1
|
Choukairi M, Hejji L, Achache M, Touil M, Bouchta D, Draoui K, Azzouz A. Electrochemical and quantum chemical approaches to the study of dopamine sensing using bentonite and l-cysteine modified carbon paste electrode. Talanta 2024; 276:126247. [PMID: 38759358 DOI: 10.1016/j.talanta.2024.126247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
This work presents a significant investigation involving both electrochemical experiment and quantum chemical simulation approaches. The objective was to characterize the electrochemical detection of dopamine (DA). The detection was carried out using a modified carbon paste electrode (CPE) incorporating bentonite (Bent) and l-cysteine (CySH) (named as CySH/Bent/CPE). To understand and explain the oxidation mechanism of DA on the CySH/Bent modified electrode surface, the coupling of the two approaches were exploited. The CySH/Bent/CPE showed excellent electroactivity toward DA such as good sensibility, selectivity, stability, and regenerative ability. The developed sensor shows a dynamic linear range from 0.8 to 80 μM with a limit of detection and quantification of 0.5 μM and 1.5 μM, respectively. During the quantitative analysis of DA in presence of ascorbic acid (AA) and uric acid (UA) the electrochemical oxidation signals of AA, DA, and UA distinctly appear as three separate peaks. The potential differences between the peaks are 190 mv, 150 mv, and 340 mV for the AA-DA, DA-UA, and AA-UA oxidation pairs, respectively. These observations stem from square wave voltammetry (SWV) studies, along with the corresponding redox peak potential separations. The developed sensor is simple and accurate to monitor DA in human serum samples. On the other hand, CySH acts as an electrocatalyst on the CySH/Bent/CPE surface by increasing its active electron transfer sites, as suggested by the quantum chemical modeling with analytical results of Fukui. Furthermore, the voltammetric results obtained agree well with the theoretical calculations.
Collapse
Affiliation(s)
- Mohamed Choukairi
- Laboratory of Materials Engineering and Sustainable Energy (MISE-Lab), Faculty of Science, Abdelmalek Essaadi University, B.P. 2121, 93002, Tetouan, Morocco.
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'H IannechI, 93002, Tetouan, Morocco
| | - Mohamed Achache
- Laboratory of Materials Engineering and Sustainable Energy (MISE-Lab), Faculty of Science, Abdelmalek Essaadi University, B.P. 2121, 93002, Tetouan, Morocco
| | - M'hamed Touil
- Laboratory of Materials Engineering and Sustainable Energy (MISE-Lab), Faculty of Science, Abdelmalek Essaadi University, B.P. 2121, 93002, Tetouan, Morocco
| | - Dounia Bouchta
- Laboratory of Materials Engineering and Sustainable Energy (MISE-Lab), Faculty of Science, Abdelmalek Essaadi University, B.P. 2121, 93002, Tetouan, Morocco
| | - Khalid Draoui
- Laboratory of Materials Engineering and Sustainable Energy (MISE-Lab), Faculty of Science, Abdelmalek Essaadi University, B.P. 2121, 93002, Tetouan, Morocco
| | - Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'H IannechI, 93002, Tetouan, Morocco.
| |
Collapse
|
2
|
Al Khalyfeh K, Ghazzy A, Al-As' Ad RM, Rüffer T, Kanoun O, Lang H. Ferrocenyl-triazole complexes and their use in heavy metal cation sensing. RSC Adv 2024; 14:20572-20584. [PMID: 38946768 PMCID: PMC11211737 DOI: 10.1039/d4ra04023f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
Complexes tris((1-ferrocenyl-1H-1,2,3-triazol-4-yl)methyl)amine (3), bis((1-ferrocenyl-1H-1,2,3-triazol-4-yl)methyl)amine (6), bis((1-ferrocenyl-1H-1,2,3-triazol-4-yl)methyl)ether (7), and 1-ferrocenyl-1H-1,2,3-triazol-4-yl)methanamine (9) were synthesized using the copper-catalyzed click reaction. Complexes 3, 6, 7, and 9 were characterized using NMR (1H and 13{1H}) and IR spectroscopy, elemental analysis, and mass spectrometry. Structures of 3, 7, and 9 in the solid state were determined using single-crystal X-ray diffraction. It was found that the triazole rings were planar and slightly twisted with respect to the cyclopentadienyl groups attached to them. Chains and 3D network structures were observed due to the presence of π⋯π and C-H⋯N interactions between the cyclopentadienyl and triazole ligands. A reversible redox behavior of the Fc groups between 239 and 257 mV with multicycle stability was characteristic for all the compounds, revealing that the electrochemically generated species Fc+ remained soluble in dichloromethane. Electrochemical sensor tests demonstrated the applicability of all the complexes to enhance the quantification sensing behavior of the screen-printed carbon electrode (SPCE) toward Cd2+, Pb2+, and Cu2+ ions.
Collapse
Affiliation(s)
- Khaled Al Khalyfeh
- Department of Chemistry, Faculty of Natural Science, Al-Hussein Bin Talal University Ma'an 71111 Jordan
| | - Asma Ghazzy
- Faculty of Pharmacy, Faculty of Pharmacy and Applied Medical Sciences, Al-Ahliyya Amman University Amman 19328 Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University Amman 19328 Jordan
| | - Randa M Al-As' Ad
- Department of Chemistry, Faculty of Natural Science, Al-Hussein Bin Talal University Ma'an 71111 Jordan
| | - Tobias Rüffer
- Department of Inorganic Chemistry, Chemnitz University of Technology 09111 Chemnitz Germany
| | - Olfa Kanoun
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology 09126 Chemnitz Germany
| | - Heinrich Lang
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Research Group Organometallics, Chemnitz University of Technology 09126 Chemnitz Germany
| |
Collapse
|
3
|
Zang Akono AR, Blaise N, Valery HG. Preparation of a Carbon paste electrode with Active materials for the detection of Tetracycline. Heliyon 2024; 10:e28471. [PMID: 38560244 PMCID: PMC10981106 DOI: 10.1016/j.heliyon.2024.e28471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
The Electrochemical sensor based on carbon-clay paste electrode (CCPE) was constructed for sensitive determination of Tetracycline (Tc). The mineralogical composition, morphology, structure and performance of CCPE were characterized using X-ray diffraction powder, Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Cyclic Voltammetry analysis. The CCPE is constituted of two types of clay having the ratio 1/1 and 2/1 characteristic of kaolinite and montmorillonite clay respectively. Its porous structure is ascribed to the presence of graphite. The CCPE exhibited a good electrocatalytic activity towards the oxidation of Tc. The electrochemical kinetics and mechanism of Tc were proposed, showing that Tc electrocatalytic oxidation reaction was controlled by diffusion process and took place in three steps. A low concentration of Tc was detected by amperometry with the linear ranges of 0.5μM-0.8 μM (R2 = 0.98), the sensitivity was 8.01 μA/μM.cm2, the limit of detection and quantification were 5.16x10-3μM(S/N = 3) and 1.72x10-2μM respectively. Thus, the proposed electrode provides a promising and prospective CCPE sensing platform for the detection of Tc in the environment.
Collapse
Affiliation(s)
| | - Niraka Blaise
- Department of Textile and Leather Engineering, National Advanced School of Engineering of Maroua, University of Maroua, Cameroon
| | - Hambate Gomdje Valery
- Department of Textile and Leather Engineering, National Advanced School of Engineering of Maroua, University of Maroua, Cameroon
| |
Collapse
|
4
|
Biomass-derived carbon nanomaterials for sensor applications. J Pharm Biomed Anal 2023; 222:115102. [DOI: 10.1016/j.jpba.2022.115102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
5
|
Dhar AK, Himu HA, Bhattacharjee M, Mostufa MG, Parvin F. Insights on applications of bentonite clays for the removal of dyes and heavy metals from wastewater: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5440-5474. [PMID: 36418828 DOI: 10.1007/s11356-022-24277-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
In recent decades, increased industrial, agricultural, and domestic activities have resulted in the release of various pollutants into the aquatic systems, which require a reliable and environmentally friendly method to remove them. Adsorption is one of the most cost-effective and sustainable wastewater treatment techniques. A plethora of low-cost bio-based adsorbents have been developed worldwide so far to supplant activated carbon and its high processing costs. Bentonite clays (BCs), whether in natural or modified form, have gained enormous potential in wastewater treatment and have been used successfully as a novel and cost-effective bio-sorbent for removing organic and inorganic pollutants from the liquid suspension. It has become a sustainable solution for wastewater treatment due to its variety of surface and structural properties, superior chemical stability, high capacity for cation exchange, elevated surface area due to its layered structure, non-toxicity, abundance, low cost, and high adsorption capacity compared to other clays. This review encompasses comprehensive literature about various modification techniques and adsorption mechanisms of BCs concerning dyes and heavy metal removal from wastewater. A critical overview of different parameters for optimizing adsorption capacity and regeneration via the desorption technique has also been presented here. Finally, a conclusion has been drawn with some future research recommendations based on technological challenges encountered in industrializing these materials.
Collapse
Affiliation(s)
- Avik Kumar Dhar
- Department of Textiles, Merchandising, and Interiors, University of Georgia, 321 Dawson Hall, 305 Sanford Drive, Athens, GA-30602, USA.
| | - Humayra Akhter Himu
- Department of Environmental Science & Engineering, Bangladesh University of Textiles, Tejgaon, Dhaka-1208, Bangladesh
| | - Maitry Bhattacharjee
- Department of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA-30602, USA
| | - Md Golam Mostufa
- Department of Textile Engineering, Shyamoli Textile Engineering College, Dhaka, 1207, Bangladesh
| | - Fahmida Parvin
- Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| |
Collapse
|
6
|
Malode SJ, Prabhu K, Kalanur SS, Meghani N, Shetti NP. WO 3/rGO nanocomposite-based sensor for the detection and degradation of 4-Chlorophenol. CHEMOSPHERE 2023; 312:137302. [PMID: 36410498 DOI: 10.1016/j.chemosphere.2022.137302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/12/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated organic compounds are useful chemicals or intermediates that are used extensively in both industry and agriculture. The 4-chlorophenol (4CP) in low concentration poses a serious environmental problem and causes many health issues, including cancer and liver disease. In this work, we demonstrated the detection of 4CP at carbon paste electrodes modified using tungsten oxide (WO3) nanorods and reduced graphene oxide (rGO) nanoparticles. The significance of pH on the voltammetric response of 4CP was investigated, and it was discovered that an alkaline pH is an optimal condition for detecting substituted phenols. Moreover, parameters like heterogeneous rate constant, accumulation time, temperature effect, Gibb's free energy, scan rate, enthalpy, activation energy, and entropy were studied. The excellent catalytic and bulk properties of tungsten oxide nanostructures make it an effective modifier in electrochemical sensors. The employment of nanostructured WO3 for the assay of 4CP offers excellent sensitivity, selectivity, and applicability. The WO3 nanostructures are obtained hydrothermally and characterized in detail to understand the crystalline, quantitative and chemical properties. The electrochemical behavior of 4CP was studied utilizing voltammetry techniques. The CV technique was used to optimize and affect many factors in the electrochemical behavior of 4CP. The scan rate investigation helps to examine the physicochemical characteristics of the electrode process, and the electrooxidation of 4CP included 2 electrons and 2 protons. With 4CP, the modified electrode displayed a broad range of linearity. The limit of detection was determined to be 0.102 nM, while the limit of quantification was 0.3433 nM. The concentration of 4CP ranged between 0.1 × 10-7 M and 3.5 × 10-7 M. The fabricated electrode was also used to detect 4CP in soil and water samples. Good recoveries were obtained from the soil and water samples. The proposed electrode was used for analytical applications, including 4CP detection with high selectivity, low detection limit, sensitivity, and rapid response.
Collapse
Affiliation(s)
- Shweta J Malode
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi-580031, Karnataka, India.
| | - Keerthi Prabhu
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi-580027, Karnataka, India
| | - Shankara S Kalanur
- Institute for Hydrogen Research, Université du Québec à Trois-Rivières, Pavillon Tapan-K.-Bose, 3351, Boul. des Forges C.P.500 Trois-Rivières, Québec, G9A 5H7, Canada
| | | | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi-580031, Karnataka, India; University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali- 140413, Panjab, India.
| |
Collapse
|
7
|
Low temperature growth of CuS nanosheets on hollow Co9S8 nanotubes: Synthesis and analytical application. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Sawkar RR, Shanbhag MM, Tuwar SM, Veerapur RS, Shetti NP. Glucose Incorporated Graphite Matrix for Electroanalysis of Trimethoprim. BIOSENSORS 2022; 12:909. [PMID: 36291048 PMCID: PMC9599278 DOI: 10.3390/bios12100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The antibiotic drug trimethoprim (TMP) is used to treat bacterial infections in humans and animals, and frequently TMP is used along with sulfonamides. However, a large portion of TMP is excreted in its active state, which poses a severe problem to humans and the environment. A sensitive, rapid, cost-effective analytical tool is required to monitor the TMP concentration in biological and environmental samples. Hence, this study proposed an analytical methodology to analyze TMP in clinical, biological and environmental samples. The investigations were carried out using a glucose-modified carbon paste electrode (G-CPE) employing voltammetric techniques. Electrochemical behavior was examined with 0.5 mM TMP solution at optimum pH 3.4 (Phosphate Buffer Solution, I = 0.2 M). The influence of scan rate on the electro-oxidation of TMP was studied within the range of 0.05 to 0.55 V/s. The effect of pH and scan rate variations revealed proton transfer during oxidation. Moreover, diffusion phenomena governed the irreversibility of the electrode reaction. A probable and suitable electrode interaction and reaction mechanism was proposed for the electrochemical oxidation of TMP. Further, the TMP was quantitatively estimated with the differential pulse voltammetry (DPV) technique in the concentration range from 9.0 × 10-7 to 1.0 × 10-4 M. The tablet, spiked water and urine analysis demonstrated that the selected method and developed electrode were rapid, simple, sensitive, and cost-effective.
Collapse
Affiliation(s)
- Rakesh R. Sawkar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, India
| | - Mahesh M. Shanbhag
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi 580027, India
| | - Suresh M. Tuwar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, India
| | - Ravindra S. Veerapur
- Department of Metallurgy & Materials Engineering, Malawi Institute of Technology, Malawi University of Science and Technology, Limbe 5196, Malawi
| | - Nagaraj P. Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, India
- University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, India
| |
Collapse
|
9
|
Zinc Oxide–Graphene Nanocomposite-Based Sensor for the Electrochemical Determination of Cetirizine. Catalysts 2022. [DOI: 10.3390/catal12101166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A nanocomposite electrode of graphene (Gr) and zinc oxide (ZnO) nanoparticles was fabricated to study the electrochemical oxidation behavior of an anti-inflammatory drug, i.e., cetirizine (CET). The voltametric response of CET for bare CPE, Gr/CPE, ZnO/CPE, and the ZnO-Gr nanocomposite electrode was studied. The modifier materials were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD) to comprehend the surface morphology of the utilized modifiers. The influence of pH, scan rate, and accumulation time on the electrooxidation of CET was examined. It was found that the electrochemical oxidation of CET was diffusion-controlled, in which two protons and two electrons participated. The detection limit was found to be 2.8 × 10−8 M in a linearity range of 0.05–4.0 µM. Study of excipients was also performed, and it was found that they had negligible interference with the peak potential of CET. The validation and utility of the fabricated nanocomposite sensor material were examined by analyzing clinical and biological samples. Stability testing of the nanocomposite electrode was conducted to assess the reproducibility, determining that the developed biosensor has good stability and high efficiency in producing reproducible results.
Collapse
|
10
|
Bentonite Nanoclay Optoelectrochemical Property Improvement through Bimetallic Silver and Gold Nanoparticles. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/3693938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study assesses the physical and electrochemical changes of bimetallic Ag-Au nanoparticle-functionalized bentonite nanoclay. Nanoclay was studied to deduce a better sensing material/film. A chemical co-reduction method was used to synthesize bimetallic Ag-Au c nanoparticles, which were used to prepare a Ag-Au/PGV bentonite composite. Bimetallic Ag-AuNPs and their nanoclay composite were optically characterized using the scanning electron microscope, ultraviolet visible spectroscopy, X-ray diffraction, and Fourier transform infrared, whilst cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to ascertain their electrochemical activity and properties. The results of surface morphological inspection showed an average size of 10 nm, in agreement with XRD. The bimetallic Ag-AuNPs UV/Vis characteristic wavelengths of 414 nm and 516 nm confirmed the presence of Ag and Au metals, respectively. XRD exhibited diffraction planes related to 2θ values of Ag and Au metals, whilst FTIR indicated mainly COO- functional groups from the citrate capping of bimetallic Ag-Au NPs. CV and DPV showed that bentonite nanoclay is largely insulated by silicates but exhibited a small electroactivity of Fe. The electroactivity of Ag-Au/PGV bentonite exhibited peak potentials due to Ag/Ag+ and Au/Au3+ redox couples at 0.19 V/−0.20 V and 1.37 V/0.42, respectively. The Ag-Au/PGV bentonite nanocomposite exhibited the highest surface concentration of 3.25 × 10−2 cm2, a diffusion coefficient of 2.36 × −11 cm2/s, and an electron transfer rate constant (Ks) of 1.99 × 10−4 cm2. The outcome of these results indicated that the Ag-Au/PGV bentonite nanocomposite was more electroactive than PGV. Therefore, this study accentuates Ag-Au/PGV bentonite nanocomposite as a novel and promising platform for electrochemical sensing with higher sensitivity and efficiency than other sensing materials.
Collapse
|
11
|
Lalmalsawmi J, Sarikokba, Tiwari D, Kim DJ. Simultaneous detection of Cd2+ and Pb2+ by differential pulse anodic stripping voltammetry: Use of highly efficient novel Ag0(NPs) decorated silane grafted bentonite material. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Patil VB, Malode SJ, Mangasuli SN, Tuwar SM, Mondal K, Shetti NP. An Electrochemical Electrode to Detect Theophylline Based on Copper Oxide Nanoparticles Composited with Graphene Oxide. MICROMACHINES 2022; 13:mi13081166. [PMID: 35893164 PMCID: PMC9394302 DOI: 10.3390/mi13081166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023]
Abstract
The electrochemical analysis of theophylline (THP) was investigated by fabricating a carbon paste electrode (CPE) modified with graphene oxide (GO) along with copper oxide (CuO) nanoparticles (CuO-GO/CPE). The impact of electro-kinetic parameters such as the heterogeneous rate constant, the scan rate, the accumulation time, the pH, the transfer coefficient, and the number of electrons and protons transferred into the electro-oxidation mechanism of THP has been studied utilizing electrochemical methods such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The differential pulse voltammetry technique was employed to investigate THP in pharmaceutical and biological samples, confirming the limit of detection (LOD) and quantification (LOQ) of the THP. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were performed to characterize the CuO nanoparticles. The CuO-GO/CPE was more sensitive in THP detection because its electrocatalytic characteristics displayed an enhanced peak current in the 0.2 M supporting electrolyte of pH 6.0, proving the excellent sensing functioning of the modified electrode.
Collapse
Affiliation(s)
- Vinoda B. Patil
- Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India; (V.B.P.); (S.N.M.)
| | - Shweta J. Malode
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India;
| | - Sumitra N. Mangasuli
- Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India; (V.B.P.); (S.N.M.)
| | - Suresh M. Tuwar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India; (V.B.P.); (S.N.M.)
- Correspondence: (S.M.T.); (K.M.); (N.P.S.)
| | - Kunal Mondal
- Idaho National Laboratory, Idaho Falls, ID 83415, USA
- Correspondence: (S.M.T.); (K.M.); (N.P.S.)
| | - Nagaraj P. Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India;
- Correspondence: (S.M.T.); (K.M.); (N.P.S.)
| |
Collapse
|
13
|
Incebay H, UCAR A. An electrochemical sensor fabricated by sonochemical approach for determination of the antipsychotic drug haloperidol. ELECTROANAL 2022. [DOI: 10.1002/elan.202200235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Manasa G, Mascarenhas RJ, Shetti NP, Malode SJ, Aminabhavi TM. Biomarkers for Early Diagnosis of Ovarian Carcinoma. ACS Biomater Sci Eng 2022; 8:2726-2746. [PMID: 35762531 DOI: 10.1021/acsbiomaterials.2c00390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The leading cause of gynecological cancer-related morbidity and mortality is ovarian cancer (OC), which is dubbed a silent killer. Currently, OC is a target of intense biomarker research, because it is often not discovered until the disease is advanced. The goal of OC research is to develop effective tests using biomarkers that can detect the disease at the earliest stages, which would eventually decrease the mortality, thereby preventing recurrence. Therefore, there is a pressing need to revisit the existing biomarkers to recognize the potential biomarkers that can lead to efficient predictors for the OC diagnosis. This Perspective covers an update on the currently available biomarkers used in the triaging of OC to gain certain insights into the potential role of these biomarkers and their estimation that are crucial to the understanding of neoplasm progression, diagnostics, and therapy.
Collapse
Affiliation(s)
- G Manasa
- Electrochemistry Research Group, St. Joseph's College, Lalbagh Road, Bangalore - 560027, Karnataka, India
| | - Ronald J Mascarenhas
- Electrochemistry Research Group, St. Joseph's College, Lalbagh Road, Bangalore - 560027, Karnataka, India
| | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidhyanagar, Hubballi - 580031, Karnataka, India
| | - Shweta J Malode
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidhyanagar, Hubballi - 580031, Karnataka, India
| | - Tejraj M Aminabhavi
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidhyanagar, Hubballi - 580031, Karnataka, India
| |
Collapse
|
15
|
Li Y, Pan F, Yin S, Tong C, Zhu R, Li G. Nafion assisted preparation of prussian blue nanoparticles and its application in electrochemical analysis of l-ascorbic acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
New Electrochemical Sensor Based on Hierarchical Carbon Nanofibers with NiCo Nanoparticles and Its Application for Cetirizine Hydrochloride Determination. MATERIALS 2022; 15:ma15103648. [PMID: 35629673 PMCID: PMC9147852 DOI: 10.3390/ma15103648] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/26/2022]
Abstract
A new electrochemical sensor based on hierarchical carbon nanofibers with Ni and Co nanoparticles (eCNF/CNT/NiCo-GCE) was developed. The presented sensor may be characterized by high sensitivity, good electrical conductivity, and electrocatalytic properties. Reproducibility of its preparation expressed as %RSD (relative standard deviation) was equal to 9.7% (n = 5). The repeatability of the signal register on eCNF/CNT/NiCo-GCE was equal to 3.4% (n = 9). The developed sensor was applied in the determination of the antihistamine drug—cetirizine hydrochloride (CTZ). Measurement conditions, such as DPV (differential pulse voltammetry) parameters, supporting electrolyte composition and concentration were optimized. CTZ exhibits a linear response in three concentration ranges: 0.05–6 µM (r = 0.988); 7–32 (r = 0.992); and 42–112 (r = 0.999). Based on the calibration performed, the limit of detection (LOD) and limit of quantification (LOQ) were calculated and were equal to 14 nM and 42 nM, respectively. The applicability of the optimized method for the determination of CTZ was proven by analysis of its concentration in real samples, such as pharmaceutical products and body fluids (urine and plasma). The results were satisfactory and the calculated recoveries (97–115%) suggest that the method may be considered accurate. The obtained results proved that the developed sensor and optimized method may be used in routine laboratory practice.
Collapse
|
17
|
Graphene sheet-based electrochemical sensor with cationic surfactant for sensitive detection of atorvastatin. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Killedar LS, Shanbhag MM, Malode SJ, Bagihalli GB, Mahapatra S, Mascarenhas RJ, Shetti NP, Chandra P. Ultra-sensitive detection of tizanidine in commercial tablets and urine samples using zinc oxide coated glassy carbon electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Prabhu K, Malode SJ, Shetti NP, Kulkarni RM. Analysis of herbicide and its applications through a sensitive electrochemical technique based on MWCNTs/ZnO/CPE fabricated sensor. CHEMOSPHERE 2022; 287:132086. [PMID: 34523434 DOI: 10.1016/j.chemosphere.2021.132086] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/16/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
The electrochemical performance of linuron (LNR) was studied by fabricating the carbon paste electrode (CPE) using multiwalled carbon nanotubes (MWCNTs) along with zinc oxide (ZnO) nanoparticles (MWCNTs/ZnO/CPE). The influence of electro-kinetic specifications involving steady heterogeneous rate, pH, sweep rate, temperature effect, transfer coefficient, accumulation time, activation energy, as well as the total number of protons and electrons participating in electro-oxidation of LNR has been established using voltammetric techniques like cyclic voltammetry (CV) and square wave voltammetry (SWV). These techniques were applied to investigate LNR in real samples such as soil including water samples. Over the 0.02 μM-0.34 μM ranges, a linear relationship was confirmed along with the limit of detection and quantification (LOD and LOQ) of the LNR. The synthesized ZnO nanoparticles were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) analysis. The MWCNTs/ZnO/CPE sensor was considered sensitive for LNR detection because the sensor exhibited enhanced catalytic qualities with peak current in the involvement of 0.2 M phosphate buffer solution (PBS) of pH 6.0, attributed to the ultimate sensing performance of the sensor.
Collapse
Affiliation(s)
- Keerthi Prabhu
- Centre for Electrochemical Science and Materials, Department of Engineering Chemistry, K.L.E. Institute of Technology, Hubballi, 580027, Karnataka, India
| | - Shweta J Malode
- Centre for Electrochemical Science and Materials, Department of Engineering Chemistry, K.L.E. Institute of Technology, Hubballi, 580027, Karnataka, India.
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580031, Karnataka, India.
| | - Raviraj M Kulkarni
- Department of Chemistry, K. L. S. Gogte Institute of Technology (Autonomous), affiliated to Visvesvaraya Technological University Belagavi-590008, Karnataka, India
| |
Collapse
|
20
|
Vernekar PR, Shanbhag MM, G M, Shetti NP, Mascarenhas RJ. Silica‐gel incorporated carbon paste sensor for the electrocatalytic oxidation of famotidine and its application in biological sample analysis. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
| | - Mahesh Mohan Shanbhag
- Department of Chemistry K.L.E. Institute of Technology, Gokul Hubballi Karnataka India
| | - Manasa G
- Electrochemistry Research Group St. Joseph's College Bangalore Karnataka India
| | | | | |
Collapse
|
21
|
Sawkar RR, Patil VB, Shanbhag MM, Shetti NP, Tuwar SM, Aminabhavi TM. Detection of ketorolac drug using pencil graphite electrode. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
22
|
|
23
|
Electrochemical sensor studies and optical analysis of developed clay based CoFe2O4 ferrite NPs. SENSORS INTERNATIONAL 2021. [DOI: 10.1016/j.sintl.2021.100083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|