1
|
Xu Z, Zhang L, Wang T, Zhang M, Kang G, Wu S, Liu B. Photocatalytic degradation of organophosphorus flame retardants in aqueous solutions: a review and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52707-52723. [PMID: 39190251 DOI: 10.1007/s11356-024-34766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024]
Abstract
The widespread use of organophosphorus flame retardants (OPFRs) in industrial and household products increases the risk of their environmental exposure, posing a serious threat to ecosystems and human health. Photocatalytic technology has been widely used in wastewater treatment due to its high efficiency, mild reaction conditions, and robustness. This review summarizes the current status of research on photocatalytic degradation of OPFRs, focusing on the effect of different types of catalysts on the degradation efficiency, the effects of pH, and co-existing inorganic and organic ions. And pH and co-existing inorganic mainly affect the active oxygen and the active surface sites of the catalyst. In addition, toxicological calculations of the intermediates of the degradation pathway using T.E.S.T. and ECOSAR showed that photocatalysis could effectively reduce the toxicity of OPFRs. Development of new photocatalytic materials, in-depth study of the degradation mechanism of different catalysts and flame retardants, and attention to practical applications and toxicity issues can be the development direction of future research.
Collapse
Affiliation(s)
- Zihui Xu
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| | - Lucheng Zhang
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| | - Tingting Wang
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| | - Mingqing Zhang
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China.
| | - Gang Kang
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| | - Shilong Wu
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| | - Bingfeng Liu
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| |
Collapse
|
2
|
Lee SJ, Jang H, Lee DN. Recent advances in nanoflowers: compositional and structural diversification for potential applications. NANOSCALE ADVANCES 2023; 5:5165-5213. [PMID: 37767032 PMCID: PMC10521310 DOI: 10.1039/d3na00163f] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/02/2023] [Indexed: 09/29/2023]
Abstract
In recent years, nanoscience and nanotechnology have emerged as promising fields in materials science. Spectroscopic techniques like scanning tunneling microscopy and atomic force microscopy have revolutionized the characterization, manipulation, and size control of nanomaterials, enabling the creation of diverse materials such as fullerenes, graphene, nanotubes, nanofibers, nanorods, nanowires, nanoparticles, nanocones, and nanosheets. Among these nanomaterials, there has been considerable interest in flower-shaped hierarchical 3D nanostructures, known as nanoflowers. These structures offer advantages like a higher surface-to-volume ratio compared to spherical nanoparticles, cost-effectiveness, and environmentally friendly preparation methods. Researchers have explored various applications of 3D nanostructures with unique morphologies derived from different nanoflowers. The nanoflowers are classified as organic, inorganic and hybrid, and the hybrids are a combination thereof, and most research studies of the nanoflowers have been focused on biomedical applications. Intriguingly, among them, inorganic nanoflowers have been studied extensively in various areas, such as electro, photo, and chemical catalysis, sensors, supercapacitors, and batteries, owing to their high catalytic efficiency and optical characteristics, which arise from their composition, crystal structure, and local surface plasmon resonance (LSPR). Despite the significant interest in inorganic nanoflowers, comprehensive reviews on this topic have been scarce until now. This is the first review focusing on inorganic nanoflowers for applications in electro, photo, and chemical catalysts, sensors, supercapacitors, and batteries. Since the early 2000s, more than 350 papers have been published on this topic with many ongoing research projects. This review categorizes the reported inorganic nanoflowers into four groups based on their composition and structure: metal, metal oxide, alloy, and other nanoflowers, including silica, metal-metal oxide, core-shell, doped, coated, nitride, sulfide, phosphide, selenide, and telluride nanoflowers. The review thoroughly discusses the preparation methods, conditions for morphology and size control, mechanisms, characteristics, and potential applications of these nanoflowers, aiming to facilitate future research and promote highly effective and synergistic applications in various fields.
Collapse
Affiliation(s)
- Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University Seoul 01897 Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University Seoul 01897 Korea
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University Seoul 01897 Korea
| |
Collapse
|
3
|
Yan Z, Peng Z, Lai J, Xu P, Qiu P. Simplifying the complexity: Single enzyme (choline oxidase) inhibition-based biosensor with dual-readout method for organophosphorus pesticide detection. Talanta 2023; 265:124905. [PMID: 37421789 DOI: 10.1016/j.talanta.2023.124905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Organophosphorus pesticides (OPs) are widely used in agricultural production, but their residues could cause pollution to the environment and living organisms. In this paper, a simple dual-readout method for OPs detection was proposed based on ChOx single enzyme inhibition. Firstly, ChOx can catalyze the production of H2O2 from choline chloride (Ch-Cl). Bifunctional iron-doped carbon dots (Fe-CDs) with good peroxidase-like activity and superior fluorescence properties can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (oxTMB) by H2O2 formed, and oxTMB could quench the fluorescence of Fe-CDs. In light of the fact that OPs exhibited activity in inhibiting ChOx, less H2O2 and the decreasing oxTMB led to a result that the fluorescence of the system recovered and the solution became lighter in blue color. Moreover, the process of ChOx inhibition by OPs was analyzed by molecular docking technique and it was found that OPs interact with key amino acid residues catalyzed by ChOx (Asn510, His466, Ser101, His351, Phe357, Trp331, Glu312). Finally, a dual-mode (colorimetry and fluorescence) sensor was created for the detection of OPs with the detection limit of 6 ng/L, and was successfully used in the quantitative determination of OPs in actual samples with satisfactory results.
Collapse
Affiliation(s)
- Ziyu Yan
- Department of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Zoujun Peng
- Department of Chemistry, Nanchang University, Nanchang, 330031, China; Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
| | - Juanhua Lai
- Jiangxi Center of Medical Device Testing, Nanchang, 330047, China
| | - Peng Xu
- Center of Analysis and Testing, Nanchang University, Nanchang, 330031, China.
| | - Ping Qiu
- Department of Chemistry, Nanchang University, Nanchang, 330031, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
4
|
Zhang Y, Zhou B, Chen H, Yuan R. Heterogeneous photocatalytic oxidation for the removal of organophosphorus pollutants from aqueous solutions: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159048. [PMID: 36162567 DOI: 10.1016/j.scitotenv.2022.159048] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/07/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Organophosphorus pollutants (OPs), which are compounds containing carbon‑phosphorus bonds or phosphate derivatives containing organic groups, have received much attention from researchers because of their persistence in the aqueous environment for long periods of time and the threat they pose to human health. Heterogeneous photocatalysis has been widely applied to the removal of OPs from aqueous solutions due to its better removal effect and environmental friendliness. In this review, the removal of OPs from aqueous matrices by heterogeneous photocatalysis was presented. Herein, the application and the heterogeneous photocatalysis mechanism of OPs were described in detail, and the effects of catalyst types on degradation effect are discussed categorically. In particular, the heterojunction type photocatalyst has the most excellent effect. After that, the photocatalytic degradation pathways of several OPs were summarized, focusing on the organophosphorus pesticides and organophosphorus flame retardants, such as methyl parathion, dichlorvos, dimethoate and chlorpyrifos. The toxicity changes during degradation were evaluated, indicating that the photocatalytic process could effectively reduce the toxicity of OPs. Additionally, the effects of common water matrices on heterogeneous photocatalytic degradation of OPs were also presented. Finally, the challenges and perspectives of heterogeneous photocatalysis removal of OPs are summarized and presented.
Collapse
Affiliation(s)
- Yujie Zhang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
5
|
Zhu QC, He ZR, Mao DY, Lu WN, Yi SL, Wang KX. Nanofibrous Cathode Catalysts with MoC Nanoparticles Embedded in N-Rich Carbon Shells for Low-Overpotential Li-CO 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38090-38097. [PMID: 35969679 DOI: 10.1021/acsami.2c10882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Li-CO2 batteries with high theoretical energy densities are recognized as next-generation energy storage devices for addressing the range anxiety and environmental issues encountered in the field of electric transportation. However, cathode catalysts with unsatisfactory activity toward CO2 absorption and reduction/evolution reactions hinder the development of Li-CO2 batteries with desired specific capacities and sufficient cycle numbers. In this work, a multifunctional nanofibrous cathode catalyst that integrates N-rich carbon shells embedded with molybdenum carbide nanoparticles and multiwalled carbon nanotube cores was designed and prepared. The N-rich carbon shell could strengthen the absorption capacity of CO2 and Li2CO3. The molybdenum carbide nanoparticles would improve the catalytic activity of both CO2 reduction and evolution reactions. The carbon nanotube cores would provide an efficient network for electron transportation. The synergistic effect of the cathode catalysts enhances the electrochemical performance of Li-CO2 batteries. A high cycling stability of more than 150 cycles at a current density of 250 mA g-1 with a cutoff capacity of 1000 mAh g-1 and a charge/discharge overpotential of less than 1.5 V is achieved. This work provides a feasible strategy for the design of a high-performance cathode catalyst for lithium-air batteries.
Collapse
Affiliation(s)
- Qian-Cheng Zhu
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Donghuan Street 268, Liuzhou 545006, China
| | - Zi-Rui He
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Donghuan Street 268, Liuzhou 545006, China
| | - De-Yu Mao
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Donghuan Street 268, Liuzhou 545006, China
| | - Wan-Ni Lu
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Donghuan Street 268, Liuzhou 545006, China
| | - Sheng-Long Yi
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Donghuan Street 268, Liuzhou 545006, China
| | - Kai-Xue Wang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Li Y, Feng Y, Chen S, Li R, Yang Y, Guan JJ, Ye BC. Signal on-off ratiometric electrochemical sensor coupled with a molecularly imprinted polymer for the detection of carbendazim. Mikrochim Acta 2022; 189:250. [PMID: 35680763 DOI: 10.1007/s00604-022-05341-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/14/2022] [Indexed: 12/01/2022]
Abstract
A stable ratiometric electrochemical sensor is introduced for the selective detection of carbendazim (CBD). Specifically, the proposed sensor employs a Co@Mo2C bimetallic nanomaterial as the glassy carbon electrode substrate and a layer of molecularly imprinted polymer (MIP) was in situ fabricated on glassy carbon electrode by electropolymerization, with o-aminophenol as the functional monomer and CBD acting as template. A ratiometric MIP sensor was constructed by adding ferrocene (Fc) internal reference directly to the sample solution. The bimetallic nanomaterials provide a large loading platform for the MIP layer through synergistic effects, amplifying the signal. Excellent CBD binding selectivity is achieved by the templating effect of the three-dimensional (3D) MIP layer. The internal standard is added directly to the electrolyte solution to be tested, allowing the new type of ratiometric electrochemical sensor to avoid the cumbersome steps of other methods and reducing the difficulty and human error of the experimental procedure. Combining a ratiometric strategy with a 3D MIP structure realises the dual-signal detection of CBD. The optimised sensor showed an excellent linear relationship between 0.01 and 1 000 μM, with a correlation coefficient of 0.997 and a detection limit of 3.4 nM (S/N = 3).
Collapse
Affiliation(s)
- Yangguang Li
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.,Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yifan Feng
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Shenyan Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Renjie Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yue Yang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Jing Jing Guan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832000, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China. .,Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China.
| |
Collapse
|
7
|
Bilal S, Sami AJ, Hayat A, Fayyaz Ur Rehman M. Assessment of pesticide induced inhibition of Apis mellifera (honeybee) acetylcholinesterase by means of N-doped carbon dots/BSA nanocomposite modified electrochemical biosensor. Bioelectrochemistry 2022; 144:107999. [PMID: 34801807 DOI: 10.1016/j.bioelechem.2021.107999] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
This work describes the development and optimization of an electrochemical method to evaluate pesticide induced inhibition of honey bee (Apis mellifera) acetylcholinesterase (AChE) by means of acetylcholinesterase biosensor. The inhibition assay was based on the detection of changes in electrochemical activity of the enzyme caused by pesticide. As transducer, nitrogen doped carbon dots BSA (N-CD/BSA) nanocomposite electrodeposited on pencil graphite electrode was used to covalently immobilize AChE. The as-synthesized nanocomposite and fabricated electrodes were characterized for the structural, functional and electrochemical properties. Nanocomposite promoted the electron transfer reaction to catalyze the electro-oxidation of thiocholine and a large current response was obtained by cyclic voltammetry at 0.77 V, indicating successful immobilization of AChE. The sensitivity of Diazinon, an OP insecticide, for honeybee AChE was tested under optimal conditions and a linear response ranging 10-250 nM was obtained with a detection limit of 8.9 nM, and sensitivity 9 uA/nM/cm2. The method showed a good operational reproducibility and selectivity of biosensor. Further, the molecular docking provided additional support to the experimental data suggesting irreversible nature and contact toxicity of the pesticide for honey bee AChE. The developed biosensor has proved useful for the diazinon detection in wheat samples with 99% recovery rate.
Collapse
Affiliation(s)
- Sehrish Bilal
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54000, Pakistan; Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore 54000, Pakistan.
| | - Amtul Jamil Sami
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54000, Pakistan; Center for Biosensor Research and Development (CBRD), University of the Punjab, Lahore 54000, Pakistan.
| | - Akhtar Hayat
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore 54000, Pakistan.
| | | |
Collapse
|
8
|
Gao Y, Zhao C, Tan Q, Gao M, Chen G, Zhai R, Huang X, Xu X, Liu G, Wang J, Zhang Y, Xu D. Ternary magnetic Fe3O4@C3N4@covalent organic framework for facile extraction and determination of organophosphorus pesticides in fruit. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Ultra-sensitive acetylcholinesterase biosensor based on leaching Al42Cu40Fe16 quasicrystal modified by MWCNTs-COOH for the determination of organophosphorus pesticide. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Feng Y, Qu Y, Sun X, Pan W, Wang J. Fluorimetric and ratiometric colorimetric dual-mode detection of organophosphorus pesticides based on carbon dots/DTNB. NEW J CHEM 2022. [DOI: 10.1039/d1nj06011b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon dots/DTNB as fluorimetric and ratiometric colorimetric dual-mode probes for the detection of chlorpyrifos.
Collapse
Affiliation(s)
- Yaoyao Feng
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yujiao Qu
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xiaobo Sun
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Wei Pan
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Jinping Wang
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
11
|
Heteroatom-doped Co-MOF derivative enhancing immobilization and activity of two enzymes for small-molecules electrochemical determination. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|