1
|
Li Y, Huang Y, Zhao P, Fei J, Xie Y. A review on Pd-M bimetallic electrochemical sensors: Techniques, performance, and applications. Talanta 2024; 282:126989. [PMID: 39383725 DOI: 10.1016/j.talanta.2024.126989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Environmental pollution, food safety, and medical diagnostics pose severe threats to human health, making the development of effective detection technologies crucial. Electrochemical sensors, as an efficient detection method, are extensively employed in detecting environmental pollutants, food additives, and biomolecules. Pd-M bimetallic materials, known for their excellent electrocatalytic performance, are extensively utilized as electrode modification materials. Although earlier reviews have covered the sensing applications of bimetallic materials, they have not targeted discussed Pd-based bimetallic materials. This paper systematically summarizes the preparation methods of Pd-M bimetallic materials, explores their structural and morphological regulation, and elaborates on their recent applications in pesticide detection, environmental pollutant detection, food additive detection, drug detection, and biosensing. It enumerates the detection performance of various Pd-M bimetallic material-modified electrochemical sensors for the aforementioned analytes in detail, including specific modification materials, linear range, detection limits, and sensitivity parameters.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yutian Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, People's Republic of China.
| |
Collapse
|
2
|
Wu M, Sun Z, Shi P, Zhao N, Sun K, Ye C, Li H, Jiang N, Fu L, Zhou Y, Lin CT. Enhanced Electrochemical Sensing of Oxalic Acid Based on VS 2 Nanoflower-Decorated Glassy Carbon Electrode Prepared by Hydrothermal Method. BIOSENSORS 2024; 14:387. [PMID: 39194615 DOI: 10.3390/bios14080387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Oxalic acid (OA) is a predominant constituent in kidney stones, contributing to 70-80% of all cases. Rapid detection of OA is vital for the early diagnosis and treatment of kidney stone conditions. This work introduces a novel electrochemical sensing approach for OA, leveraging vanadium disulfide (VS2) nanoflowers synthesized via hydrothermal synthesis. These VS2 nanoflowers, known for their excellent electrocatalytic properties and large surface area, are used to modify glassy carbon electrodes for enhanced OA sensing. The proposed OA sensor exhibits high sensitivity and selectivity across a wide linear detection range of 0.2-20 μM, with an impressively low detection limit of 0.188 μM. The practicality of this sensor was validated through interference studies, offering a promising tool for the early diagnosis and monitoring of kidney stone diseases.
Collapse
Grants
- 52102055, 52272053, 52075527 the National Natural Science Foundation of China
- 2022YFA1203100, 2022YFB3706602, 2021YFB3701801 the National Key R&D Program of China
- 2021Z120, 2021Z115, 2022Z084, 2022Z191 Ningbo Key Scientific and Technological Project
- 2021A-037-C, 2021A-108-G the Yongjiang Talent Introduction Programme of Ningbo
- JCPYJ-22030 the Youth Fund of Chinese Academy of Sciences
- 2020M681965, 2022M713243 China Postdoctoral Science Foundation
- 2020301 CAS Youth Innovation Promotion Association
- 2021ZDYF020196, 2021ZDYF020198 Science and Technology Major Project of Ningbo
- XDA22020602, ZDKYYQ2020001 the Project of Chinese Academy of Science
- 2019A-18-C Ningbo 3315 Innovation Team
Collapse
Affiliation(s)
- Mengfan Wu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine of Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhuang Sun
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Peizheng Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Ningbin Zhao
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Kaiqiang Sun
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Chen Ye
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - He Li
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Nan Jiang
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yunlong Zhou
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine of Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
3
|
Cetinkaya A, Kaya SI, Ozcelikay G, Budak F, Ozkan SA. Carbon Nanomaterials-Based Novel Hybrid Platforms for Electrochemical Sensor Applications in Drug Analysis. Crit Rev Anal Chem 2024; 54:1227-1242. [PMID: 35943520 DOI: 10.1080/10408347.2022.2109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Nowadays, the rapid improvements in the medical and pharmaceutical fields increase the diversity and use of drugs. However, problems such as the use of multiple or combined drugs in the treatment of diseases and insensible use of over-the-counter drugs have caused concerns about the side-effect profiles and therapeutic ranges of drugs and environmental contamination and pollution problems due to pharmaceuticals waste. Therefore, the analysis of drugs in various media such as biological, pharmaceutical, and environmental samples is an important topic of discussion. Electrochemical methods are advantageous for sensor applications due to their easy application, low cost, versatility, high sensitivity, and environmentally-friendliness. Carbon nanomaterials such as diamond-like carbon thin films, carbon nanotubes, carbon nanofibers, graphene oxide, and nanodiamonds are used to enhance the performance of the electrochemical sensors with catalytic effects. To further improve this effect, it is aimed to create hybrid platforms by using different carbon nanomaterials together or with materials such as conductive polymers and ionic liquids. In this review, the most used carbon nanoforms will be evaluated in terms of electrochemical characterizations and physicochemical properties. Furthermore, the effect of hybrid platforms developed in the most recent studies on electrochemical sensors will be examined and evaluated in terms of drug analysis studies in the last five years.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Goksu Ozcelikay
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Fatma Budak
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
4
|
Yue X, Fu L, Wu C, Xu S, Bai Y. Rapid Trace Detection of Sulfite Residue in White Wine Using a Multichannel Colorimetric Nanozyme Sensor. Foods 2023; 12:3581. [PMID: 37835234 PMCID: PMC10572540 DOI: 10.3390/foods12193581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
As a commonly used food additive, sulfite (SO32-) is popular with food manufacturers due to the functions of bleaching, sterilizing, and oxidation resistance. However, excess sulfites can pose a threat to human health. Therefore, it is particularly important to achieve rapid and sensitive detection of SO32-. Herein, a colorimetric sensor was invented for visual, meticulous, and rapid detection of SO32- based on MIL-53(Fe/Mn). Bimetallic nanozyme MIL-53(Fe/Mn) was prepared by a one-pot hydrothermal reaction. The prepared MIL-53(Fe/Mn) can effectively catalyze the oxidation of colorless TMB to a blue oxidation product (oxTMB). The introduction of SO32- causes significant discoloration of the reaction system, gradually transitioning from a visible blue color to colorless. Hence, a sensitive colorimetric sensor for SO32- detection was developed based on the decolorization degree of the detection system. Further, the discoloration was ascribed to the inactivation of nanozyme and the strong reducing ability of SO32-. Under the optimal experimental conditions, there was a good linear relationship between the absorbance at 652 nm and SO32- concentration in the linear range of 0.5-6 μg mL-1 with a limit of detection (LOD) of 0.05 μg mL-1. The developed method was successfully applied to the detection of actual samples of white wine with good accuracy and recovery. Compared to traditional methods, this colorimetric sensor produces similar detection results but significantly reduces the detection time. Compared to traditional methods, this colorimetric sensor can not only reduce the detection costs effectively but also help the food industry maintain quality standards. Strong anti-interference capability, simple operation, and low detection limits ensure the excellent performance of the colorimetric sensor in detecting SO32- in white wine. The combination of a smartphone and a colorimetric analysis application has also greatly facilitated the semi-quantitative, visual on-site detection of SO32-, which has opened up an application prospect of an MIL-53(Fe/Mn)-based detection platform. Our work has indicated a new direction for the detection of SO32- and provided important assurance for food safety.
Collapse
Affiliation(s)
- Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.Y.); (L.F.); (C.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Long Fu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.Y.); (L.F.); (C.W.)
| | - Chaoyun Wu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.Y.); (L.F.); (C.W.)
| | - Sheng Xu
- College of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China;
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.Y.); (L.F.); (C.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
5
|
Bounegru AV, Bounegru I. Chitosan-Based Electrochemical Sensors for Pharmaceuticals and Clinical Applications. Polymers (Basel) 2023; 15:3539. [PMID: 37688165 PMCID: PMC10490380 DOI: 10.3390/polym15173539] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Chitosan (CTS), a biocompatible and multifunctional material derived from chitin, has caught researchers' attention in electrochemical detection due to its unique properties. This review paper provides a comprehensive overview of the recent progress and applications of CTS-based electrochemical sensors in the analysis of pharmaceutical products and other types of samples, with a particular focus on the detection of medicinal substances. The review covers studies and developments from 2003 to 2023, highlighting the remarkable properties of CTS, such as biocompatibility, chemical versatility, and large surface area, that make it an excellent candidate for sensor modification. Combining CTS with various nanomaterials significantly enhances the detection capabilities of electrochemical sensors. Various types of CTS-based sensors are analyzed, including those utilizing carbon nanomaterials, metallic nanoparticles, conducting polymers, and molecularly imprinted CTS. These sensors exhibit excellent sensitivity, selectivity, and stability, enabling the precise and reliable detection of medications. The manufacturing strategies used for the preparation of CTS-based sensors are described, the underlying detection mechanisms are elucidated, and the integration of CTS sensors with transducer systems is highlighted. The prospects of CTS-based electrochemical sensors are promising, with opportunities for miniaturization, simultaneous detection, and real-time monitoring applications.
Collapse
Affiliation(s)
- Alexandra Virginia Bounegru
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Iulian Bounegru
- Competences Centre: Interfaces-Tribocorrosion-Electrochemical Systems, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
- Faculty of Medicine and Pharmacy, "Dunărea de Jos" University of Galati, 35 Al. I. Cuza Street, 800010 Galati, Romania
| |
Collapse
|
6
|
Jiang C, Xie L, Yan F, Liang Z, Liang J, Huang K, Li H, Wang Y, Luo L, Li T, Ning D, Tang L, Ya Y. A novel electrochemical aptasensor based on polyaniline and gold nanoparticles for ultrasensitive and selective detection of ascorbic acid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4010-4020. [PMID: 37545402 DOI: 10.1039/d3ay00806a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Ascorbic acid (AA) is involved in many physiological activities of the body and plays an important role in maintaining and promoting human health. It is also present in many natural and artificial foods. Therefore, the development of highly sensitive and accurate AA sensors is highly desirable for human health monitoring, as well as other commercial application fields. Herein, an ultrasensitive and selective electrochemical sensor based on an aptamer was developed for the determination of AA for the first time. The aptasensor was fabricated by modifying a composite made of polyaniline (PANI) and gold nanoparticles (AuNPs) on a glassy carbon electrode. The morphologies and electrochemical properties of the resulting electrodes were characterized by various analytical methods. The results indicated relatively good electrical conduction properties of PANI for accelerated electron transfer. The modification with AuNPs provided signal amplification, suitable for applications as novel platforms for the sensitive sensing of AA. Under optimized conditions, the proposed aptasensor displayed a wide linear response toward the detection of AA from 1.0 to 1.0 × 105 ng L-1 coupled with a low detection limit of 0.10 ng L-1. The sensor also exhibited excellent selectivity and high stability, with at least 2000-fold higher sensitivity than similar previously reported methods. Importantly, the aptasensor exhibited promising properties for the determination of AA in real fruits, vegetables, and infant milk powder, thereby showing potential for food analysis.
Collapse
Affiliation(s)
- Cuiwen Jiang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Liping Xie
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Feiyan Yan
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Zhongdan Liang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Jing Liang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Kejing Huang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Huiling Li
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Yanli Wang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Lihong Luo
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Tao Li
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Dejiao Ning
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Li Tang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Yu Ya
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| |
Collapse
|
7
|
Yang X, Zhang X, Huang Y. Oxygen vacancies rich Co-Mo metal oxide microspheres as efficient oxidase mimetic for colorimetric detection of sulfite. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
8
|
Rapid preparation of CuO composite graphene for portable electrochemical sensing of sulfites based on laser etching technique. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
An efficient electrochemical sensor for determination of sulfite in water and soft drinks based on Ce3+-doped CuO nanocomposite. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Salinas G, Bonetti G, Cirilli R, Benincori T, Kuhn A, Arnaboldi S. Wireless light-emitting device for the determination of chirality in real samples. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Simultaneous determination of aesculin and aesculetin and their interactions with DNA using carbon fiber microelectrode modified by Pt–Au bimetallic nanoparticles. Anal Chim Acta 2022; 1202:339664. [DOI: 10.1016/j.aca.2022.339664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/12/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023]
|
12
|
Michalkiewicz S, Skorupa A, Jakubczyk M. Carbon Materials in Electroanalysis of Preservatives: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7630. [PMID: 34947225 PMCID: PMC8709479 DOI: 10.3390/ma14247630] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
Electrochemical sensors in electroanalysis are a particularly useful and relatively simple way to identify electroactive substances. Among the materials used to design sensors, there is a growing interest in different types of carbon. This is mainly due to its non-toxic properties, low cost, good electrical conductivity, wide potential range, and the possibility of using it in both aqueous and nonaqueous media. The electrodes made of carbon, and especially of carbon modified with different materials, are currently most often used in the voltammetric analysis of various compounds, including preservatives. The objective of this paper is to present the characteristics and suitability of different carbon materials for the construction of working electrodes used in the voltammetric analysis. Various carbon materials were considered and briefly discussed. Their analytical application was presented on the example of the preservatives commonly used in food, cosmetic, and pharmaceutical preparations. It was shown that for the electroanalysis of preservatives, mainly carbon electrodes modified with various modifiers are used. These modifications ensure appropriate selectivity, high sensitivity, low limits of detection and quantification, as well as a wide linearity range of voltammetric methods of their identification and determination.
Collapse
Affiliation(s)
- Slawomir Michalkiewicz
- Institute of Chemistry, Jan Kochanowski University, PL-25406 Kielce, Poland; (A.S.); (M.J.)
| | | | | |
Collapse
|