1
|
He Y, Chen Q, Feng R, Qian J, Lu B, Tang S, Liu Y, Liu F, Shen J. Molybdenum disulphide nanoparticles accelerate the transformation of levofloxacin in planting soil upon exposure. CHEMOSPHERE 2024; 363:142798. [PMID: 38977246 DOI: 10.1016/j.chemosphere.2024.142798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
The use of nanocatalytic particles for the removal of refractory organics from wastewater is a rapidly growing area of environmental purification. However, little has been done to investigate the effects of nanoparticles on soil-plant systems with antibiotic contamination. This work assessed the effect of molybdenum disulfide (MoS2) on the soil-Phragmites communis system containing levofloxacin (LVX). The results showed that the addition of MoS2 had restoration potential for stressed plant. The MoS2 with catalytic activity promoted the transformation of LVX in rhizosphere soils. The transformation pathways of LVX in the different exposure groups were proposed. The continuous output of radicals in the high MoS2 dosage group facilitated the transformation of LVX to small molecule compounds, which were eventually mineralized. Moreover, the electron-density-difference analysis revealed the easier flow of electrons from the MoS2 surface towards the LVX molecules. This finding provides theoretical support for the application of nanocatalytic particles in ecological environments.
Collapse
Affiliation(s)
- Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Qiang Chen
- PowerChina Huadong Engineering Corporation, Hangzhou, Zhejiang, 311122, China; Zhejiang Huadong Engineering Construction Managment Co., Ltd. , Hangzhou, Zhejiang, 310030, China
| | - Rubo Feng
- PowerChina Huadong Engineering Corporation, Hangzhou, Zhejiang, 311122, China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Feng Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Junwei Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
2
|
Ranjan P, Abubakar Sadique M, Yadav S, Khan R, Kumar Srivastava A. Electrochemical Nanobiosensor of Ionic Liquid Functionalized MoO 3-rGO for Sensitive Detection of Carcinoembryonic Antigen. Chempluschem 2024; 89:e202300625. [PMID: 38321835 DOI: 10.1002/cplu.202300625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Early diagnosis of cancer can be achieved by detecting associated biomarkers before the appearance of symptoms. Herein, we have developed an electrochemical immunosensor of ionic liquid tailored to molybdenum trioxide-reduced graphene oxide (MoO3-rGO-IL) nanocomposite to detect carcinoembryonic antigen (CEA), a cancer biomarker. The MoO3-rGO-IL nanocomposite has been synthesized in situ via the hydrothermal method. The functionalization of 1-butyl-3-methylimidazolium tetrafluoroborate IL with MoO3-rGO synergistically improves the electrochemical and surface properties of the nanocomposite. The characterization studies revealed that the MoO3-rGO-IL nanocomposite is a highly appropriate material for the construction of immunosensors. The material exhibits exceptional electrical conductivity, surface properties, stability, and a large electrochemical effective surface area (13.77×10-2 cm2) making it ideal for fabricating immunosensors. The quantitative outcome showed that the developed immunosensor (BSA/anti-CEA/MoO3-rGO-IL/GCE) possesses excellent sensitivity, broad linearity from 25 fg mL-1 to 100 ng mL-1, and a low detection limit of 1.19 fg mL-1. Moreover, the remarkable selectivity, repeatability, and efficiency of detecting CEA in serum specimens demonstrated the feasibility of the immunosensor. Thus, the projected electrochemical immunosensor can potentially be utilized for the quantification of CEA in clinical specimens.
Collapse
Affiliation(s)
- Pushpesh Ranjan
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Mohd Abubakar Sadique
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Shalu Yadav
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Raju Khan
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Avanish Kumar Srivastava
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| |
Collapse
|
3
|
Shamsazar A, Moghaddam MS, Asadi A, Mahdavi M. Advancing CEA quantification: Designing a sensitive electrochemical immunosenor using MWCNT/Ni(OH) 2 nanocomposite. Heliyon 2024; 10:e29768. [PMID: 38681597 PMCID: PMC11053223 DOI: 10.1016/j.heliyon.2024.e29768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/26/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
An ultra-sensitive immunosensor was designed for the accurate determination of Carcinoembryonic Antigen (CEA). To enhance the performance of immunosensor, an MWCNT/Ni(OH)2 nanocomposite was utilized as the electrochemical interface and modifier of the electrode surface. The simple preparation procedures for MWCNT/Ni(OH)2 composite were provided. Its characteristics and properties were investigated by HRTEM, FESEM, XRD, and FTIR techniques. Leveraging the unique electrochemical characteristics shown by the MWCNT/Ni(OH)2 nanocomposite and its correlation with CEA, high accuracy in CEA detection was achieved. Experimental findings provide evidence that the proposed immunosensor has the ability to detect CEA in laboratory samples. This research contributes towards achieving precise and rapid CEA detection in cancer diagnosis and prognosis. Across a wide concentration range of CEA, the designed immunosensor demonstrated a linear response from 0.0001 ng/mL to 2 ng/mL, and its limit of detection (LOD) was just 0.076 pg/mL. To evaluate the practical applicability of the electrochemical immunosensor, blood serum samples were examined, revealing the immunosensor's remarkable specificity and longevity. Its high accuracy and stability make it a valuable tool in clinical settings and biomedical research, paving the way for improved cancer management and patient outcomes.
Collapse
Affiliation(s)
- Ali Shamsazar
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mahsa Soheili Moghaddam
- Department of Internal Medicine, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Majid Mahdavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Yin S, Yang H, Wu Y, Wang Z, Yu C, Tang Y, Wang G. Recent advances in biological molecule detection based on a three-dimensional graphene structure. Analyst 2024; 149:1364-1380. [PMID: 38314837 DOI: 10.1039/d3an01932b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Graphene has become an attractive material in the field of electrochemical detection owing to its unique electrical properties. Although the simple stacking structures of two-dimensional (2D) graphene sheets can provide excellent detection properties, a macroscopic three-dimensional (3D) structure needs to be constructed to enhance its functional properties. Graphene with a 3D structure has elegant functions, unlike graphene with a 2D structure. These properties include a large specific surface area, easy loading of nanomaterials with electrocatalytic and redox functions, and so on. Herein, we outline the preparation methods (self-assembly, chemical vapor deposition, templates, and 3D printing) for 3D graphene structures for obtaining excellent detection performance and applications in detecting biological molecules, bacteria, and cells. Furthermore, this review focuses on the improvement of the detection performance and enhancement of the applicability of graphene-based electrochemical sensors. We hope that this article will provide a reference for the future development of electrochemical sensors based on 3D graphene composites.
Collapse
Affiliation(s)
- Shengyan Yin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Hanyu Yang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Yuyang Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Chenhao Yu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Ying Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Guangbin Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, P. R. China.
| |
Collapse
|
5
|
Fu L, Zheng Y, Li X, Liu X, Lin CT, Karimi-Maleh H. Strategies and Applications of Graphene and Its Derivatives-Based Electrochemical Sensors in Cancer Diagnosis. Molecules 2023; 28:6719. [PMID: 37764496 PMCID: PMC10536827 DOI: 10.3390/molecules28186719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Graphene is an emerging nanomaterial increasingly being used in electrochemical biosensing applications owing to its high surface area, excellent conductivity, ease of functionalization, and superior electrocatalytic properties compared to other carbon-based electrodes and nanomaterials, enabling faster electron transfer kinetics and higher sensitivity. Graphene electrochemical biosensors may have the potential to enable the rapid, sensitive, and low-cost detection of cancer biomarkers. This paper reviews early-stage research and proof-of-concept studies on the development of graphene electrochemical biosensors for potential future cancer diagnostic applications. Various graphene synthesis methods are outlined along with common functionalization approaches using polymers, biomolecules, nanomaterials, and synthetic chemistry to facilitate the immobilization of recognition elements and improve performance. Major sensor configurations including graphene field-effect transistors, graphene modified electrodes and nanocomposites, and 3D graphene networks are highlighted along with their principles of operation, advantages, and biosensing capabilities. Strategies for the immobilization of biorecognition elements like antibodies, aptamers, peptides, and DNA/RNA probes onto graphene platforms to impart target specificity are summarized. The use of nanomaterial labels, hybrid nanocomposites with graphene, and chemical modification for signal enhancement are also discussed. Examples are provided to illustrate applications for the sensitive electrochemical detection of a broad range of cancer biomarkers including proteins, circulating tumor cells, DNA mutations, non-coding RNAs like miRNA, metabolites, and glycoproteins. Current challenges and future opportunities are elucidated to guide ongoing efforts towards transitioning graphene biosensors from promising research lab tools into mainstream clinical practice. Continued research addressing issues with reproducibility, stability, selectivity, integration, clinical validation, and regulatory approval could enable wider adoption. Overall, graphene electrochemical biosensors present powerful and versatile platforms for cancer diagnosis at the point of care.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Yuhong Zheng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xingxing Li
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Xiaozhu Liu
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100054, China;
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China;
- School of Engineering, Lebanese American University, Byblos 1102-2801, Lebanon
| |
Collapse
|
6
|
Qin Z, Zhang J, Li S. Molybdenum Disulfide as Tunable Electrochemical and Optical Biosensing Platforms for Cancer Biomarker Detection: A Review. BIOSENSORS 2023; 13:848. [PMID: 37754082 PMCID: PMC10527254 DOI: 10.3390/bios13090848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Cancer is a common illness with a high mortality. Compared with traditional technologies, biomarker detection, with its low cost and simple operation, has a higher sensitivity and faster speed in the early screening and prognosis of cancer. Therefore, extensive research has focused on the development of biosensors and the construction of sensing interfaces. Molybdenum disulfide (MoS2) is a promising two-dimensional (2D) nanomaterial, whose unique adjustable bandgap shows excellent electronic and optical properties in the construction of biosensor interfaces. It not only has the advantages of a high catalytic activity and low manufacturing costs, but it can also further expand the application of hybrid structures through different functionalization, and it is widely used in various biosensors fields. Herein, we provide a detailed introduction to the structure and synthesis methods of MoS2, and explore the unique properties and advantages/disadvantages exhibited by different structures. Specifically, we focus on the excellent properties and application performance of MoS2 and its composite structures, and discuss the widespread application of MoS2 in cancer biomarkers detection from both electrochemical and optical dimensions. Additionally, with the cross development of emerging technologies, we have also expanded the application of other emerging sensors based on MoS2 for early cancer diagnosis. Finally, we summarized the challenges and prospects of MoS2 in the synthesis, functionalization of composite groups, and applications, and provided some insights into the potential applications of these emerging nanomaterials in a wider range of fields.
Collapse
Affiliation(s)
- Ziyue Qin
- Medical College, Tianjin University, Tianjin 300072, China; (Z.Q.); (J.Z.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jiawei Zhang
- Medical College, Tianjin University, Tianjin 300072, China; (Z.Q.); (J.Z.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang Li
- Medical College, Tianjin University, Tianjin 300072, China; (Z.Q.); (J.Z.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Ekwujuru EU, Olatunde AM, Klink MJ, Ssemakalu CC, Chili MM, Peleyeju MG. Electrochemical and Photoelectrochemical Immunosensors for the Detection of Ovarian Cancer Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:4106. [PMID: 37112447 PMCID: PMC10142013 DOI: 10.3390/s23084106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Photoelectrochemical (PEC) sensing is an emerging technological innovation for monitoring small substances/molecules in biological or non-biological systems. In particular, there has been a surge of interest in developing PEC devices for determining molecules of clinical significance. This is especially the case for molecules that are markers for serious and deadly medical conditions. The increased interest in PEC sensors to monitor such biomarkers can be attributed to the many apparent advantages of the PEC system, including an enhanced measurable signal, high potential for miniaturization, rapid testing, and low cost, amongst others. The growing number of published research reports on the subject calls for a comprehensive review of the various findings. This article is a review of studies on electrochemical (EC) and PEC sensors for ovarian cancer biomarkers in the last seven years (2016-2022). EC sensors were included because PEC is an improved EC; and a comparison of both systems has, expectedly, been carried out in many studies. Specific attention was given to the different markers of ovarian cancer and the EC/PEC sensing platforms developed for their detection/quantification. Relevant articles were sourced from the following databases: Scopus, PubMed Central, Web of Science, Science Direct, Academic Search Complete, EBSCO, CORE, Directory of open Access Journals (DOAJ), Public Library of Science (PLOS), BioMed Central (BMC), Semantic Scholar, Research Gate, SciELO, Wiley Online Library, Elsevier and SpringerLink.
Collapse
Affiliation(s)
- Ezinne U. Ekwujuru
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | | | - Michael J. Klink
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Cornelius C. Ssemakalu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Muntuwenkosi M. Chili
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Moses G. Peleyeju
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| |
Collapse
|
8
|
Wei S, Li S, Xiao H, Zhao F, Zhu J, Chen Z, Cao L. Painless and sensitive pepsinogen I detection: an electrochemical immunosensor based on rhombic dodecahedral Cu 3Pt and MoS 2 NFs. NANOSCALE ADVANCES 2022; 5:133-141. [PMID: 36605809 PMCID: PMC9765571 DOI: 10.1039/d2na00556e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
Gastric cancer (GC) is a common malignant tumour of the digestive tract with a high mortality rate worldwide. However, many patients delay treatment due to the avoidance of the costly and painful procedure of gastroscopy. Therefore, an early convenient screening method is essential to improve the survival rate of GC patients. To address this issue, we constructed an electrochemical immunosensor supported by rhombohedral Cu3Pt and MoS2 nanoflowers (MoS2 NFs) for rapid, painless and quantitative detection of the GC biomarker in vitro. Here, pepsinogen I was employed as a model protein biomarker to analyse the performance of the immunosensor. The rhombohedral dodecahedral Cu3Pt nanoparticles decorated with MoS2-NFs were further functionalized; this allowed the constructed sensor to possess more nano- or micro-structures, thereby improving the detection sensitivity. In specific applications, the corresponding bioactive molecules can be flexibly captured. Under optimal conditions, the immunoassay showed a wide linear range from 500 pg mL-1 to 400 ng mL-1 and a low detection limit of 167 pg mL-1 (S/N = 3). This covers the critical value of 70 ng mL-1, and the results obtained from the analysis of human serum samples were on par with those from the enzyme immunoassay, suggesting significant potential for this new method in daily diagnosis.
Collapse
Affiliation(s)
- Shanshan Wei
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology Guilin 541004 China
| | - Shiyong Li
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology Guilin 541004 China
| | - Haolin Xiao
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology Guilin 541004 China
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 China
| | - Feijun Zhao
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 China
| | - Jianming Zhu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 China
| | - Zhencheng Chen
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology Guilin 541004 China
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 China
| | - Liangli Cao
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 China
| |
Collapse
|
9
|
Faradaic electrochemical impedimetric analysis on MoS2/Au-NPs decorated surface for C-reactive protein detection. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Qiu R, Mu W, Wu C, Wu M, Feng J, Rong S, Ma H, Chang D, Pan H. Sandwich-type immunosensor based on COF-LZU1 as the substrate platform and graphene framework supported nanosilver as probe for CA125 detection. J Immunol Methods 2022; 504:113261. [DOI: 10.1016/j.jim.2022.113261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
|
11
|
Su X, Guo Y, Yan L, Wang Q, Zhang W, Li X, Song W, Li Y, Liu G. MoS2 nanosheets vertically aligned on biochar as a robust peroxymonosulfate activator for removal of tetracycline. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Defect-rich and highly porous carbon nanosheets derived from Ti3AlC2 MAX with good lithium storage properties. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Yan H, He B, Ren W, Suo Z, Xu Y, Xie L, Li L, Yang J, Liu R. A label-free electrochemical immunosensing platform based on PEI-rGO/Pt@Au NRs for rapid and sensitive detection of zearalenone. Bioelectrochemistry 2022; 143:107955. [PMID: 34607261 DOI: 10.1016/j.bioelechem.2021.107955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022]
Abstract
In this work, we design an immunosensor for zearalenone (ZEN) detection with PEI-rGO/Pt@Au NRs nanocomposite as the modification material. PEI-rGO/Pt@Au NRs nanocomposite have good stability, conductivity and a large specific surface area, so they are chosen as the substrate material for the modified electrode, which is beneficial in improving the detection performance of the sensor. When antibody binds to ZEN, the current signal decreases, and the response signal changes after ZEN incubation, recorded by differential pulse voltammetry (DPV) methods. Under the optimised conditions, the electrochemical response of the constructed immunosensor shows a linear relation to a wide concentration range from 1 pg/mL to 1 × 106 pg/mL with a detection limit of 0.02 pg/mL. Additionally, the proposed electrochemical immunosensor has high selectivity, good stability and great potential for the trace detection of ZEN in real samples.
Collapse
Affiliation(s)
- Han Yan
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Lingling Xie
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Liping Li
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Jinping Yang
- Henan Branch of China Grain Reserves Group Ltd. Company, Zhengzhou, Henan 450046, PR China
| | - Renli Liu
- Sinograin Zhengzhou Depot Ltd. Company, Zhengzhou, Henan 450066, PR China
| |
Collapse
|
14
|
Palladium Nanoparticle-Modified Carbon Spheres @ Molybdenum Disulfide Core-Shell Composite for Electrochemically Detecting Quercetin. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quercetin (QR), abundant in plants, is used to treat colitis and gastric ulcer and is also a promising anticancer agent. To quantificationally detect QR, a sensitive electrochemical sensor was fabricated by palladium nanoparticles loaded on carbon sphere @ molybdenum disulfide nanosheet core-shell composites (Cs@MoS2-Pd NPs). The Cs@MoS2-Pd NPs worked to remedy the shortcomings of MoS2 and exhibited good catalytic activity to QR. The oxidation reaction of QR on Cs@MoS2-Pd NPs/GCE involved two electrons and two protons. Furthermore, the molecular surface for electrostatic potential, Laplacian bond order, and Gibbs free energy were computationally simulated to speculate the order and site of the oxidation of QR. The results showed that the 4′ O–H and 3′ O–H broke successively during the oxidation reaction. When the concentration of QR was within 0.5 to 12 μM, the fabricated sensor could achieve linear detection, and the detection limit was 0.02 μM (S/N = 3). In addition, the sensor possessed good selectivity, repeatability, and stability, which has a broad prospect in practical application.
Collapse
|
15
|
Encapsulate SrCoO3 perovskite crystal within molybdenum disulfide layer as core-shell structure to enhance electron transfer for peroxymonosulfate activation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Mei L, Zhao W, Zhang L, Zhang M, Song Y, Liang J, Sun Y, Chen S, Li H, Hong C. The application of the inexpensive and synthetically simple electrocatalyst CuFe-MoC@NG in immunosensors. Analyst 2021; 146:5421-5428. [PMID: 34355712 DOI: 10.1039/d1an00840d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, we used inexpensive and synthetically simple electrocatalysts as replacements for conventional precious metal materials to reduce hydrogen peroxide (H2O2). We for the first time developed N-doped graphene-coated CuFe@MoC using one-step calcination of binary Prussian blue analogues (PBAs) with Mo6+ cationic grafting precursors. The synergistic interaction of CuFe PBA and MoC increased the catalytically active sites for H2O2 reduction. The catalyst was optimized in terms of the ratio of CuFe PBA to Mo6+, PVP content, and calcination temperature to improve its catalytic activity. When it was used to construct an electrochemical immunosensor for carcinoembryonic antigen (CEA) detection, polydopamine (CuFe-MoC@NG@PDA) was coated on its outer surface to increase the antibody loading and MoS2-Au NPs were used as substrates to improve Ab1 immobilization and accelerate electron transfer at the electrode interface, thereby improving the response signal of the immunosensor. Its concentration was linearly related to the response signal from 10 fg mL-1 to 80 ng mL-1, and the lowest limit of detection was 3 fg mL-1. In addition, the immunosensor has acceptable selectivity and high stability. All data indicate that nanocomposites have electrocatalytic applications.
Collapse
Affiliation(s)
- Lisha Mei
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Recent Advances in Two-Dimensional Transition Metal Dichalcogenide Nanocomposites Biosensors for Virus Detection before and during COVID-19 Outbreak. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5070190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The deadly Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbreak has become one of the most challenging pandemics in the last century. Clinical diagnosis reports a high infection rate within a large population and a rapid mutation rate upon every individual infection. The polymerase chain reaction has been a powerful and gold standard molecular diagnostic technique over the past few decades and hence a promising tool to detect the SARS-CoV-2 nucleic acid sequences. However, it can be costly and involved in complicated processes with a high demand for on-site tests. This pandemic emphasizes the critical need for designing cost-effective and fast diagnosis strategies to prevent a potential viral source by ultrasensitive and selective biosensors. Two-dimensional (2D) transition metal dichalcogenide (TMD) nanocomposites have been developed with unique physical and chemical properties crucial for building up nucleic acid and protein biosensors. In this review, we cover various types of 2D TMD biosensors available for virus detection via the mechanisms of photoluminescence/optical, field-effect transistor, surface plasmon resonance, and electrochemical signals. We summarize the current state-of-the-art applications of 2D TMD nanocomposite systems for sensing proteins/nucleic acid from different types of lethal viruses. Finally, we identify and discuss the advantages and limitations of TMD-based nanocomposites biosensors for viral recognition.
Collapse
|
18
|
Liu G, Gao H, Chen J, Shao C, Chen F. An Ultra‐sensitive Electrochemiluminescent Detection of Carcinoembryonic Antigen Using a Hollowed‐out Electrode. ELECTROANAL 2021. [DOI: 10.1002/elan.202060624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Gen Liu
- College of Chemistry and Material Science Huaibei Normal University Huaibei 235000 China
- State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
- Henan Key Laboratory of Biomolecular Recognition and Sensing Shangqiu Normal University Shangqiu 476000 China
| | - Hui Gao
- College of Chemistry and Material Science Huaibei Normal University Huaibei 235000 China
| | - Jiajia Chen
- College of Chemistry and Material Science Huaibei Normal University Huaibei 235000 China
| | - Congying Shao
- College of Chemistry and Material Science Huaibei Normal University Huaibei 235000 China
| | - Feifei Chen
- College of Chemistry and Material Science Huaibei Normal University Huaibei 235000 China
| |
Collapse
|
19
|
Electrochemical biosensors for measurement of colorectal cancer biomarkers. Anal Bioanal Chem 2021; 413:2407-2428. [PMID: 33666711 DOI: 10.1007/s00216-021-03197-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is associated with one of the highest rates of mortality among cancers worldwide. The early detection and management of CRC is imperative. Biomarkers play an important role in CRC screening tests, CRC treatment, and prognosis and clinical management; thus rapid and sensitive detection of biomarkers is helpful for early detection of CRC. In recent years, electrochemical biosensors for detecting CRC biomarkers have been widely investigated. In this review, different electrochemical detection methods for CRC biomarkers including immunosensors, aptasensors, and genosensors are summarized. Further, representative examples are provided that demonstrate the advantages of electrochemical sensors modified by various nanomaterials. Finally, the limitations and prospects of biomarkers and electrochemical sensors in detection are also discussed. Graphical abstract.
Collapse
|
20
|
Ding M, Zha L, Wang H, Liu J, Chen P, Zhao Y, Jiang L, Li Y, Ouyang R, Miao Y. A frogspawn-like Ag@C core–shell structure for an ultrasensitive label-free electrochemical immunosensing of carcinoembryonic antigen in blood plasma. RSC Adv 2021; 11:16339-16350. [PMID: 35479148 PMCID: PMC9030918 DOI: 10.1039/d1ra00910a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/18/2021] [Indexed: 12/31/2022] Open
Abstract
Novel frogspawn-like Ag@C nanoparticles were successfully used to fabricate an ultrasensitive electrochemical immunosensing platform toward CEA in human blood samples.
Collapse
Affiliation(s)
- Mengkui Ding
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Ling Zha
- Department of Laboratory Diagnosis
- Changhai Hospital
- Naval Medical University
- Shanghai 20043
- P. R. China
| | - Hui Wang
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Jinyao Liu
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Peiwu Chen
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Yuefeng Zhao
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Lan Jiang
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Yuhao Li
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Yuqing Miao
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| |
Collapse
|
21
|
Song Y, Qiao J, Li W, Ma C, Chen S, Li H, Hong C. Bimetallic PtCu nanoparticles supported on molybdenum disulfide-functionalized graphitic carbon nitride for the detection of carcinoembryonic antigen. Mikrochim Acta 2020; 187:538. [PMID: 32876849 DOI: 10.1007/s00604-020-04498-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
A molybdenum disulfide based graphite phase carbon nitride (MoS2/g-C3N4) which is supported by a platinum-copper nanoparticle (PtCu) Z-type catalyst was created in this study. The catalyst exploits optoelectronic synergistic effect with large surface area, good catalysis, and biocompatibility to amplify the signal. The electrode impedance of the synthesized MoS2/g-C3N4-PtCu was reduced five times in visible light compared with dark conditions, thereby improving the detection of carcinoembryonic antigen (CEA). At a voltage of - 0.4 V, the immunoprobe constructed with this material is used for CEA detection. A linear relationship between 100 fg mL-1 and 80 ng mL-1 concentrations was achieved with a minimum detection limit of 33 fg mL-1 (S/N = 3). The recovery rate was 103-104%, and the relative standard deviation was 2.9-3.8%. This implies that the sandwich immunosensors have good reproducibility, selectivity, and stability and can be used in various applications. Graphical Abstract.
Collapse
Affiliation(s)
- Yiju Song
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Jingwen Qiao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Wenjun Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Chaoyun Ma
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Siyu Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Hongling Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Chenglin Hong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|