM, Hong Y. Active colorimetric lipid-coated polyaniline nanoparticles for redox state sensing in cancer cells. J Mater Chem B 2021; 9:3131-3135. [PMID: 33725071 DOI: 10.1039/d1tb00058f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Herein, lipid-coated polyaniline (LiPAni) nanoparticles were fabricated to monitor the redox state of cancer cells. To confirm the characteristics of LiPAni, we firstly analyzed the size and chemical structures of the LiPAni nanoparticles. The absorbance properties of the LiPAni nanoparticles were observed to vary with the pH conditions. Furthermore, cell viability tests conducted with breast cancer cell lines showed that the cell viability of the cells with LiPAni nanoparticles was dramatically increased compared to those with the Tween80-coated polyaniline nanoparticles (TPAni) as a control. Subsequently, the colors of the LiPAni nanoparticles were observed and analyzed using spectroscopic methods. Finally, in order to investigate the more accurate sensing of the redox state using the color changes of the LiPAni nanoparticles with cancer cell lines, dark field microscopic images and scattering spectra were recorded at the single nanoparticle scale. For the TPAni nanoparticles, there was only a change in brightness and no change in color, but for the LiPAni nanoparticles, there was a change of color from yellow to pink in the dark field images.
Collapse
Affiliation(s)
- Hwunjae Lee
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
21
|
Fazio E, Spadaro S, Corsaro C, Neri G, Leonardi SG, Neri F, Lavanya N, Sekar C, Donato N, Neri G. Metal-Oxide Based Nanomaterials: Synthesis, Characterization and Their Applications in Electrical and Electrochemical Sensors. SENSORS 2021; 21:s21072494. [PMID: 33916680 PMCID: PMC8038368 DOI: 10.3390/s21072494] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Pure, mixed and doped metal oxides (MOX) have attracted great interest for the development of electrical and electrochemical sensors since they are cheaper, faster, easier to operate and capable of online analysis and real-time identification. This review focuses on highly sensitive chemoresistive type sensors based on doped-SnO2, RhO, ZnO-Ca, Smx-CoFe2−xO4 semiconductors used to detect toxic gases (H2, CO, NO2) and volatile organic compounds (VOCs) (e.g., acetone, ethanol) in monitoring of gaseous markers in the breath of patients with specific pathologies and for environmental pollution control. Interesting results about the monitoring of biochemical substances as dopamine, epinephrine, serotonin and glucose have been also reported using electrochemical sensors based on hybrid MOX nanocomposite modified glassy carbon and screen-printed carbon electrodes. The fundamental sensing mechanisms and commercial limitations of the MOX-based electrical and electrochemical sensors are discussed providing research directions to bridge the existing gap between new sensing concepts and real-world analytical applications.
Collapse
Affiliation(s)
- Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (S.S.); (F.N.)
- Correspondence: (E.F.); (C.C.)
| | - Salvatore Spadaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (S.S.); (F.N.)
| | - Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (S.S.); (F.N.)
- Correspondence: (E.F.); (C.C.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy;
| | - Salvatore Gianluca Leonardi
- Institute of Advanced Technologies for Energy (ITAE)—CNR, Salita Santa Lucia Sopra Contesse 5, I-98126 Messina, Italy;
| | - Fortunato Neri
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (S.S.); (F.N.)
| | - Nehru Lavanya
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, India; (N.L.); (C.S.)
| | - Chinnathambi Sekar
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, India; (N.L.); (C.S.)
| | - Nicola Donato
- Department of Engineering, Messina University, I-98166 Messina, Italy; (N.D.); (G.N.)
| | - Giovanni Neri
- Department of Engineering, Messina University, I-98166 Messina, Italy; (N.D.); (G.N.)
| |
Collapse
|
22
|
Terán-Alcocer Á, Bravo-Plascencia F, Cevallos-Morillo C, Palma-Cando A. Electrochemical Sensors Based on Conducting Polymers for the Aqueous Detection of Biologically Relevant Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:252. [PMID: 33478121 PMCID: PMC7835872 DOI: 10.3390/nano11010252] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors appear as low-cost, rapid, easy to use, and in situ devices for determination of diverse analytes in a liquid solution. In that context, conducting polymers are much-explored sensor building materials because of their semiconductivity, structural versatility, multiple synthetic pathways, and stability in environmental conditions. In this state-of-the-art review, synthetic processes, morphological characterization, and nanostructure formation are analyzed for relevant literature about electrochemical sensors based on conducting polymers for the determination of molecules that (i) have a fundamental role in the human body function regulation, and (ii) are considered as water emergent pollutants. Special focus is put on the different types of micro- and nanostructures generated for the polymer itself or the combination with different materials in a composite, and how the rough morphology of the conducting polymers based electrochemical sensors affect their limit of detection. Polypyrroles, polyanilines, and polythiophenes appear as the most recurrent conducting polymers for the construction of electrochemical sensors. These conducting polymers are usually built starting from bifunctional precursor monomers resulting in linear and branched polymer structures; however, opportunities for sensitivity enhancement in electrochemical sensors have been recently reported by using conjugated microporous polymers synthesized from multifunctional monomers.
Collapse
Affiliation(s)
- Álvaro Terán-Alcocer
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Francisco Bravo-Plascencia
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Carlos Cevallos-Morillo
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gato Sobral, 170129 Quito, Ecuador;
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| |
Collapse
|
23
|
Solid-state synthesis of Ag-doped PANI nanocomposites for their end-use as an electrochemical sensor for hydrogen peroxide and dopamine. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137158] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Luong JHT, Narayan T, Solanki S, Malhotra BD. Recent Advances of Conducting Polymers and Their Composites for Electrochemical Biosensing Applications. J Funct Biomater 2020; 11:E71. [PMID: 32992861 PMCID: PMC7712382 DOI: 10.3390/jfb11040071] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 02/01/2023] Open
Abstract
Conducting polymers (CPs) have been at the center of research owing to their metal-like electrochemical properties and polymer-like dispersion nature. CPs and their composites serve as ideal functional materials for diversified biomedical applications like drug delivery, tissue engineering, and diagnostics. There have also been numerous biosensing platforms based on polyaniline (PANI), polypyrrole (PPY), polythiophene (PTP), and their composites. Based on their unique properties and extensive use in biosensing matrices, updated information on novel CPs and their role is appealing. This review focuses on the properties and performance of biosensing matrices based on CPs reported in the last three years. The salient features of CPs like PANI, PPY, PTP, and their composites with nanoparticles, carbon materials, etc. are outlined along with respective examples. A description of mediator conjugated biosensor designs and enzymeless CPs based glucose sensing has also been included. The future research trends with required improvements to improve the analytical performance of CP-biosensing devices have also been addressed.
Collapse
Affiliation(s)
- John H. T. Luong
- School of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, College Road, T12 YN60 Cork, Ireland
| | - Tarun Narayan
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India; (T.N.); (S.S.); (B.D.M.)
| | - Shipra Solanki
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India; (T.N.); (S.S.); (B.D.M.)
- Applied Chemistry Department, Delhi Technological University, Delhi 110042, India
| | - Bansi D. Malhotra
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India; (T.N.); (S.S.); (B.D.M.)
| |
Collapse
|
25
|
Nanozyme-linked immunosorbent assay for porcine circovirus type 2 antibody using HAuCl4/H2O2 coloring system. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
|
27
|
Smart A, Crew A, Pemberton R, Hughes G, Doran O, Hart J. Screen-printed carbon based biosensors and their applications in agri-food safety. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115898] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Şerban I, Enesca A. Metal Oxides-Based Semiconductors for Biosensors Applications. Front Chem 2020; 8:354. [PMID: 32509722 PMCID: PMC7248172 DOI: 10.3389/fchem.2020.00354] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
The present mini review contains a concessive overview on the recent achievement regarding the implementation of a metal oxide semiconductor (MOS) in biosensors used in biological and environmental systems. The paper explores the pathway of enhancing the sensing characteristics of metal oxides by optimizing various parameters such as synthesis methods, morphology, composition, and structure. Four representative metal oxides (TiO2, ZnO, SnO2, and WO3) are presented based on several aspects: synthesis method, morphology, functionalizing molecules, detection target, and limit of detection (LOD).
Collapse
Affiliation(s)
- Ionel Şerban
- Product Design, Mechatronics and Environmental Department, Transilvania University of Brasov, Brasov, Romania
| | - Alexandru Enesca
- Product Design, Mechatronics and Environmental Department, Transilvania University of Brasov, Brasov, Romania
| |
Collapse
|