1
|
Zhang F, Chi H, Dong X, Huang X, Xu K, Bai Y, Wang P. Fabrication of an Amino Functionalized Paper-Based Material for Highly Efficient Detection and Adsorption of Formaldehyde. ACS Sens 2024; 9:4767-4776. [PMID: 39172692 DOI: 10.1021/acssensors.4c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
An amino functionalized paper-based material that utilized amino functionalized polymer particles as sensing probes and adsorption sites was fabricated via internal sizing technology for application in formaldehyde detection and adsorption. A large specific surface area and the porous structure of the paper fibers enable the application of the composite paper-based material as a sensor at low concentrations of primary amine groups. The material reacts with low levels of formaldehyde, resulting in a concentration-based change in the pH, which is rapidly expressed as a color change. After exposure to formaldehyde (0.02 mg/m3) for 10 min, the color of the composite paper-based material changed from pink to brown, demonstrating the high sensitivity of the material, and this transition could be clearly observed using the naked eye. Additionally, the composite paper-based material acts as an adsorbent at a high content of amino groups, owing to a rapid addition reaction with formaldehyde, exhibiting a high adsorption capacity. Considering the high sensitivity, adsorption capacity, and adsorption speed for formaldehyde, the as-developed composite paper-based material exhibits promising application potential in the field of formaldehyde detection and adsorption.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Hui Chi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xiaotong Dong
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xiaona Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Kun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yungang Bai
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Pixin Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| |
Collapse
|
2
|
Xu X, Yang E, Chen Y. Progress in the Study of Optical Probes for the Detection of Formaldehyde. Crit Rev Anal Chem 2024; 54:1146-1172. [PMID: 35939357 DOI: 10.1080/10408347.2022.2107870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Formaldehyde, one of the simplest reactive carbonyl substances, is involved in many physiological and pathological processes in living organisms. There is a large amount of data showing that abnormal elevation of formaldehyde is associated with a variety of diseases in the body, such as neurodegenerative diseases, Alzheimer's disease, cardiovascular diseases and cancer, and is also a representative carcinogen, so monitoring formaldehyde is of great importance for disease diagnosis and treatment. In this review, In this paper, we summarize and classify the last ten years of probes for the detection of formaldehyde according to different reaction mechanisms and discuss the structures and applications of the probes. Finally, we briefly describe the challenges and possible solutions in this field. We believe that more new probes provide powerful tools to study the function of formaldehyde in living systems.
Collapse
Affiliation(s)
- Xuexuan Xu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Erpei Yang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Yanyan Chen
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| |
Collapse
|
3
|
Huang Z, Tang Z, Chao L. Double-Cabin Galvanic Cell-Synthesizing Nanoporous, Flower-like, Pb-Containing Pd-Au Nanoparticles for Nonenzymatic Formaldehyde Sensor. Molecules 2024; 29:2772. [PMID: 38930837 PMCID: PMC11206501 DOI: 10.3390/molecules29122772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
In this work, a novel formaldehyde sensor was constructed based on nanoporous, flower-like, Pb-containing Pd-Au nanoparticles deposited on the cathode in a double-cabin galvanic cell (DCGC) with a Cu plate as the anode, a multiwalled carbon nanotube-modified glassy carbon electrode as the cathode, a 0.1 M HClO4 aqueous solution as the anolyte, and a 3.0 mM PdCl2 + 1.0 mM HAuCl4 + 5.0 mM Pb(ClO4)2 + 0.1 M HClO4 aqueous solution as the catholyte, respectively. Electrochemical studies reveal that the stripping of bulk Cu can induce underpotential deposition (UPD) of Pb during the galvanic replacement reaction (GRR) process, which affects the composition and morphology of Pb-containing Pd-Au nanoparticles. The electrocatalytic activity of Pb-containing nanoparticles toward formaldehyde oxidation was examined in an alkaline solution, and the experimental results showed that formaldehyde mainly caused direct oxidation on the surface of Pb-containing Pd-Au nanoparticles while inhibiting the formation of CO poison to a large degree. The proposed formaldehyde sensor exhibits a linear amperometric response to formaldehyde concentrations from 0.01 mM to 5.0 mM, with a sensitivity of 666 μA mM-1 cm-2, a limit of detection (LOD) of 0.89 μM at triple signal-to-noise, rapid response, high anti-interference ability, and good repeatability.
Collapse
Affiliation(s)
- Zhao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.)
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Zhongsen Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.)
| | - Long Chao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.)
| |
Collapse
|
4
|
Yang Y, Hao Y, Huang L, Luo Y, Chen S, Xu M, Chen W. Recent Advances in Electrochemical Sensors for Formaldehyde. Molecules 2024; 29:327. [PMID: 38257238 PMCID: PMC11154431 DOI: 10.3390/molecules29020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Formaldehyde, a ubiquitous indoor air pollutant, plays a significant role in various biological processes, posing both environmental and health challenges. This comprehensive review delves into the latest advancements in electrochemical methods for detecting formaldehyde, a compound of growing concern due to its widespread use and potential health hazards. This review underscores the inherent advantages of electrochemical techniques, such as high sensitivity, selectivity, and capability for real-time analysis, making them highly effective for formaldehyde monitoring. We explore the fundamental principles, mechanisms, and diverse methodologies employed in electrochemical formaldehyde detection, highlighting the role of innovative sensing materials and electrodes. Special attention is given to recent developments in nanotechnology and sensor design, which significantly enhance the sensitivity and selectivity of these detection systems. Moreover, this review identifies current challenges and discusses future research directions. Our aim is to encourage ongoing research and innovation in this field, ultimately leading to the development of advanced, practical solutions for formaldehyde detection in various environmental and biological contexts.
Collapse
Affiliation(s)
- Yufei Yang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
| | - Yuanqiang Hao
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Lijie Huang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
| | - Yuanjian Luo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Maotian Xu
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China
| |
Collapse
|
5
|
Han Q, Zhang J, Yang L, Guan X, Zhao Z, Wang X. Self-assembled nano-particles of chitosan amphiphilic derivative for formaldehyde fluorescent detection and its application in test strips. CHEMOSPHERE 2023; 339:139606. [PMID: 37499800 DOI: 10.1016/j.chemosphere.2023.139606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Excessive levels of formaldehyde (FA) represent serious health risks. Aiming at the detection of formaldehyde content, this paper proposes a self-assembly method of proportional nanoprobes. Spherical nanoparticles (NPs) were prepared by one-step condensation reaction between rhodamine B (RhB) and chitosan (CS). After CS was modified by RhB, the linear structure changed and self-assembled under the action of "hydrophilic/hydrophobic" to form a core-shell structure with a cavity structure. The hydrophobic small molecule probe N-Butyl-4-Hydrazo-1,8-Naphacticimide (NBHN) spontaneously entered into the hydrophobic cavity to form spherical particles Chitosan-Rhodamine B@N-Butyl-4-Hydrazo-1,8-Naphacticimide (CS-RhB@NBHN) with a size of about 60 nm. The hydroxyl groups on CS enrich formaldehyde through charge interaction, and promote the reaction of formaldehyde with NBHN, so that the probe can detect formaldehyde at a lower concentration (detection limit 87 nmol·L-1). The self-assembled CS-RhB@NBHN nanoparticles significantly increased the response speed of NBHN (from 30 min to 10 min). After the reaction of NBHN with formaldehyde, the PET effect is released, the fluorescence transition from red to yellow of CS-RhB@NBHN, and the visual fluorescence response effect to formaldehyde is significantly improved. With the help of smartphone color recognition software, we converted the color of the probe solution into RGB values to realize the quantitative and visual detection of formaldehyde. In addition, CS-RhB@NBHN was used for the detection of FA in leather and air.
Collapse
Affiliation(s)
- Qingxin Han
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science&Technology, Xi'an, 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science&Technology, Xi'an, 710021, China.
| | - Junli Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science&Technology, Xi'an, 710021, China
| | - Lingna Yang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science&Technology, Xi'an, 710021, China
| | - Xiaoyu Guan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science&Technology, Xi'an, 710021, China.
| | - Zhi Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science&Technology, Xi'an, 710021, China
| | - Xuechuan Wang
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science&Technology, Xi'an, 710021, China.
| |
Collapse
|
6
|
Meng D, Xie Z, Wang M, Xu J, San X, Qi J, Zhang Y, Wang G, Jin Q. In Situ Fabrication of SnS 2/SnO 2 Heterostructures for Boosting Formaldehyde-Sensing Properties at Room Temperature. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2493. [PMID: 37687001 PMCID: PMC10563078 DOI: 10.3390/nano13172493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Formaldehyde, as a harmful gas produced by materials used for decorative purposes, has a serious impact on human health, and is also the focus and difficulty of indoor environmental polution prevention; hence, designing and developing gas sensors for the selective measurement of formaldehyde at room temperature is an urgent task. Herein, a series of SnS2/SnO2 composites with hollow spherical structures were prepared by a facile hydrothermal approach for the purpose of formaldehyde sensing at room temperature. These novel hierarchical structured SnS2/SnO2 composites-based gas sensors demonstrate remarkable selectivity towards formaldehyde within the concentration range of sub-ppm (0.1 ppm) to ppm (10 ppm) at room temperature. Notably, the SnS2/SnO2-2 sensor exhibits an exceptional formaldehyde-sensing performance, featuring an ultra-high response (1.93, 0.1 ppm and 17.51, 10 ppm), as well as good repeatability, long-term stability, and an outstanding theoretical detection limit. The superior sensing capabilities of the SnS2/SnO2 composites can be attributed to multiple factors, including enhanced formaldehyde adsorption, larger specific surface area and porosity of the hollow structure, as well as the synergistic interfacial incorporation of the SnS2/SnO2 heterojunction. Overall, the excellent gas sensing performance of SnS2/SnO2 hollow spheres has opened up a new way for their detection of trace formaldehyde at room temperature.
Collapse
Affiliation(s)
- Dan Meng
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; (D.M.); (Z.X.); (Y.Z.); (G.W.)
| | - Zongsheng Xie
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; (D.M.); (Z.X.); (Y.Z.); (G.W.)
| | - Mingyue Wang
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia;
| | - Juhua Xu
- Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, Changchun 130022, China;
| | - Xiaoguang San
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; (D.M.); (Z.X.); (Y.Z.); (G.W.)
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
| | - Yue Zhang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; (D.M.); (Z.X.); (Y.Z.); (G.W.)
| | - Guosheng Wang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; (D.M.); (Z.X.); (Y.Z.); (G.W.)
| | - Quan Jin
- Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, Changchun 130022, China;
| |
Collapse
|
7
|
Gu Q, Chen X, Lu C, Wang Z, Xu B. A highly sensitive electrochemical sensor for detecting the content of capsaicinoids based on the synergistic catalysis of rGO/PEI-CNTs/β-CD. Food Chem 2023; 426:136650. [PMID: 37354575 DOI: 10.1016/j.foodchem.2023.136650] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Rapid quantification of the content of capsaicinoids helps in classifying the degree of spiciness, standardized production, and quality control of leisure meat products. To rapidly quantify the content of capsaicinoids in soy sauce and pot-roast meat products, we developed an electrochemical sensor based on reduced graphene oxide (rGO)/polyethylene imine (PEI) - carbon nanotubes (CNTs)/β-cyclodextrin (β-CD) to detect the content of capsaicinoids in leisure meat products. Our findings showed that the electrochemical sensor presented highly sensitive performance toward capsaicinoids with a relatively wide linear range (0.01-100 µmol/L), a lower limit of detection (0.01 µmol/L), and an acceptable recovery rate (94.80-112.20%). The sensor performed well and was effective mainly because of the three-dimensional stacking structure and synergistic catalysis of rGO with cCNTs and also due to the improved dispersion of the composite material by β-CD. The sensor detected trace contents of capsaicinoids in leisure meat products, and thus, it might be considered for practical applications.
Collapse
Affiliation(s)
- Qianhui Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; Three Squirrels Inc, Wuhu 241000, China
| | - Xingguang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
8
|
Lu X, Shen P, Bai Q, Liu Y, Han B, Ma H, Li R, Hou X, Zhang Y, Wang JJ. Responsive photonic hydrogel for colorimetric detection of formaldehyde. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122920. [PMID: 37269656 DOI: 10.1016/j.saa.2023.122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Formaldehyde (FA) can damage DNA, cause liver and kidney dysfunction, and ultimately lead to malignant tumors. Therefore, it is essential to develop a method that can conveniently detect FA with high detection sensitivity. Here, a responsive photonic hydrogel was prepared by embedding three-dimensional photonic crystal (PC) into amino-functionalized hydrogel to construct a colorimetric sensing film for FA. The amino groups on the polymer chains of the photonic hydrogel reacts with FA to increase the crosslinking density of the hydrogel, resulting in its volume shrinkage and a decrease in microsphere spacing of the PC. That causes the reflectance spectra blue-shift of more than 160 nm and color change from red to cyan for the optimized photonic hydrogel, achieving the sensitive, selective and colorimetric detection of FA. The constructed photonic hydrogel shows good accuracy and reliability for practical determination of FA in air and aquatic products, providing a new strategy for designing other target analytes responsive photonic hydrogels.
Collapse
Affiliation(s)
- Xiaokang Lu
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Peiyan Shen
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Qinglin Bai
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Yang Liu
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Bo Han
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Haojie Ma
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Ran Li
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Xueyan Hou
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Yuqi Zhang
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China.
| | - Ji-Jiang Wang
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China
| |
Collapse
|
9
|
Online sample preparation of milk samples for spectrophotometric determination of formaldehyde in milk. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
10
|
Soleh A, Saisahas K, Promsuwan K, Saichanapan J, Thavarungkul P, Kanatharana P, Meng L, Mak WC, Limbut W. A wireless smartphone-based "tap-and-detect" formaldehyde sensor with disposable nano-palladium grafted laser-induced graphene (nanoPd@LIG) electrodes. Talanta 2023; 254:124169. [PMID: 36549140 DOI: 10.1016/j.talanta.2022.124169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
We developed a fully integrated smart sensing device for on-site testing of food to detect trace formaldehyde (FA). A nano-palladium grafted laser-induced graphene (nanoPd@LIG) composite was synthesized by one-step laser irradiation of a Pd2+-chitosan-polyimide precursor. The composite was synthesized in the form of a three-electrode sensor on a polymer substrate. The electrochemical properties and morphology of the fabricated composite were characterized and the electrochemical kinetics of FA oxidation at the nanoPd@LIG electrode were investigated. The nanoPd@LIG electrode was combined with a smart electrochemical sensing (SES) device to determine FA electrochemically. The proposed SES device uses near field communication (NFC) to receive power and transfer data between a smartphone interface and a battery-free sensor. The proposed FA sensor exhibited a linear detection range from 0.01 to 4.0 mM, a limit of detection of 6.4 μM, good reproducibility (RSDs between 2.0 and 10.1%) and good anti-interference properties for FA detection. The proposed system was used to detect FA in real food samples and the results correlated well with the results from a commercial potentiostat and a spectrophotometric analysis.
Collapse
Affiliation(s)
- Asamee Soleh
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kasrin Saisahas
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jenjira Saichanapan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Lingyin Meng
- Biosensors and Bioelectronics Centre, Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
11
|
Fotouhi M, Nasihatkon B, Solouki S, Seidi S. A card instead of a lab: A ligand embedded in a bio-composite of starch/gelatin intelligent film for milk quality test followed by colorimetric analysis. Int J Biol Macromol 2023; 228:426-434. [PMID: 36563820 DOI: 10.1016/j.ijbiomac.2022.12.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Milk adulteration analysis at different stages of the production chain, which profiteers widely use to mask milk quality parameters, is problematic. We prepared selective intelligent thin bio-films and a dedicated app to test milk adulteration in an out-of-lab setting. In this regard, each reagent is immobilized on a piece of starch/gelatin film as color-changeable polymeric support, which is then pasted onto a transparent test card. Incorporating starch and gelatin as the backbone of these composite films can significantly improve the mechanical properties, color, and potential applications in real-time monitoring. After 5 min floating of the card on the surface of the milk, our developed software as a Progressive Web Application can be used to locate and read the QR codes of the samples to estimate qualitative and quantitative information about the presence of some preservatives. These preservatives ranged from 0.1 to 200.0 mg/L, 1.0-100.0 mg/L, 0.001-0.05 mol/L in 10 mL of milk with the LODs of 0.1, 1.0 mg/L, and 0.001 mmol/L, for H2O2, Cr(VI), and salicylic acid, respectively. The pH monitoring film also indicates the freshness/spoilage of the milk. The portability, ease of use, and low cost of testing coupled with the app, make it an attractive alternative to lab-based analysis.
Collapse
Affiliation(s)
- Mina Fotouhi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611 Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611 Tehran, Iran
| | - Behrooz Nasihatkon
- Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Sepehr Solouki
- Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611 Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611 Tehran, Iran.
| |
Collapse
|
12
|
Silver-modified nitrogen-doped graphene quantum dots as a sensor for formaldehyde in milk using headspace micro-extraction on a single-drop of aqueous nanoparticles dispersion. Anal Chim Acta 2022; 1232:340479. [DOI: 10.1016/j.aca.2022.340479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
|
13
|
Malakhova N, Mozharovskaia P, Kifle AB, Kozitsina A. Bismuth-coated screen-printed electrodes for the simple voltammetric determination of formaldehyde. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3423-3433. [PMID: 35993393 DOI: 10.1039/d2ay00876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For the first time, bismuth modified electrodes have been used for the voltammetric detection of formaldehyde (FM). The well-known method of forming formaldehyde hydrazone (FAH) in the presence of hydrazine sulphate was used to convert the hydrated form of FM into its electrochemically active derivative. Various experimental conditions for differential pulse voltammetry were studied to achieve the best analytical performance. The FAH reduction current (FM response) reaches its maximum value at a pH of a phosphate buffer solution of 5.2 ± 0.1 in the presence of 0.09-0.12 M hydrazine sulfate on a bismuth film preliminarily precipitated for 8-12 min from acidic Bi(III) acetate solutions at an electrolysis potential of -1.0 V on the surface of a screen-printed carbon electrode (SPCE). A dendritic-like film structure was created on the SPCE surface. Under the optimized conditions a linear calibration curve over the range of 0.01-5 mg L-1 (0.33-167 μM) FM was achieved, with a detection limit of 0.002 mg L-1 (0.06 μM). The determination of FM in waste water, melt water from snow within the city industrial zone, and a widely used pharmaceutical preparation "Endofalk®" with good results revealed the potential applicability of a bismuth modified SPCE (BiSPCE) for trace analysis.
Collapse
Affiliation(s)
- Nataliya Malakhova
- Department of Analytical Chemistry, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Mira St, 28, Ekaterinburg 620002, Russian Federation.
| | - Polina Mozharovskaia
- Department of Analytical Chemistry, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Mira St, 28, Ekaterinburg 620002, Russian Federation.
| | - Alexander Berhane Kifle
- Department of Analytical Chemistry, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Mira St, 28, Ekaterinburg 620002, Russian Federation.
| | - Alisa Kozitsina
- Department of Analytical Chemistry, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Mira St, 28, Ekaterinburg 620002, Russian Federation.
| |
Collapse
|
14
|
Zhuo K, Wang J, Hou W, Cheng Y, Sang S. SnO2 doped NiO heterostructure nanofibers prepared by electrostatic spinning: A novel sensor for catalytic oxidation of formaldehyde. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Torrarit K, Kongkaew S, Samoson K, Kanatharana P, Thavarungkul P, Chang KH, Abdullah AFL, Limbut W. Flow Injection Amperometric Measurement of Formalin in Seafood. ACS OMEGA 2022; 7:17679-17691. [PMID: 35664606 PMCID: PMC9161257 DOI: 10.1021/acsomega.2c00515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Formalin is illegally used as an antibacterial and a preservative in seafood products. It is extremely important for public health reasons to be able to simply, rapidly, and accurately detect formalin in fresh seafood. In this work, we developed a flow injection amperometric (FI-Amp) formalin sensor based on a glassy carbon electrode modified with a composite of palladium particles and carbon microspheres (PdPs-CMs/GCE). The CMs were decorated with PdPs via an electroless deposition method. The surface morphology of the CMs and the PdPs-CMs composite was characterized by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX). The electrochemical behavior and measurement of formalin at the PdPs-CMs/GCE was evaluated by cyclic voltammetry and amperometry. The modified electrode demonstrated good electrocatalytic performance for the oxidation of formalin. The synthesis method and FI-Amp operating conditions were optimized. Under the optimal conditions, the developed sensor showed a linear range of 0.025 to 15.00 mmol L-1 and a detection limit of 8 μmol L-1. Repeatability (RSD < 4.1%, n = 30), reproducibility (RSD = 0.25%, n = 5), stability (RSD = 3.2%, n = 80), and selectivity were good. The fabricated sensor achieved recoveries of formalin in seafood between 96 ± 1 to 105 ± 3 (n = 3).
Collapse
Affiliation(s)
- Kamonchanok Torrarit
- Division
of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Forensic
Science Innovation and Service Center, Prince
of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Supatinee Kongkaew
- Division
of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Forensic
Science Innovation and Service Center, Prince
of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kritsada Samoson
- Division
of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Forensic
Science Innovation and Service Center, Prince
of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Proespichaya Kanatharana
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division
of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Panote Thavarungkul
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division
of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kah Haw Chang
- Forensic
Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan Malaysia
| | - Ahmad Fahmi Lim Abdullah
- Forensic
Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan Malaysia
| | - Warakorn Limbut
- Division
of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Forensic
Science Innovation and Service Center, Prince
of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
16
|
Reddy Gajjala RK, Gade PS, Bhatt P, Vishwakarma N, Singh S. Enzyme decorated dendritic bimetallic nanocomposite biosensor for detection of HCHO. Talanta 2022; 238:123054. [PMID: 34801910 DOI: 10.1016/j.talanta.2021.123054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/20/2021] [Accepted: 11/07/2021] [Indexed: 01/23/2023]
Abstract
In recent times, bi- and tri-metallic nanocomposites are being extensively studied to improve the catalytic surface and sensitivity of detection. In this study, we designed a formaldehyde dehydrogenase decorated Cys-AuPd-ErGO nanocomposite with fern like AuPd dendrites deposited on reduced graphene oxide (ErGO) on screen printed electrode (SPE) for determination of NADH and successfully demonstrated its application for detection of HCHO. This biosensor exhibited direct electron transfer by lowering the oxidation potential of NADH from +0.63 V to 0.32 V vs Ag/AgCl, avoiding usage of electron mediators. The sensor LOD was 0.3 μM HCHO with excellent sensitivity of 70 μA/μM/cm2 and linear detection range between 1 μM and 100 μM during chronoamperometric studies at applied over potential of +0.35 V vs Ag/AgCl. The sensor was tested for its performance in simulated HCHO adulterated samples of fish and milk, and appreciable recoveries (88-104%) at tested concentrations indicated good sensor performance. It was also validated against conventional method of HPLC with highly acceptable correlation coefficient of 0.99, indicating successful fabrication of a simple, "on site" disposable sensor for HCHO detection. The developed biosensor can also find wide application in quantitative measurement of NADH and analytes involved in reactions with the co-enzyme.
Collapse
Affiliation(s)
- Rajendra Kumar Reddy Gajjala
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, 570020, India
| | - Pravin Savata Gade
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Praveena Bhatt
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India.
| | - Neelam Vishwakarma
- Agrionics- Post Harvest Technologies, CSIR- Central Scientific Instruments Organization (CSIO), Chandigarh, India, 160030; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Suman Singh
- Agrionics- Post Harvest Technologies, CSIR- Central Scientific Instruments Organization (CSIO), Chandigarh, India, 160030; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| |
Collapse
|
17
|
Kochetkova M, Timofeeva I, Bulatov A. A derivatization and microextraction procedure with organic phase solidification on a paper template: Spectrofluorometric determination of formaldehyde in milk. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120160. [PMID: 34284279 DOI: 10.1016/j.saa.2021.120160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
A derivatization and air-assisted dispersive liquid-liquid microextraction procedure with organic phase solidification on a paper template was developed for the first time. The procedure was used for the spectrofluorometric determination of formaldehyde in milk samples. The Hantzsch reaction of formaldehyde with acetylacetone in the presence of ammonia to form a derivative (3,5-diacetyl-1,4-dihydrolutidine) was implemented for the microextraction and detection of analyte. Thymol was investigated as the extraction solvent for the air-assisted dispersive liquid-liquid microextraction for the first time. In the developed procedure, molten thymol was added to the thermostated aqueous sample solution containing reagents for formaldehyde derivatization, and cloudy solution of fine thymol droplets was formed by air bubbling. After separation of phases the liquid extract phase was withdrawn with a dispenser and distributed on the black paper template in a thin layer to be solidified. The solidified extract phase on the template was inserted to a sample holder of a spectrofluorometer and fluorescence intensity was measured without using cuvettes. Under optimal experimental conditions the linear detection range was found to be 45-500 µg L-1 with LOD calculated from a blank test, based on 3σ, 15 µg L-1. The developed procedure does not require the dilution of the solid extract phase in organic solvent to be introduced in an analytical instrumentation and the use of cuvettes for spectrofluorometric detection.
Collapse
Affiliation(s)
- Maria Kochetkova
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, St. Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Irina Timofeeva
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, St. Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia.
| | - Andrey Bulatov
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, St. Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
18
|
Electrocatalytic oxidation and flow injection analysis of formaldehyde at binary metal oxides (Co3O4–NiO and CuO–Co3O4) modified pencil graphite electrodes. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02861-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Gu Q, Lu C, Chen K, Chen X, Ma P, Wang Z, Xu B. Electrochemical Determination of Capsaicinoids Content in Soy Sauce and Pot-Roast Meat Products Based on Glassy Carbon Electrode Modified with Β-Cyclodextrin/Carboxylated Multi-Wall Carbon Nanotubes. Foods 2021; 10:foods10081743. [PMID: 34441521 PMCID: PMC8392370 DOI: 10.3390/foods10081743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The rapid quantification of capsaicinoids content is very important for the standardization of pungent taste degree and flavor control of soy sauce and pot-roast meat products. To rapidly quantify the capsaicinoids content in soy sauce and pot-roast meat products, an electrochemical sensor based on β-cyclodextrin/carboxylated multi-wall carbon nanotubes was constructed and the adsorptive stripping voltammetry method was used to enrich samples in this study. The results showed that the excellent performance of the established electrochemical sensor was mostly because β-cyclodextrin caused the relative dispersion of carboxylated multi-wall carbon nanotubes on the glassy carbon electrode surface. Capsaicin and dihydrocapsaicin had similar electrochemical behavior, so the proposed method could determine the total content of capsaicinoids. The linearity of capsaicinoids content was from 0.5 to 100 μmol/L and the detection limit was 0.27 μmol/L. The recovery rates of different capsaicinoids content were between 83.20% and 136.26%, indicating the proposed sensor could realize trace detection of capsaicinoids content in sauce and pot-roast meat products. This work provides a research basis for pungent taste degree standardization and flavor control in the food industry.
Collapse
Affiliation(s)
- Qianhui Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, China; (Q.G.); (X.C.); (P.M.)
- Three Squirrels Inc., 8 Jiusheng Road, Wuhu 241000, China; (C.L.); (K.C.)
| | - Chaoqun Lu
- Three Squirrels Inc., 8 Jiusheng Road, Wuhu 241000, China; (C.L.); (K.C.)
| | - Kangwen Chen
- Three Squirrels Inc., 8 Jiusheng Road, Wuhu 241000, China; (C.L.); (K.C.)
| | - Xingguang Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, China; (Q.G.); (X.C.); (P.M.)
| | - Pengfei Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, China; (Q.G.); (X.C.); (P.M.)
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, China; (Q.G.); (X.C.); (P.M.)
- Correspondence: (Z.W.); (B.X.); Tel.: +86-15951581339 (Z.W.); +86-25-56677180 (B.X.)
| | - Baocai Xu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230601, China
- Correspondence: (Z.W.); (B.X.); Tel.: +86-15951581339 (Z.W.); +86-25-56677180 (B.X.)
| |
Collapse
|
20
|
Nie X, Chen Z, Tian Y, Chen S, Qu L, Fan M. Rapid detection of trace formaldehyde in food based on surface-enhanced Raman scattering coupled with assembled purge trap. Food Chem 2020; 340:127930. [PMID: 32871357 DOI: 10.1016/j.foodchem.2020.127930] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 12/09/2022]
Abstract
It has been remained a challenge to detect trace formaldehyde in complex samples, such as rice flour and duck blood products. In this study, a purge-trap device was designed and used for volatile target detection, which avoided interference adsorptions on enhanced particle surfaces during subsequent surface-enhanced Raman spectroscopy (SERS) analysis. The device produced a low detection limit for formaldehyde of 1 × 10-4 μg/mL in the concentration ranges of 4 × 10-3-4 μg/mL and 1 × 10-4-3 × 10-3 μg/mL. In the process of the detection of duck blood and rice flour, partial least squares regression (PLSR) was adopted for sample analysis. The formaldehyde concentration was calculated and compared to the actual value from the above model with R2 of 0.97, which indicated high accuracy and stability. These results suggested that the proposed method was reliable and suitable for rapid analysis of trace formaldehyde in real products.
Collapse
Affiliation(s)
- Xinming Nie
- School of Mechatronic Engineering, China University of Mining and Technology, XuZhou, Jiangsu 221116, China; School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Zhengyi Chen
- School of Pharmacy, Guilin Medical University, GuiLin, Guangxi 541199, China
| | - Yaping Tian
- KeWen College, JiangSu Normal University, XuZhou, Jiangsu 221000, China
| | - Si Chen
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Lulu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Mengbao Fan
- School of Mechatronic Engineering, China University of Mining and Technology, XuZhou, Jiangsu 221116, China.
| |
Collapse
|