1
|
Niu X, Zhao R, Yuan M, Liu Y, Yang X, Li H, Xu H, Wang K. Enhanced Enantioselective Discrimination Regulated by Achiral Ligands in Chiral Metal-Organic Frameworks. ACS Sens 2024; 9:4069-4078. [PMID: 39136380 DOI: 10.1021/acssensors.4c01014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Enantioselective recognition is a fundamental property of chiral linkers in chiral metal-organic frameworks (CMOFs). However, clarifying the efficient enantioselective discrimination tailored by achiral linkers remains challenging to explain the chiral recognition mechanism and efficiency. Here, two CMOFs ([Zn2(l-Phe)2(bpa)2]n and [Zn2(l-Phe)2(bpe)2]n) with the completely different enantioselective recognition are synthesized from different nonchiral ligands and the same chiral ligands. The enantioselective recognition of CMOF is undoubtedly related to l-Phe, which differs in the hydrogen bonding to the Trp enantiomer. However, the electrochemical signals are weak and undifferentiated. [Zn2(l-Phe)2(bpe)2]n produces a flattened coplanar conformation with the -C═C- tether in the achiral ligand. The flattened achiral bpee ligand and its surrounding chiral phenylalanine molecules interact through multiple π-π stacking and hydrogen bonding, which together create a chiral sensor that facilitates the recognition of l-Trp. However, [Zn2(l-Phe)2(bpa)2]n produces a stepped conformation due to the -C-C- tether in the achiral ligand; despite the recognition effect of bpea, the recognition is unsatisfactory. Therefore, the chiral recognition of the two CMOFs stems from the synergistic effect between chiral and achiral ligands. This work shows that nonchiral ligands are also crucial in determining enantiomeric discrimination and opens up a new avenue for designing chiral materials.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Xing Yang
- College of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hui Xu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| |
Collapse
|
2
|
Zhang L, Xiao J, Xu X, Li K, Li D, Li J. Functionalized Chiral Materials for Use in Chiral Sensors. Crit Rev Anal Chem 2024:1-20. [PMID: 39012839 DOI: 10.1080/10408347.2024.2376233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Chirality represents a fundamental attribute within living systems and is a pervasive phenomenon in the natural world. The identification and analysis of chiral materials within natural environments and biological systems hold paramount importance in clinical, chemical, and biological sciences. Within chiral analysis, there is a burgeoning focus on developing chiral sensors exhibiting exceptional selectivity, sensitivity, and stability, marking it as a forefront area of research. In the past decade (2013-2023), approximately 1990 papers concerning the application of various chiral materials in chiral sensors have been published. Biological materials and nanomaterials have important applications in the development of chiral sensors, which accounting for 26.67% and 45.24% of the material-related applications in these sensors, respectively; moreover, the development of chiral nanomaterials is closely related to the development of portable and stable chiral sensors. Natural chiral materials, utilized as selective recognition units, are combined with carriers characterized by good physical and chemical properties through functionalization to form various functional chiral materials, which improve the recognition efficiency of chiral sensors. In this article, from the perspective of biological materials, polymer materials, nanomaterials, and other functional chiral materials, the applications of chiral sensors are summarized and the research prospects of chiral sensors are discussed.
Collapse
Affiliation(s)
- Lianming Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jiaxi Xiao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Xuemei Xu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Kaiting Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Dan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
3
|
Tortolini C, Gigli V, Rizzo F, Lenzi A, Bizzarri M, Angeloni A, Antiochia R. Stereoselective Voltammetric Biosensor for Myo-Inositol and D-Chiro-Inositol Recognition. SENSORS (BASEL, SWITZERLAND) 2023; 23:9211. [PMID: 38005597 PMCID: PMC10674735 DOI: 10.3390/s23229211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
This paper describes the development of a simple voltammetric biosensor for the stereoselective discrimination of myo-inositol (myo-Ins) and D-chiro-inositol (D-chiro-Ins) by means of bovine serum albumin (BSA) adsorption onto a multi-walled carbon nanotube (MWCNT) graphite screen-printed electrode (MWCNT-GSPE), previously functionalized by the electropolymerization of methylene blue (MB). After a morphological characterization, the enantioselective biosensor platform was electrochemically characterized after each modification step by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The results show that the binding affinity between myo-Ins and BSA was higher than that between D-chiro-Ins and BSA, confirming the different interactions exhibited by the novel BSA/MB/MWCNT/GSPE platform towards the two diastereoisomers. The biosensor showed a linear response towards both stereoisomers in the range of 2-100 μM, with LODs of 0.5 and 1 μM for myo-Ins and D-chiro-Ins, respectively. Moreover, a stereoselectivity coefficient α of 1.6 was found, with association constants of 0.90 and 0.79, for the two stereoisomers, respectively. Lastly, the proposed biosensor allowed for the determination of the stereoisomeric composition of myo-/D-chiro-Ins mixtures in commercial pharmaceutical preparations, and thus, it is expected to be successfully applied in the chiral analysis of pharmaceuticals and illicit drugs of forensic interest.
Collapse
Affiliation(s)
- Cristina Tortolini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.T.); (V.G.); (F.R.); (A.L.); (M.B.); (A.A.)
| | - Valeria Gigli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.T.); (V.G.); (F.R.); (A.L.); (M.B.); (A.A.)
| | - Flavio Rizzo
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.T.); (V.G.); (F.R.); (A.L.); (M.B.); (A.A.)
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.T.); (V.G.); (F.R.); (A.L.); (M.B.); (A.A.)
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.T.); (V.G.); (F.R.); (A.L.); (M.B.); (A.A.)
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.T.); (V.G.); (F.R.); (A.L.); (M.B.); (A.A.)
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Liang J, Song Y, Zhao Y, Gao Y, Hou J, Yang G. A sensitive electrochemical sensor for chiral detection of tryptophan enantiomers by using carbon black and β‑cyclodextrin. Mikrochim Acta 2023; 190:433. [PMID: 37814099 DOI: 10.1007/s00604-023-06011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
A chiral sensor for the electrochemical identification of tryptophan (Trp) isomers is described. The electrochemical sensor was prepared based on the combination of (a) carbon black (CB-COOH) as conductive material, (b) Cu2+-modified β-cyclodextrin (Cu-β-CD), and (c) β-CD-based metal-organic frameworks (β-CD-MOF) as chiral selectors. The Cu-β-CD can be self-assembled into the CB-COOH and β-CD-MOF through electrostatic interactions, which was characterized by zeta potential analysis. UV-vis spectroscopy proved that Cu-β-CD displays a higher combination for D-Trp than L-Trp, and the β-CD-MOF at the surface of the GCE has a higher affinity for L-Trp than D-Trp, which endow an easier permeation of L-Trp to the surface of the electrode, thus leading to a larger electrochemical signal of differential pulse voltammetry (DPV). The enantioselectivity for L-Trp over D-Trp (IL/ID) is 2.13, with a low detection limit for D-Trp (11.18 μM) and L-Trp (5.48 μM). In addition, the proposed chiral sensor can be chosen to determine the percentage of D-Trp in enantiomer mixture solutions and real sample detection with a recovery from 98.2 to 102.8% for L-Trp and 97.9 to 101.1% for D-Trp.
Collapse
Affiliation(s)
- Jiamin Liang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China
| | - Yuxin Song
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China
| | - Yanan Zhao
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China
| | - Yue Gao
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China
| | - Juan Hou
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Guang Yang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China.
| |
Collapse
|
5
|
Niu X, Zhao R, Yan S, Pang Z, Li H, Yang X, Wang K. Chiral Materials: Progress, Applications, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303059. [PMID: 37217989 DOI: 10.1002/smll.202303059] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Chirality is a universal phenomenon in molecular and biological systems, denoting an asymmetric configurational property where an object cannot be superimposed onto its mirror image by any kind of translation or rotation, which is ubiquitous on the scale from neutrinos to spiral galaxies. Chirality plays a very important role in the life system. Many biological molecules in the life body show chirality, such as the "codebook" of the earth's biological diversity-DNA, nucleic acid, etc. Intriguingly, living organisms hierarchically consist of homochiral building blocks, for example, l-amino acids and d-sugars with unknown reason. When molecules with chirality interact with these chiral factors, only one conformation favors the positive development of life, that is, the chiral host environment can only selectively interact with chiral molecules of one of the conformations. The differences in chiral interactions are often manifested by chiral recognition, mutual matching, and interactions with chiral molecules, which means that the stereoselectivity of chiral molecules can produce changes in pharmacodynamics and pathology. Here, the latest investigations are summarized including the construction and applications of chiral materials based on natural small molecules as chiral source, natural biomacromolecules as chiral sources, and the material synthesized by design as a chiral source.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Simeng Yan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Zengwei Pang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xing Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
6
|
Yarkaeva Y, Nazyrov M, Abdullin Y, Kovyazin P, Maistrenko V. Enantioselective voltammetric sensor based on mesoporous graphitized carbon black Carbopack X and fulvene derivative. Chirality 2023; 35:625-635. [PMID: 36951070 DOI: 10.1002/chir.23563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023]
Abstract
For medicine and pharmaceuticals, the problem of determining and recognizing the enantiomers of biologically active compounds is an actual issue because the enantiomers of the same substance can have different effects on living organisms. This paper describes the development of an enantioselective voltammetric sensor (EVS) based on a glassy carbon electrode (GCE) modified with mesoporous graphitized carbon black Carbopack X (CpX) and a fulvene derivative (1S,4R)-2-cyclopenta-2,4-dien-1-ylidene-1-isopropyl-4-methylcyclohexane (CpIPMC) for recognition and determination of tryptophan (Trp) enantiomers. Synthesized CpIPMC was characterized by 1 H and 13 C nuclear magnetic resonance (NMR), chromatography-mass spectrometry, and polarimetry. The proposed sensor platform was studied by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Using the square-wave voltammetry (SWV), it was established that the developed sensor is an effective chiral platform for the quantitative determination of Trp enantiomers, including in a mixture and in biological fluids like urine and blood plasma, with adequate precision and recovery ranged from 96% to 101%.
Collapse
Affiliation(s)
- Yulia Yarkaeva
- Chemistry Faculty, Ufa University of Science and Technology, Ufa, Russia
| | - Marat Nazyrov
- Chemistry Faculty, Ufa University of Science and Technology, Ufa, Russia
| | - Yaroslav Abdullin
- Chemistry Faculty, Ufa University of Science and Technology, Ufa, Russia
| | - Pavel Kovyazin
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, Ufa, Russia
| | - Valery Maistrenko
- Chemistry Faculty, Ufa University of Science and Technology, Ufa, Russia
| |
Collapse
|
7
|
Imanzadeh H, Sefid-Sefidehkhan Y, Afshary H, Afruz A, Amiri M. Nanomaterial-based electrochemical sensors for detection of amino acids. J Pharm Biomed Anal 2023; 230:115390. [PMID: 37079932 DOI: 10.1016/j.jpba.2023.115390] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Amino acids are the building blocks of proteins and muscle tissue. They also play a significant role in physiological processes related to energy, recovery, mood, muscle and brain function, fat burning and stimulating growth hormone or insulin secretion. Accurate determination of amino acids in biological fluids is necessary because any changes in their normal ranges in the body warn diseases like kidney disease, liver disease, type 2 diabetes and cancer. To date, many methods such as liquid chromatography, fluorescence mass spectrometry, etc. have been used for the determination of amino acids. Compared with the above techniques, electrochemical systems using modified electrodes offer a rapid, accurate, cheap, real-time analytical path through simple operations with high selectivity and sensitivity. Nanomaterials have found many interests to create smart electrochemical sensors in different application fields e.g. biomedical, environmental, and food analysis because of their exceptional properties. This review summarizes recent advances in the development of nanomaterial-based electrochemical sensors in 2017-2022 for the detection of amino acids in various matrices such as serum, urine, blood and pharmaceuticals.
Collapse
Affiliation(s)
- Hamideh Imanzadeh
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Hosein Afshary
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Afruz
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
8
|
Akhlaq M, Mushtaq U, Naz S, Uroos M. Carboxymethyl cellulose-based materials as an alternative source for sustainable electrochemical devices: a review. RSC Adv 2023; 13:5723-5743. [PMID: 36816074 PMCID: PMC9929619 DOI: 10.1039/d2ra08244f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
In electrochemistry, bio-based materials are preferred over the traditional costly and synthetic polymers due to their abundance, versatility, sustainability and low cost. One of the bio-based polymers is carboxymethyl cellulose (CMC) which has become an overarching material in electrochemical devices pertaining to its amphiphilic nature with multi-carbon functional groups. Owing to its flexible framework with fascinating groups on its surface like hydroxide (-OH) and carboxylate (-COO-), CMC is able to be modified into conducting materials by blending it with other biopolymers, synthetic polymers, salts, acids and others. This blending has improved the profile of CMC by exploiting the ability of hydrogen bonding, swelling, adhesiveness and dispersion of charges and ions. These properties of CMC have made it possible to utilize this bio-sourced polymer in several applications as a conducting electrolyte, binder in electrodes, detector, sensor and active material in fuel cells, actuators and triboelectric nanogenerators (TENG). Thus, CMC based materials are cheap, environment friendly, hydrophilic, biodegradable, non-toxic and biocompatible which render it a desirable material in energy storage devices.
Collapse
Affiliation(s)
- Maida Akhlaq
- Centre for Research in Ionic Liquids, School of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | - Umair Mushtaq
- Centre for Research in Ionic Liquids, School of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | - Sadia Naz
- Centre for Research in Ionic Liquids, School of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | - Maliha Uroos
- Centre for Research in Ionic Liquids, School of Chemistry, University of the Punjab Lahore-54590 Pakistan
| |
Collapse
|
9
|
Preparation of fluorescein-modified polymer dots and their application in chiral discrimination of lysine enantiomers. Mikrochim Acta 2022; 190:29. [PMID: 36522482 DOI: 10.1007/s00604-022-05608-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Fluorescein-functionalized fluorescent polymer dots (F-PDs) were prepared by a facile one-pot method by magnetic stirring under mild conditions based on carboxymethylcellulose (CMC) and fluorescein as the precursors. The obtained F-PDs exhibited a nanoscale size of 3.2 ± 1.1 nm, excellent water solubility, and bright yellow fluorescence emission with a fluorescence quantum yield of 12.0%. The fluorescent probe displays rapid and sensitive chiral discrimination for lysine focused on different complexation abilities between lysine enantiomers and Cu2+. The concentration of L-lysine in the range 4 to 14 mM (R2 = 0.997) was measured by the fluorescence intensity ratio (I513/I429); the exitation wavelength was set to λex = 365 nm. The detection limit was 0.28 mM (3σ/slope). Importantly, this sensor accurately predicted the enantiomeric excess (ee) of lysine enantiomers at the designed concentration (lysine: 20 mM; Cu2+: 10 mM) ranges. The proposed sensor was successfully applied to determine L-lys (recovery: 95.8-101%; RSD: 0.465-3.34%) and ee values (recovery: 98.5-102%; RSD: 2.61-3.21%) in human urine samples using the standard addition method.
Collapse
|
10
|
History of Cobaltabis(dicarbollide) in Potentiometry, No Need for Ionophores to Get an Excellent Selectivity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238312. [PMID: 36500404 PMCID: PMC9741054 DOI: 10.3390/molecules27238312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
This work is a mini-review highlighting the relevance of the θ metallabis(dicarbollide) [3,3'-Co(1,2-C2B9H11)2]- with its peculiar and differentiating characteristics, among them the capacity to generate hydrogen and dihydrogen bonds, to generate micelles and vesicles, to be able to be dissolved in water or benzene, to have a wide range of redox reversible couples and many more, and to use these properties, in this case, for producing potentiometric membrane sensors to monitor amine-containing drugs or other nitrogen-containing molecules. Sensors have been produced with this monoanionic cluster [3,3'-Co(1,2-C2B9H11)2]-. Other monoanionic boron clusters are also discussed, but they are much fewer. It is noteworthy that most of the electrochemical sensor species incorporate an ammonium cation and that this cation is the species to be detected. Alternatively, the detection of the borate anion itself has also been studied, but with significantly fewer examples. The functions of the borate anion in the membrane are different, even as a doping agent for polypyrrole which was the conductive ground on which the PVC membrane was deposited. Apart from these cases related to closo borates, the bulk of the work has been devoted to sensors in which the θ metallabis (dicarbollide) [3,3'-Co(1,2-C2B9H11)2]- is the key element. The metallabis (dicarbollide) anion, [3,3'-Co(1,2-C2B9H11)2]-, has many applications; one of these is as new material used to prepare an ion-pair complex with bioactive protonable nitrogen containing compounds, [YH]x[3,3'-Co(1,2-C2B9H11)2]y as an active part of PVC membrane potentiometric sensors. The developed electrodes have Nernstian responses for target analytes, i.e., antibiotics, amino acids, neurotransmitters, analgesics, for some decades of concentrations, with a short response time, around 5 s, a good stability of membrane over 45 days, and an optimal selectivity, even for optical isomers, to be used also for real sample analysis and environmental, clinical, pharmaceutical and food analysis.
Collapse
|
11
|
Wu D, Ma C, Wan T, Zhu P, Kong Y. Strategies to synthesize a chiral helical polymer accompanying with two stereogenic centers for chiral electroanalysis. Anal Chim Acta 2022; 1206:339810. [DOI: 10.1016/j.aca.2022.339810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 11/01/2022]
|
12
|
Wibowo D, Malik RHA, Mustapa F, Nakai T, Maulidiyah M, Nurdin M. Highly Synergistic Sensor of Graphene Electrode Functionalized with Rutile TiO 2 Microstructure to Detect L-Tryptophan Compound. J Oleo Sci 2022; 71:759-770. [PMID: 35387917 DOI: 10.5650/jos.ess21416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Electrochemical processes are an effective method for detecting dangerous food ingredients. The synergetic between the reduction-oxidation (redox) processes inspired several papers and spurred research towards studying the new materials that can further adapt to optimize the rapid detection of chemical compounds. In this study, we report the eco-synthesis using graphene/TiO2 rutile (G/TiO2) electrode microstructures easily prepared through the physical method by mixing graphene and TiO2 powder and its application for sensing L-tryptophan (Trp) compound. The material characterization results show that the graphene surface is smoother than the G/TiO2 material. Graphene has been detected using X-ray diffraction (XRD) at a value of 2 thetas 26.39° and TiO2 forms rutile crystals (110). The FTIR spectrum exhibits the functional groups from graphene of -OH, C-H, C=C, C-O, and TiO2 identified with Ti-O bonds. The electrochemical test against G/TiO2 electrode microstructures for Trp compound shows that 0.5 g TiO2 rutile was the best composition functionalized with graphene material under 0.1M K3[Fe(CN)6] + 0.1M NaNO3 electrolyte with a scan rate of 0.1 V/s. Determination of the detection limit was obtained at 0.005 mg/L with a HorRat value of 1.05%. The stability test was carried out for 25 days, and the addition of Pb(NO3)2 as an interference compound had a significant effect on the decrease in electrode performance.
Collapse
Affiliation(s)
- Dwiprayogo Wibowo
- Department of Environmental Engineering, Faculty of Engineering, Universitas Muhammadiyah Kendari
| | - Riski Hul Akma Malik
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
| | - Faizal Mustapa
- Doctoral student of Agriculture, Department of Water Resources, Universitas Halu Oleo
| | | | - Maulidiyah Maulidiyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
| | - Muhammad Nurdin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
| |
Collapse
|
13
|
Du Y, Mo Z, Pei H, Liu W, Yue R, Wang X. The fabrication of a highly electroactive chiral-interface self-assembled Cu( ii)-coordinated binary-polysaccharide composite for the differential pulse voltammetry (DPV) detection of tryptophan isomers. NEW J CHEM 2022. [DOI: 10.1039/d2nj01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is of significance to fabricate excellently performing chiral carbon nanocomposites for chiral electrochemical detection applications.
Collapse
Affiliation(s)
- Yongxin Du
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hebing Pei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Wentong Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ruimei Yue
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xinran Wang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|