1
|
Zheng ALT, Teo EYL, Yiu PH, Boonyuen S, Andou Y. Emerging trends in functional materials for electrochemical sensors in nicotine determination. ANAL SCI 2024; 40:1933-1946. [PMID: 39030465 DOI: 10.1007/s44211-024-00629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024]
Abstract
In the past year, there has been significant progress in the utilization of electrochemical strategies for the determination of harmful substances. Among those, the electrochemical determination of nicotine (NIC) has continued to be of significant interest ascribed to the global health concern of e-cigarette products, nowadays. Electrochemical sensors have become promising tools for the detection of NIC ascribed to their high sensitivity, selectivity, and ease of use. This review article provides a concise overview of the advanced developments in electrochemical sensors for NIC detection using modified functional materials such as carbon-based materials, metal-organic frameworks (MOF), MXene, polymer, and metallic based modifiers. The sensitivity of electrochemical sensors can be improved by modifying them with these conductive materials ascribed to their physical and chemical properties. The review also addresses the challenges and future perspectives in the field, including sensitivity and selectivity improvements, stability and reproducibility issues, integration with data analysis techniques, and emerging trends. In conclusion, this review article may be of interest to researchers intending to delve into the development of functional electrochemical sensors in future studies.
Collapse
Affiliation(s)
- Alvin Lim Teik Zheng
- Institute of Ecoscience Borneo, Universiti Putra Malaysia Bintulu Campus, Bintulu, 97008, Sarawak, Malaysia.
| | - Ellie Yi Lih Teo
- Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia Bintulu Campus, Bintulu, 97008, Sarawak, Malaysia
| | - Pang Hung Yiu
- Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia Bintulu Campus, Bintulu, 97008, Sarawak, Malaysia
| | - Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12120, Thailand
| | - Yoshito Andou
- Graduate School of Life Sciences and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan
- Collaborative Research Centre for Green Materials On Environmental Technology, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan
| |
Collapse
|
2
|
Salem YA, Abbas AEF, Salem AE, Abdella AA, El-Masry AA. Multi-assessed green sustainable chromatographic resolution of nicotine and caffeine; application to in-vitro release from a new quick mist mouth spray co-formula. BMC Chem 2024; 18:200. [PMID: 39407299 PMCID: PMC11476497 DOI: 10.1186/s13065-024-01306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
The availability of well-established analytical methods is crucial to cope with the fast-ongoing research for the development of new drug delivery formulations. In this work, a rapid highly green chromatographic method was developed for the simultaneous determination of nicotine (NIC) and caffeine (CAF) to be applied for an in-vitro release study from a newly prepared quick mist mouth spray co-formula (QMS), as a complementary synergistic fast-onset relief of cravings during smoking cessation. The chromatographic resolution was accomplished on a cyano column using isocratically delivered (1.0 mL/ min) glycerol: orthophosphoric acid (OPA) (0.2 M) adjusted to pH 3.0 using 0.05 M triethylamine (5:95, v/v) and UV detection at 260 nm. Well resolved peaks of NIC and CAF were eluted at 2.1 and 3.9 min (Rs = 5.64), with linear responses between 0.1 and 20.0 µg/mL and 0.2-40.0 µg/mL, and detection limits of 0.03 and 0.07 µg/mL for NIC and CAF, respectively. The developed method showed good analytical performance (accuracy, precision, robustness, and selectivity) as well as superiority in practicality and ecological profile compared to reported methods applying GAPI, analytical eco-scale, AGREE, BAGI, and whiteness metric tool. The developed method was successfully applied for NIC and CAF determination in their pharmaceutical preparations, and artificial saliva with no significant differences from reported method results (F-test and t-test). Moreover, an in-vitro release study of NIC and CAF from QMS was performed employing the developed method that revealed diffusion-controlled release, compared to mixed diffusion/ polymer chain relaxation for marketed single component formulation, showing the superiority of QMS in reducing drug level fluctuations of NIC and CAF and improving their bioavailability.
Collapse
Affiliation(s)
- Yomna A Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, 41636, Egypt.
| | - Ahmed Emad F Abbas
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University, 6 October City, Giza, 12585, Egypt
| | - Amgad E Salem
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Aya A Abdella
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527, Egypt
| | - Amal A El-Masry
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Meng J, Zahran M, Li X. Metal-Organic Framework-Based Nanostructures for Electrochemical Sensing of Sweat Biomarkers. BIOSENSORS 2024; 14:495. [PMID: 39451708 PMCID: PMC11506703 DOI: 10.3390/bios14100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Sweat is considered the most promising candidate to replace conventional blood samples for noninvasive sensing. There are many tools and optical and electrochemical methods that can be used for detecting sweat biomarkers. Electrochemical methods are known for their simplicity and cost-effectiveness. However, they need to be optimized in terms of selectivity and catalytic activity. Therefore, electrode modifiers such as nanostructures and metal-organic frameworks (MOFs) or combinations of them were examined for boosting the performance of the electrochemical sensors. The MOF structures can be prepared by hydrothermal/solvothermal, sonochemical, microwave synthesis, mechanochemical, and electrochemical methods. Additionally, MOF nanostructures can be prepared by controlling the synthesis conditions or mixing bulk MOFs with nanoparticles (NPs). In this review, we spotlight the previously examined MOF-based nanostructures as well as promising ones for the electrochemical determination of sweat biomarkers. The presence of NPs strongly improves the electrical conductivity of MOF structures, which are known for their poor conductivity. Specifically, Cu-MOF and Co-MOF nanostructures were used for detecting sweat biomarkers with the lowest detection limits. Different electrochemical methods, such as amperometric, voltammetric, and photoelectrochemical, were used for monitoring the signal of sweat biomarkers. Overall, these materials are brilliant electrode modifiers for the determination of sweat biomarkers.
Collapse
Affiliation(s)
- Jing Meng
- School of Civil Engineering, Nantong Institute of Technology, Nantong 226002, China
| | - Moustafa Zahran
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Xiaolin Li
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| |
Collapse
|
4
|
Su Q, Li J, Fu M, Xing F, Sun L. Sensitive detection of choline and nicotine in real samples by switching upconversion luminescence. Mikrochim Acta 2024; 191:399. [PMID: 38877162 DOI: 10.1007/s00604-024-06483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Nicotine (3-(1-methyl-2-pyrrolidinyl)pyridine) is one of the most common addictive substances, causing the trace detection of nicotine to be very necessary. Herein, we designed and prepared a functionalized nanocomposite CS-PAA (NaYF4:19.5%Yb,0.5%Tm@NaYF4-PAA) using a simple method. The nicotine concentration was quantitatively detected through the inhibition of choline oxidase activity by nicotine and the luminescence intensity of CS-PAA being quenched by Fe3+. The mechanism of Fe3+ quenching CS-PAA emission was inferred by luminescence lifetime and UV-vis absorption spectra characterization. During the nicotine detection, both excitation (980 nm) and emission (802 nm) wavelengths of CS-PAA enable the avoidance of the interference of background fluorescence in complicated food objects, thus providing high selectivity and sensitivity with a linear range of 5-750 ng/mL and a limit of detection of 9.3 nM. The method exhibits an excellent recovery and relative standard deviation, indicating high accuracy and repeatability of the detection of nicotine.
Collapse
Affiliation(s)
- Qichen Su
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Jiwei Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Mengyao Fu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Feifei Xing
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China.
| | - Lining Sun
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
5
|
Shehata M, Zaki M, Fekry AM. New Au/chitosan nanocomposite modified carbon paste sensor for voltammetric detection of nicotine. Sci Rep 2023; 13:20432. [PMID: 37993635 PMCID: PMC10665326 DOI: 10.1038/s41598-023-47703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023] Open
Abstract
A profoundly touchy voltammetric sensor for detection of nicotine (NIC) in urine and tobacco specimens has been developed in light of the boosted electrochemical response of NIC at gold and chitosan nanocomposite modified carbon paste electrode (ACMCPE). Material characterization techniques Scanning Electron Microscope and Energy Dispersive X-ray (SEM & EDX) were utilized to describe the ACMCPE surface material. The impedance spectroscopy technique (EIS), cyclic voltammetry (CV), chronoamperometry (CA), and differential pulse voltammetry (DPV) were employed to explore the electrochemical sensing of NIC at ACMCPE. The created sensor exhibits an exceptional electrochemical sensitivity to NIC in a universal Britton-Robinson (B-R) buffer solution with a pH range of 2.0 to 8.0. The sensor shows a linear response over NIC concentration ranges of 4.0-320.0 µM, with the detection limit (LOD) of 7.6 µM. The prepared sensor has been shown to be exceptionally viable in detecting NIC with amazing selectivity and reproducibility. We suggest it as a trustworthy and useful electrochemical sensor for NIC location.
Collapse
Affiliation(s)
- M Shehata
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - M Zaki
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Amany M Fekry
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
6
|
Kamalasekaran K, Magesh V, Atchudan R, Arya S, Sundramoorthy AK. Development of Electrochemical Sensor Using Iron (III) Phthalocyanine/Gold Nanoparticle/Graphene Hybrid Film for Highly Selective Determination of Nicotine in Human Salivary Samples. BIOSENSORS 2023; 13:839. [PMID: 37754073 PMCID: PMC10527255 DOI: 10.3390/bios13090839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023]
Abstract
Nicotine is the one of the major addictive substances; the overdose of nicotine (NIC) consumption causes increasing heart rate, blood pressure, stroke, lung cancer, and respiratory illnesses. In this study, we have developed a precise and sensitive electrochemical sensor for nicotine detection in saliva samples. It was built on a glassy carbon electrode (GCE) modified with graphene (Gr), iron (III) phthalocyanine-4,4',4″,4'''-tetrasulfonic acid (Fe(III)Pc), and gold nanoparticles (AuNPs/Fe(III)Pc/Gr/GCE). The AuNPs/Fe(III)Pc/Gr nanocomposite was prepared and characterized by using FE-SEM, EDX, and E-mapping techniques to confirm the composite formation as well as the even distribution of elements. Furthermore, the newly prepared AuNPs/Fe(III)Pc/Gr/GCE-nanocomposite-based sensor was used to detect the nicotine in phosphate-buffered solution (0.1 M PBS, pH 7.4). The AuNPs/Fe(III)Pc/Gr/GCE-based sensor offered a linear response against NIC from 0.5 to 27 µM with a limit of detection (LOD) of 17 nM using the amperometry (i-t curve) technique. This electrochemical sensor demonstrated astounding selectivity and sensitivity during NIC detection in the presence of common interfering molecules in 0.1 M PBS. Moreover, the effect of pH on NIC electro-oxidation was studied, which indicated that PBS with pH 7.4 was the best medium for NIC determination. Finally, the AuNPs/Fe(III)Pc/Gr/GCE sensor was used to accurately determine NIC concentration in human saliva samples, and the recovery percentages were also calculated.
Collapse
Affiliation(s)
- Kavitha Kamalasekaran
- Department of Chemistry, Velammal Engineering College, Chennai 600066, Tamil Nadu, India;
| | - Vasanth Magesh
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India;
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu 180006, Jammu and Kashmir, India;
| | - Ashok K. Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India;
| |
Collapse
|
7
|
Magesh V, Sundramoorthy AK, Ganapathy D, Atchudan R, Arya S, Alshgari RA, Aljuwayid AM. Palladium Hydroxide (Pearlman's Catalyst) Doped MXene (Ti 3C 2Tx) Composite Modified Electrode for Selective Detection of Nicotine in Human Sweat. BIOSENSORS 2022; 13:bios13010054. [PMID: 36671889 PMCID: PMC9856038 DOI: 10.3390/bios13010054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 05/27/2023]
Abstract
High concentrations of nicotine (40 to 60 mg) are more dangerous for adults who weigh about 70 kg. Herein, we developed an electrochemical transducer using an MXene (Ti3C2Tx)/palladium hydroxide-supported carbon (Pearlman's catalyst) composite (MXene/Pd(OH)2/C) for the identification of nicotine levels in human sweat. Firstly, the MXene was doped with Pd(OH)2/C (PHC) by mechanical grinding followed by an ultrasonication process to obtain the MXene/PHC composite. Secondly, XRD, Raman, FE-SEM, EDS and E-mapping analysis were utilized to confirm the successful formation of MXene/PHC composite. Using MXene/PHC composite dispersion, an MXene/PHC composite-modified glassy carbon electrode (MXene/PHC/GCE) was prepared, which showed high sensitivity as well as selectivity towards nicotine (300 µM NIC) oxidation in 0.1 M phosphate buffer (pH = 7.4) by cyclic voltammetry (CV) and amperometry. The MXene/PHC/GCE had reduced the over potential of nicotine oxidation (about 200 mV) and also enhanced the oxidation peak current (8.9 µA) compared to bare/GCE (2.1 µA) and MXene/GCE (5.5 µA). Moreover, the optimized experimental condition was used for the quantification of NIC from 0.25 µM to 37.5 µM. The limit of detection (LOD) and sensitivity were 27 nM and 0.286 µA µM-1 cm2, respectively. The MXene/PHC/GCE was also tested in the presence of Na+, Mg2+, Ca2+, hydrogen peroxide, acetic acid, ascorbic acid, dopamine and glucose. These molecules were not interfered during NIC analysis, which indicated the good selectivity of the MXene/PHC/GCE sensor. In addition, electrochemical determination of NIC was successfully carried out in the human sweat samples collected from a tobacco smoker. The recovery percentage of NIC in the sweat sample was 97%. Finally, we concluded that the MXene/PHC composite-based sensor can be prepared for the accurate determination of NIC with high sensitivity, selectivity and stability in human sweat samples.
Collapse
Affiliation(s)
- Vasanth Magesh
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India
| | - Ashok K. Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India
| | - Dhanraj Ganapathy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu 180006, Jammu and Kashmir, India
| | - Razan A. Alshgari
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Rajendran J, Sundramoorthy AK, Ganapathy D, Atchudan R, Habila MA, Nallaswamy D. 2D MXene/graphene nanocomposite preparation and its electrochemical performance towards the identification of nicotine level in human saliva. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129705. [PMID: 35963090 DOI: 10.1016/j.jhazmat.2022.129705] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The quantitative analysis of neurological drugs is critical since the kinetics of body fluids is strongly dependent on the dosage of the drug levels. Thus, the study of neurological medicines is significant because of the major diseases connected to it, for instance, Alzheimer's and Parkinson's diseases. Herein, a 2D hybrid MXene/graphene (MX/Gr) film was synthesized through a top-down approach and utilized to prepare an electrochemical transducer for the electrochemical sensing of nicotine. The X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS) confirmed the successful incorporation of MX with Gr sheets. The high-resolution scanning electron microscopy (HR-SEM) and transmission electron microscopy (TEM) have been used to confirm the formation of MX, graphene sheets and the MX/Gr hybrid film. Furthermore, the MX/Gr hybrid film composite modified glassy carbon electrode (GCE) was prepared to selectively detect the nicotine in phosphate buffer medium (0.1 M PBS, pH~7.4). Under the optimized condition, the MX/Gr/GCE based sensor provided a linear response against nicotine from 1 to 55 µM and 30 nM - 600 nM with the lowest limit of detections (LOD) of 290 nM and 0.28 nM by differential pulse voltammetry (DPV) and amperometry, respectively. This newly developed MX/Gr hybrid film modified electrode displayed a remarkable selectivity, sensitivity, and reproducibility for accurate detection of nicotine. Finally, this new sensor was applied to detect nicotine in human/artificial saliva samples with high accuracy.
Collapse
Affiliation(s)
- Jerome Rajendran
- Department of Electrical Engineering & Computer Science, 4418 Engineering Hall, The University of California, Irvine, USA; Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical And Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India.
| | - Dhanraj Ganapathy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical And Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mohamed A Habila
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Deepak Nallaswamy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical And Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
9
|
Ibrahim NFA, Sabani N, Johari S, Manaf AA, Wahab AA, Zakaria Z, Noor AM. A Comprehensive Review of the Recent Developments in Wearable Sweat-Sensing Devices. SENSORS (BASEL, SWITZERLAND) 2022; 22:7670. [PMID: 36236769 PMCID: PMC9573257 DOI: 10.3390/s22197670] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Sweat analysis offers non-invasive real-time on-body measurement for wearable sensors. However, there are still gaps in current developed sweat-sensing devices (SSDs) regarding the concerns of mixing fresh and old sweat and real-time measurement, which are the requirements to ensure accurate the measurement of wearable devices. This review paper discusses these limitations by aiding model designs, features, performance, and the device operation for exploring the SSDs used in different sweat collection tools, focusing on continuous and non-continuous flow sweat analysis. In addition, the paper also comprehensively presents various sweat biomarkers that have been explored by earlier works in order to broaden the use of non-invasive sweat samples in healthcare and related applications. This work also discusses the target analyte's response mechanism for different sweat compositions, categories of sweat collection devices, and recent advances in SSDs regarding optimal design, functionality, and performance.
Collapse
Affiliation(s)
- Nur Fatin Adini Ibrahim
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Norhayati Sabani
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Shazlina Johari
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Asnida Abdul Wahab
- Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Zulkarnay Zakaria
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Sports Engineering Research Center, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Anas Mohd Noor
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| |
Collapse
|
10
|
Abd-Elsabour M, Alsoghier HM, Alhamzani AG, Abou-Krisha MM, Yousef TA, Assaf HF. A Novel Electrochemical Sensor for Detection of Nicotine in Tobacco Products Based on Graphene Oxide Nanosheets Conjugated with (1,2-Naphthoquinone-4-Sulphonic Acid) Modified Glassy Carbon Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2354. [PMID: 35889578 PMCID: PMC9323772 DOI: 10.3390/nano12142354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023]
Abstract
A simple electrochemical sensor for nicotine (NIC) detection was performed. The sensor based on a glassy carbon electrode (GCE) was modified by (1,2-naphthoquinone-4-sulphonic acid)(Nq) decorated by graphene oxide (GO) nanocomposite. The synthesized (GO) nanosheets were characterized using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), FT-IR, and UV-Visible Spectroscopy. The insertion of Nq with GO nanosheets on the surface of GCE displayed high electrocatalytic activity towards NIC compared to the bare GCE. NIC determination was performed under the optimum conditions using 0.10 M of Na2SO4 as a supporting electrolyte with pH 8.0 at a scan rate of 100 mV/s using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). This electrochemical sensor showed an excellent result for NIC detection. The oxidation peak current increased linearly with a 6.5-245 µM of NIC with R2 = 0.9999. The limit of detection was 12.7 nM. The fabricated electrode provided satisfactory stability, reproducibility, and selectivity for NIC oxidation. The reliable GO/Nq/GCE sensor was successfully applied for detecting NIC in the tobacco product and a urine sample.
Collapse
Affiliation(s)
- M. Abd-Elsabour
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (M.A.-E.); (H.M.A.)
| | - Hesham M. Alsoghier
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (M.A.-E.); (H.M.A.)
| | - Abdulrahman G. Alhamzani
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.G.A.); (T.A.Y.)
| | - Mortaga M. Abou-Krisha
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (M.A.-E.); (H.M.A.)
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.G.A.); (T.A.Y.)
| | - Tarek A. Yousef
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.G.A.); (T.A.Y.)
- Mansoura Laboratory, Department of Toxic and Narcotic Drug, Forensic Medicine, Medicolegal Organization, Ministry of Justice, Mansoura 35511, Egypt
| | - Hytham F. Assaf
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (M.A.-E.); (H.M.A.)
| |
Collapse
|
11
|
Zaki M, Shafie E, Abdel-Gawad S, Fekry A, Saad R, shehata M. Mn/Cu nanoparticles modified carbon paste electrode as a novel electrochemical sensor for nicotine detection. ELECTROANAL 2022. [DOI: 10.1002/elan.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Sha Y, Yu J, Xiong J, Yu C, Zhu X, Zhang B, Fei T, Wu D. A simple and rapid approach for on-site analysis of nicotine in tobacco based on a screen-printed electrode as an electrochemical sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1579-1584. [PMID: 35416201 DOI: 10.1039/d2ay00058j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we report a portable kit consisting of a portable workstation, gold screen-printed electrode (SPE), 0.45 μm filter membrane, phosphate buffer solution (PBS), and acetic acid (1%) for point-of-use (POU) analysis of nicotine in tobacco. The activated-screen-printed electrode (A-SPE) displayed superior electron transmission efficiency, and the A-SPE without modification was employed for high-performance analysis of nicotine in actual tobacco after simple sample pretreatment. Remarkably, the fabricated nicotine sensor exhibited a broad working range of 10-100 μg g-1, a low limit of detection (LOD) of 6.4 μg mL-1, good stability, selectivity, and practicality under the optimal conditions. The method was applied to the determination of nicotine in (spiked) samples. Satisfactory recovery results demonstrated that the as-prepared portable kit method with outstanding electrocatalysis ability was feasible for analysis of nicotine in tobacco. Moreover, the values obtained using the A-SPE were in good agreement with those determined by gas chromatography-flame ionization detection (GC-FID), which confirms the feasibility and validity of the present method. The results of the as-proposed portable kit provided a new strategy for analyzing nicotine in actual tobacco samples.
Collapse
Affiliation(s)
- Yunfei Sha
- Technical Center of Shanghai Tobacco Group Co., Ltd, Shanghai 201315, China.
| | - Jie Yu
- Technical Center of Shanghai Tobacco Group Co., Ltd, Shanghai 201315, China.
| | - Junwei Xiong
- Technical Center of Shanghai Tobacco Group Co., Ltd, Shanghai 201315, China.
| | - Chaofan Yu
- Technical Center of Shanghai Tobacco Group Co., Ltd, Shanghai 201315, China.
| | - Xiaoyu Zhu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bingqian Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Fei
- Technical Center of Shanghai Tobacco Group Co., Ltd, Shanghai 201315, China.
| | - Da Wu
- Technical Center of Shanghai Tobacco Group Co., Ltd, Shanghai 201315, China.
| |
Collapse
|
13
|
S S, Nair AJS, Sandhya KY. Highly Stable Copper Nano Cluster on Nitrogen-Doped Graphene Quantum Dots for the Simultaneous Electrochemical Sensing of Dopamine, Serotonin, and Nicotine; a Possible Addiction Scrutinizing Strategy. J Mater Chem B 2022; 10:3974-3988. [DOI: 10.1039/d1tb02368c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly stable copper nanocluster CuNC@N-GQD which exhibited stability for more than one year was synthesized using nitrogen doped graphene quantum dots (N-GQDs) as reducing and capping agents and smaller...
Collapse
|
14
|
Tao XY, Zhang Y, Zhou Y, Liu ZF, Feng XS. Nicotine in Complex Samples: Recent Updates on the Pretreatment and Analysis Method. Crit Rev Anal Chem 2021; 53:1209-1238. [PMID: 34955065 DOI: 10.1080/10408347.2021.2016365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Nicotine is a significant evaluation index of tobacco and its related products' quality, but nicotine overdose can pose serious health hazards and cause addiction and dependence, thus it can be seen that it is necessary to find suitable and efficient detection methods to precisely detect nicotine in diverse samples and complex matrices. In this review, an updated summary of the latest trends in pretreatment and analytical techniques for nicotine is provided. We reviewed various sample pretreatment methods, such as solid phase extraction, solid phase microextraction, liquid phase microextraction, QuEChERS, etc., and diverse nicotine assay methods including liquid chromatography, gas chromatography, electrochemical sensors, etc., focusing on the developments since 2015. Furthermore, the recent progress in the applications and applicability of these techniques as well as our prospects for future developments are discussed.HighlightsUpdated pretreatment and analysis methods of nicotine were systematically summarized.Microextraction and automation were main development trends of nicotine pretreatment.The introduction of novel materials added luster to nicotine pretreatment.The evolutions of ion source and mass analyzer were emphasized.
Collapse
Affiliation(s)
- Xin-Yue Tao
- School of Pharmacy, China Medical University, Shenyang, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Amr AEGE, Kamel AH, Almehizia AA, Sayed AYA, Elsayed EA, Abd-Rabboh HSM. Paper-Based Potentiometric Sensors for Nicotine Determination in Smokers' Sweat. ACS OMEGA 2021; 6:11340-11347. [PMID: 34056289 PMCID: PMC8153920 DOI: 10.1021/acsomega.1c00301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/09/2021] [Indexed: 06/01/2023]
Abstract
Herein, we describe for the first time, the design and fabrication of a novel nicotine paper-based sensor, in which a miniaturized paper reference electrode is integrated for potentiometric measurements. The paper-based sensors were designed using printed wax barriers to define the electrochemical cell and the sample zones. The electrodes were based on the use of the ion association complexes of the nicotinium cation (Nic) with either tetraphenylborate (TPB) or 5-nitrobarbiturate (NB) counter anions as sensing materials for nicotine recognition. A poly (3,4 ethylenedioxythiophene)/poly-(styrene sulfonate) (PEDOT/PSS) conducting polymer was used as an ion-to-electron transducer. The performance characteristics of the proposed sensors were evaluated and it revealed a rapid and stable response with a Nernstian slope of 55.2 ± 0.3 and 51.2 ± 0.6 mV/decade over the linear range of 1.0 × 10-5 to 1.0 × 10-2 M and detection limits of 6.0 and 8.0 μM for [Nic/TPB] and [Nic/NB], respectively. The sensors revealed a constant response over the pH range 3.5-6.5. The designed sensors provided a portable, inexpensive, and disposable way of measuring trace levels of nicotine coming from different cigarettes and in the collected human sweat of heavy smokers. All results were compared favorably with those obtained by the standard gas chromatographic method.
Collapse
Affiliation(s)
- Abd El-Galil E. Amr
- Pharmaceutical
Chemistry Department, Drug Exploration and Development Chair (DEDC),
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Applied
Organic Chemistry Department, National Research
Center, Dokki, Giza 12622, Egypt
| | - Ayman H. Kamel
- Department
of Chemistry, Faculty of Science, Ain Shams
University, Cairo 11566, Egypt
| | - Abdulrahman A. Almehizia
- Pharmaceutical
Chemistry Department, Drug Exploration and Development Chair (DEDC),
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Y. A. Sayed
- Pharmaceutical
Chemistry Department, Drug Exploration and Development Chair (DEDC),
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Elsayed A. Elsayed
- Zoology
Department, Faculty of Science, King Saud
University, Riyadh 11451, Saudi Arabia
- Chemistry
of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | | |
Collapse
|
16
|
Koh EH, Lee WC, Choi YJ, Moon JI, Jang J, Park SG, Choo J, Kim DH, Jung HS. A Wearable Surface-Enhanced Raman Scattering Sensor for Label-Free Molecular Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3024-3032. [PMID: 33404230 DOI: 10.1021/acsami.0c18892] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A wearable surface-enhanced Raman scattering (SERS) sensor has been developed as a patch type to utilize as a molecular sweat sensor. Here, the SERS patch sensor is designed to comprise a sweat-absorbing layer, which is an interface to the human skin, an SERS active layer, and a dermal protecting layer that prevents damage and contaminations. A silk fibroin protein film (SFF) is a basement layer that absorbs aqueous solutions and filtrates molecules larger than the nanopores created in the β-sheet matrix of the SFF. On the SFF layer, a plasmonic silver nanowire (AgNW) layer is formed to enhance the Raman signal of the molecules that penetrated through the SERS patch in a label-free method. A transparent dermal protecting layer (DP) allows laser penetration to the AgNW layer enabling Raman measurement through the SERS patch without its detachment from the surface. The molecular detection capability and time-dependent absorption properties of the SERS patch are investigated, and then, the feasibility of its use as a wearable drug detection sweat sensor is demonstrated using 2-fluoro-methamphetamine (2-FMA) on the human cadaver skin. It is believed that the developed SERS patch can be utilized as various flexible and wearable biosensors for healthcare monitoring.
Collapse
Affiliation(s)
- Eun Hye Koh
- Department of Nano-Bio Convergence, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Republic of Korea
- Advanced Materials Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Won-Chul Lee
- Department of Nano-Bio Convergence, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Republic of Korea
| | - Yeong-Jin Choi
- Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Republic of Korea
| | - Joung-Il Moon
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jinah Jang
- Department of Creative IT Engineering and Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sung-Gyu Park
- Department of Nano-Bio Convergence, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Republic of Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dong-Ho Kim
- Department of Nano-Bio Convergence, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Republic of Korea
- Advanced Materials Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ho Sang Jung
- Department of Nano-Bio Convergence, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Republic of Korea
| |
Collapse
|
17
|
Xu X, Chen Z, Li Q, Meng D, Jiang H, Zhou Y, Feng S, Yang Y. Copper and nitrogen-doped carbon dots as an anti-interference fluorescent probe combined with magnetic material purification for nicotine detection. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|