1
|
Huang Q, Chen J, Zhao Y, Huang J, Liu H. Advancements in electrochemical glucose sensors. Talanta 2025; 281:126897. [PMID: 39293246 DOI: 10.1016/j.talanta.2024.126897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
The development of electrochemical glucose sensors with high sensitivity, specificity, and stability, enabling real-time continuous monitoring, has posed a significant challenge. However, an opportunity exists to fabricate electrochemical glucose biosensors with optimal performance through innovative device structures and surface modification materials. This paper provides a comprehensive review of recent advances in electrochemical glucose sensors. Novel classes of nanomaterials-including metal nanoparticles, carbon-based nanomaterials, and metal-organic frameworks-with excellent electronic conductivity and high specific surface areas, have increased the availability of reactive sites to improved contact with glucose molecules. Furthermore, in line with the trend in electrochemical glucose sensor development, research progress concerning their utilisation with sweat, tears, saliva, and interstitial fluid is described. To facilitate the commercialisation of these sensors, further enhancements in biocompatibility and stability are required. Finally, the characteristics of the ideal electrochemical glucose sensor are described and the developmental trends in this field are outlines.
Collapse
Affiliation(s)
- Qing Huang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China; Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China
| | - Jingqiu Chen
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China
| | - Yunong Zhao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China
| | - Jing Huang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China
| | - Huan Liu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China.
| |
Collapse
|
2
|
Melo RLF, Neto FS, Dari DN, Fernandes BCC, Freire TM, Fechine PBA, Soares JM, Dos Santos JCS. A comprehensive review on enzyme-based biosensors: Advanced analysis and emerging applications in nanomaterial-enzyme linkage. Int J Biol Macromol 2024; 264:130817. [PMID: 38479669 DOI: 10.1016/j.ijbiomac.2024.130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Biosensors with nanomaterials and enzymes detect and quantify specific targets in samples, converting recognition into measurable signals. The study explores the intrinsic synergy between these elements for detecting and quantifying particular targets in biological and environmental samples, with results demonstrated through bibliometric analysis and a comprehensive review of enzyme-based biosensors. Using WoS, 57,331 articles were analyzed and refined to 880. Key journals, countries, institutions, and relevant authors were identified. The main areas highlighted the multidisciplinary nature of the field, and critical keywords identified five thematic clusters, revealing the primary nanoparticles used (CNTs, graphene, AuNPs), major application fields, basic application themes, and niche topics such as sensitive detection, peroxidase activity, and quantum dot utilization. The biosensor overview covered nanomaterials and their primary applications, addressing recent advances and inherent challenges. Patent analysis emphasized the U.S. leadership in the industrial sector, contrasting with China's academic prominence. Future studies should focus on enhancing biosensor portability and analysis speed, with challenges encompassing efficient integration with recent technologies and improving stability and reproducibility in the nanomaterial-enzyme interaction.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Bloco 729, CEP 60440-554 Fortaleza, CE, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, CEP 60455-760 Fortaleza, CE, Brazil
| | - Dayana Nascimento Dari
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790-970 Redenção, CE, Brazil
| | - Bruno Caio Chaves Fernandes
- Departamento de Agronomia e Ciência Vegetais, Universidade Federal Rural do Semi-Árido, Campus Mossoró, Mossoró CEP 59625-900, RN, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró CEP 59610-090, RN, Brazil.
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790-970 Redenção, CE, Brazil.
| |
Collapse
|
3
|
Koo KM, Kim CD, Kim TH. Recent Advances in Electrochemical Detection of Cell Energy Metabolism. BIOSENSORS 2024; 14:46. [PMID: 38248422 PMCID: PMC10813075 DOI: 10.3390/bios14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Cell energy metabolism is a complex and multifaceted process by which some of the most important nutrients, particularly glucose and other sugars, are transformed into energy. This complexity is a result of dynamic interactions between multiple components, including ions, metabolic intermediates, and products that arise from biochemical reactions, such as glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), the two main metabolic pathways that provide adenosine triphosphate (ATP), the main source of chemical energy driving various physiological activities. Impaired cell energy metabolism and perturbations or dysfunctions in associated metabolites are frequently implicated in numerous diseases, such as diabetes, cancer, and neurodegenerative and cardiovascular disorders. As a result, altered metabolites hold value as potential disease biomarkers. Electrochemical biosensors are attractive devices for the early diagnosis of many diseases and disorders based on biomarkers due to their advantages of efficiency, simplicity, low cost, high sensitivity, and high selectivity in the detection of anomalies in cellular energy metabolism, including key metabolites involved in glycolysis and mitochondrial processes, such as glucose, lactate, nicotinamide adenine dinucleotide (NADH), reactive oxygen species (ROS), glutamate, and ATP, both in vivo and in vitro. This paper offers a detailed examination of electrochemical biosensors for the detection of glycolytic and mitochondrial metabolites, along with their many applications in cell chips and wearable sensors.
Collapse
Affiliation(s)
| | | | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea; (K.-M.K.); (C.-D.K.)
| |
Collapse
|
4
|
Sayyad PW, Park SJ, Ha TJ. Bioinspired nanoplatforms for human-machine interfaces: Recent progress in materials and device applications. Biotechnol Adv 2024; 70:108297. [PMID: 38061687 DOI: 10.1016/j.biotechadv.2023.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The panoramic characteristics of human-machine interfaces (HMIs) have prompted the needs to update the biotechnology community with the recent trends, developments, and future research direction toward next-generation bioelectronics. Bioinspired materials are promising for integrating various bioelectronic devices to realize HMIs. With the advancement of scientific biotechnology, state-of-the-art bioelectronic applications have been extensively investigated to improve the quality of life by developing and integrating bioinspired nanoplatforms in HMIs. This review highlights recent trends and developments in the field of biotechnology based on bioinspired nanoplatforms by demonstrating recently explored materials and cutting-edge device applications. Section 1 introduces the recent trends and developments of bioinspired nanomaterials for HMIs. Section 2 reviews various flexible, wearable, biocompatible, and biodegradable nanoplatforms for bioinspired applications. Section 3 furnishes recently explored substrates as carriers for advanced nanomaterials in developing HMIs. Section 4 addresses recently invented biomimetic neuroelectronic, nanointerfaces, biointerfaces, and nano/microfluidic wearable bioelectronic devices for various HMI applications, such as healthcare, biopotential monitoring, and body fluid monitoring. Section 5 outlines designing and engineering of bioinspired sensors for HMIs. Finally, the challenges and opportunities for next-generation bioinspired nanoplatforms in extending the potential on HMIs are discussed for a near-future scenario. We believe this review can stimulate the integration of bioinspired nanoplatforms into the HMIs in addition to wearable electronic skin and health-monitoring devices while addressing prevailing and future healthcare and material-related problems in biotechnologies.
Collapse
Affiliation(s)
- Pasha W Sayyad
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Sang-Joon Park
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Tae-Jun Ha
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea.
| |
Collapse
|
5
|
Yuwen T, Shu D, Zou H, Yang X, Wang S, Zhang S, Liu Q, Wang X, Wang G, Zhang Y, Zang G. Carbon nanotubes: a powerful bridge for conductivity and flexibility in electrochemical glucose sensors. J Nanobiotechnology 2023; 21:320. [PMID: 37679841 PMCID: PMC10483845 DOI: 10.1186/s12951-023-02088-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
The utilization of nanomaterials in the biosensor field has garnered substantial attention in recent years. Initially, the emphasis was on enhancing the sensor current rather than material interactions. However, carbon nanotubes (CNTs) have gained prominence in glucose sensors due to their high aspect ratio, remarkable chemical stability, and notable optical and electronic attributes. The diverse nanostructures and metal surface designs of CNTs, coupled with their exceptional physical and chemical properties, have led to diverse applications in electrochemical glucose sensor research. Substantial progress has been achieved, particularly in constructing flexible interfaces based on CNTs. This review focuses on CNT-based sensor design, manufacturing advancements, material synergy effects, and minimally invasive/noninvasive glucose monitoring devices. The review also discusses the trend toward simultaneous detection of multiple markers in glucose sensors and the pivotal role played by CNTs in this trend. Furthermore, the latest applications of CNTs in electrochemical glucose sensors are explored, accompanied by an overview of the current status, challenges, and future prospects of CNT-based sensors and their potential applications.
Collapse
Affiliation(s)
- Tianyi Yuwen
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Danting Shu
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Hanyan Zou
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Xinrui Yang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shijun Wang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shuheng Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Qichen Liu
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Xiangxiu Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Guixue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| | - Yuchan Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Guangchao Zang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
6
|
Devida JM, Herrera F, Daza Millone MA, Requejo FG, Pallarola D. Electrochemical Fine-Tuning of the Chemoresponsiveness of Langmuir-Blodgett Graphene Oxide Films. ACS OMEGA 2023; 8:27566-27575. [PMID: 37546598 PMCID: PMC10399176 DOI: 10.1021/acsomega.3c03220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
Graphene oxide has been widely deployed in electrical sensors for monitoring physical, chemical, and biological processes. The presence of abundant oxygen functional groups makes it an ideal substrate for integrating biological functional units to assemblies. However, the introduction of this type of defects on the surface of graphene has a deleterious effect on its electrical properties. Therefore, adjusting the surface chemistry of graphene oxide is of utmost relevance for addressing the immobilization of biomolecules, while preserving its electrochemical integrity. Herein, we describe the direct immobilization of glucose oxidase onto graphene oxide-based electrodes prepared by Langmuir-Blodgett assembly. Electrochemical reduction of graphene oxide allowed to control its surface chemistry and, by this, regulate the nature and density of binding sites for the enzyme and the overall responsiveness of the Langmuir-Blodgett biofilm. X-ray photoelectron spectroscopy, surface plasmon resonance, and electrochemical measurements were used to characterize the compositional and functional features of these biointerfaces. Covalent binding between amine groups on glucose oxidase and epoxy and carbonyl groups on the surface of graphene oxide was successfully used to build up stable and active enzymatic assemblies. This approach constitutes a simple, quick, and efficient route to locally address functional proteins at interfaces without the need for additives or complex modifiers to direct the adsorption process.
Collapse
Affiliation(s)
- Juan M. Devida
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Universidad Nacional de La Plata,
CONICET, CC 16 Suc. 4, La Plata 1900, Argentina
| | - Facundo Herrera
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Universidad Nacional de La Plata,
CONICET, CC 16 Suc. 4, La Plata 1900, Argentina
| | - M. Antonieta Daza Millone
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Universidad Nacional de La Plata,
CONICET, CC 16 Suc. 4, La Plata 1900, Argentina
| | - Félix G. Requejo
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Universidad Nacional de La Plata,
CONICET, CC 16 Suc. 4, La Plata 1900, Argentina
| | - Diego Pallarola
- Instituto
de Nanosistemas, Universidad Nacional de
General San Martín, Av. 25 de Mayo y Francia, San Martín 1650, Argentina
| |
Collapse
|
7
|
Koukouviti E, Soulis D, Economou A, Kokkinos C. Wooden Tongue Depressor Multiplex Saliva Biosensor Fabricated via Diode Laser Engraving. Anal Chem 2023; 95:6765-6768. [PMID: 37079776 DOI: 10.1021/acs.analchem.3c01211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Since wood is a renewable, biodegradable naturally occurring material, the development of conductive patterns on wood substrates is a new and innovative chapter in sustainable electronics and sensors. Herein, we describe the first wooden (bio)sensing device fabricated via diode laser-induced graphitization. For this purpose, a wooden tongue depressor (WTD) is laser-treated and converted to an electrochemical multiplex biosensing device for oral fluid analysis. A low-cost laser engraver, equipped with a low-power (0.5 W) diode laser, programmably irradiates the surface of the WTD, forming two mini electrochemical cells (e-cells). The two e-cells consist of four graphite electrodes: two working electrodes, a common counter, and a common reference electrode. The two e-cells are spatially separated via programmable pen-plotting, using a commercial hydrophobic marker pen. Proof-of-principle for biosensing is demonstrated for the simultaneous determination of glucose and nitrite in artificial saliva. This wooden electrochemical biodevice is an easy-to-fabricate disposable point-of-care chip with a wide scope of applicability to other bioassays, while it paves the way for the low-cost and straightforward production of wooden electrochemical platforms.
Collapse
Affiliation(s)
- Eleni Koukouviti
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Dionysios Soulis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Anastasios Economou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Christos Kokkinos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| |
Collapse
|
8
|
Güler M, Zengin A, Alay M. Fabrication of glucose bioelectrochemical sensor based on Au@Pd core-shell supported by carboxylated graphene oxide. Anal Biochem 2023; 667:115091. [PMID: 36863551 DOI: 10.1016/j.ab.2023.115091] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
The study presents a novel electrochemical glucose biosensor based on glucose oxidase (GOx) immobilized on Au@Pd core-shell nanoparticles supported on carboxylated graphene oxide (cGO). The immobilization of GOx was achieved by cross-linking the chitosan biopolymer (CS) including Au@Pd/cGO and glutaraldehyde (GA) on a glassy carbon electrode. The analytical performance of GCE/Au@Pd/cGO-CS/GA/GOx was investigated using amperometry. The biosensor had fast response time (5.2 ± 0.9 s), a satisfactory linear determination range between 2.0 × 10-5 and 4.2 × 10-3 M, and limit of detection of 10.4 μM. The apparent Michaelis-Menten constant (Kapp) was calculated as 3.04 mM. The fabricated biosensor also exhibited good repeatability, reproducibility, and storage stability. No interfering signals from dopamine, uric acid, ascorbic acid, paracetamol, folic acid, mannose, sucrose, and fructose were observed. The large electroactive surface area of carboxylated graphene oxide is a promising candidate for sensor preparation.
Collapse
Affiliation(s)
- Muhammet Güler
- Faculty of Science, Department of Chemistry, Van Yuzuncu Yil University, 65080, Van, Turkey.
| | - Adem Zengin
- Faculty of Science, Department of Chemistry, Van Yuzuncu Yil University, 65080, Van, Turkey.
| | - Murat Alay
- Faculty of Medicine, Department of Endocrinology and Metabolism Van Yuzuncu Yil University, 65080, Van, Turkey
| |
Collapse
|
9
|
Li YY, Ma XX, Song XY, Ma LL, Li YY, Meng X, Chen YJ, Xu KX, Moosavi-Movahedi AA, Xiao BL, Hong J. Glucose Biosensor Based on Glucose Oxidase Immobilized on BSA Cross-Linked Nanocomposite Modified Glassy Carbon Electrode. SENSORS (BASEL, SWITZERLAND) 2023; 23:3209. [PMID: 36991919 PMCID: PMC10051639 DOI: 10.3390/s23063209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Glucose sensors based blood glucose detection are of great significance for the diagnosis and treatment of diabetes because diabetes has aroused wide concern in the world. In this study, bovine serum albumin (BSA) was used to cross-link glucose oxidase (GOD) on a glassy carbon electrode (GCE) modified by a composite of hydroxy fullerene (HFs) and multi-walled carbon nanotubes (MWCNTs) and protected with a glutaraldehyde (GLA)/Nafion (NF) composite membrane to prepare a novel glucose biosensor. The modified materials were analyzed by UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), and cyclic voltammetry (CV). The prepared MWCNTs-HFs composite has excellent conductivity, the addition of BSA regulates MWCNTs-HFs hydrophobicity and biocompatibility, and better immobilizes GOD on MWCNTs-HFs. MWCNTs-BSA-HFs plays a synergistic role in the electrochemical response to glucose. The biosensor shows high sensitivity (167 μA·mM-1·cm-2), wide calibration range (0.01-3.5 mM), and low detection limit (17 μM). The apparent Michaelis-Menten constant Kmapp is 119 μM. Additionally, the proposed biosensor has good selectivity and excellent storage stability (120 days). The practicability of the biosensor was evaluated in real plasma samples, and the recovery rate was satisfactory.
Collapse
Affiliation(s)
- Yang-Yang Li
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Xin-Xin Ma
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Xin-Yan Song
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Lin-Lin Ma
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Yu-Ying Li
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Xin Meng
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Yu-Jie Chen
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Ke-Xin Xu
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | | | - Bao-Lin Xiao
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifeng 475000, China
| |
Collapse
|
10
|
Aydın EB, Aydın M, Sezgintürk MK. Biosensors for saliva biomarkers. Adv Clin Chem 2023; 113:1-41. [PMID: 36858644 DOI: 10.1016/bs.acc.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The analysis of salivary biomarkers has gained interest and is advantageous for simple, safe, and non-invasive testing in diagnosis as well as treatment. This chapter explores the importance of saliva biomarkers and summarizes recent advances in biosensor fabrication. The identification of diagnostic, prognostic and therapeutic markers in this matrix enables more rapid and frequent testing when combined with the use of biosensor technology. Challenges and future goals are highlighted and examined.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Muhammet Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
11
|
Elkalla E, Khizar S, Tarhini M, Lebaz N, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Core-shell micro/nanocapsules: from encapsulation to applications. J Microencapsul 2023; 40:125-156. [PMID: 36749629 DOI: 10.1080/02652048.2023.2178538] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Encapsulation is the way to wrap or coat one substance as a core inside another tiny substance known as a shell at micro and nano scale for protecting the active ingredients from the exterior environment. A lot of active substances, such as flavours, enzymes, drugs, pesticides, vitamins, in addition to catalysts being effectively encapsulated within capsules consisting of different natural as well as synthetic polymers comprising poly(methacrylate), poly(ethylene glycol), cellulose, poly(lactide), poly(styrene), gelatine, poly(lactide-co-glycolide)s, and acacia. The developed capsules release the enclosed substance conveniently and in time through numerous mechanisms, reliant on the ultimate use of final products. Such technology is important for several fields counting food, pharmaceutical, cosmetics, agriculture, and textile industries. The present review focuses on the most important and high-efficiency methods for manufacturing micro/nanocapsules and their several applications in our life.
Collapse
Affiliation(s)
- Eslam Elkalla
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Sumera Khizar
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Mohamad Tarhini
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Noureddine Lebaz
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEPP UMR-5007, Villeurbanne, France
| | - Nadia Zine
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | |
Collapse
|
12
|
Li M, Dong J, Deng D, Ouyang X, Yan X, Liu S, Luo L. Mn 3O 4/NiO Nanoparticles Decorated on Carbon Nanofibers as an Enzyme-Free Electrochemical Sensor for Glucose Detection. BIOSENSORS 2023; 13:264. [PMID: 36832030 PMCID: PMC9954078 DOI: 10.3390/bios13020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Transition metal oxides have garnered a lot of attention in the field of electrocatalysis along with their unique crystal structure and excellent catalytic properties. In this study, carbon nanofibers (CNFs) decorated with Mn3O4/NiO nanoparticles were made using electrospinning and calcination. The conductive network constructed by CNFs not only facilitates electron transport, but also provides landing sites for nanoparticles, thus reducing nanoparticle aggregation and exposing more active sites. Additionally, the synergistic interaction between Mn3O4 and NiO improved electrocatalytic capacity for glucose oxidation. The Mn3O4/NiO/CNFs modified glassy carbon electrode shows satisfactory results in terms of linear range and anti-interference capability for glucose detection, suggesting that the constructed enzyme-free sensor has a promising application in clinical diagnosis.
Collapse
Affiliation(s)
- Mengjie Li
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jie Dong
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xun Ouyang
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaoxia Yan
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Shima Liu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Jishou 416000, China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
13
|
Han JH, Hwang S, Hyub Kim J. Electrochemical impedance spectroscopy analysis of plasma-treated, spray-coated single-walled carbon-nanotube film electrodes for chemical and electrochemical devices. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Chen H, Fan J, Chen X, Ma Z, Zhang L, Chen X. Gold Nanoparticle (Au NP)-Decorated Ionic Liquid (IL) Based Liposome: A Stable, Biocompatible, and Conductive Biomimetic Platform for the Fabrication of an Enzymatic Electrochemical Glucose Biosensor. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2153256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hongzhuang Chen
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Jialin Fan
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Xue Chen
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Zhenkuan Ma
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Ling Zhang
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Xuwei Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
15
|
Mohammadpour-Haratbar A, Mohammadpour-Haratbar S, Zare Y, Rhee KY, Park SJ. A Review on Non-Enzymatic Electrochemical Biosensors of Glucose Using Carbon Nanofiber Nanocomposites. BIOSENSORS 2022; 12:bios12111004. [PMID: 36421123 PMCID: PMC9688744 DOI: 10.3390/bios12111004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 05/09/2023]
Abstract
Diabetes mellitus has become a worldwide epidemic, and it is expected to become the seventh leading cause of death by 2030. In response to the increasing number of diabetes patients worldwide, glucose biosensors with high sensitivity and selectivity have been developed for rapid detection. The selectivity, high sensitivity, simplicity, and quick response of electrochemical biosensors have made them a popular choice in recent years. This review summarizes the recent developments in electrodes for non-enzymatic glucose detection using carbon nanofiber (CNF)-based nanocomposites. The electrochemical performance and limitations of enzymatic and non-enzymatic glucose biosensors are reviewed. Then, the recent developments in non-enzymatic glucose biosensors using CNF composites are discussed. The final section of the review provides a summary of the challenges and perspectives, for progress in non-enzymatic glucose biosensors.
Collapse
Affiliation(s)
- Ali Mohammadpour-Haratbar
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1949635881, Iran
| | | | - Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1949635881, Iran
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin 17104, Korea
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Korea
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| |
Collapse
|
16
|
Ti3C2Tx MXene/Graphene/AuNPs 3D porous composites for high sensitivity and fast response glucose biosensing. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Mondal J, An JM, Surwase SS, Chakraborty K, Sutradhar SC, Hwang J, Lee J, Lee YK. Carbon Nanotube and Its Derived Nanomaterials Based High Performance Biosensing Platform. BIOSENSORS 2022; 12:731. [PMID: 36140116 PMCID: PMC9496036 DOI: 10.3390/bios12090731] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
After the COVID-19 pandemic, the development of an accurate diagnosis and monitoring of diseases became a more important issue. In order to fabricate high-performance and sensitive biosensors, many researchers and scientists have used many kinds of nanomaterials such as metal nanoparticles (NPs), metal oxide NPs, quantum dots (QDs), and carbon nanomaterials including graphene and carbon nanotubes (CNTs). Among them, CNTs have been considered important biosensing channel candidates due to their excellent physical properties such as high electrical conductivity, strong mechanical properties, plasmonic properties, and so on. Thus, in this review, CNT-based biosensing systems are introduced and various sensing approaches such as electrochemical, optical, and electrical methods are reported. Moreover, such biosensing platforms showed excellent sensitivity and high selectivity against not only viruses but also virus DNA structures. So, based on the amazing potential of CNTs-based biosensing systems, healthcare and public health can be significantly improved.
Collapse
Affiliation(s)
- Jagannath Mondal
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Sachin S. Surwase
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Korea
| | - Sabuj Chandra Sutradhar
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Joon Hwang
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Aeronautical & Mechanical Design Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Jaewook Lee
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Yong-Kyu Lee
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Korea
| |
Collapse
|
18
|
Immobilized glucose oxidase on hierarchically porous COFs and integrated nanozymes: a cascade reaction strategy for ratiometric fluorescence sensors. Anal Bioanal Chem 2022; 414:6247-6257. [PMID: 35796783 DOI: 10.1007/s00216-022-04197-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 11/01/2022]
Abstract
Covalent organic frameworks (COFs) with uniform porosity, good stability, and desired biocompatibility can function as carriers of immobilized enzymes. However, the obstructed pores or partially obstructed pores have hindered their applicability after loading enzymes. In this study, the hierarchical COFs were prepared as an ideal support to immobilize glucose oxidase (GOD) and obtain GOD@COF. The hierarchical porosity and porous structures of COFs provided sufficient sites to immobilize GOD and increased the rate of diffusion of substrate and product. Moreover, N,Fe-doped carbon dots (N,Fe-CDs) with peroxidase-like activity were introduced to combine with GOD@COF to construct an enzyme-mediated cascade reaction, which is the basis of the sensor GOD@COF/N,Fe-CDs. The sensor has been successfully built and applied to detect glucose. The limit of detection was 0.59 μM for determining glucose with the proposed fluorescence sensor. The practicability was illustrated by detecting glucose in human serum and saliva samples with satisfactory recoveries. The proposed sensor provided a novel strategy that introduced COF-immobilized enzymes for cascade reactions in biosensing and clinical diagnosis.
Collapse
|