1
|
Batista NR, Farder-Gomes CF, Nocelli RCF, Antonialli-Junior WF. Effects of chronic exposure to sublethal doses of neonicotinoids in the social wasp Polybia paulista: Survival, mobility, and histopathology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166823. [PMID: 37683853 DOI: 10.1016/j.scitotenv.2023.166823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Several studies have investigated the consequences of exposure to neonicotinoids in honeybees. Given the lack of studies concerning the consequences of exposure of social wasps to neonicotinoids, as well as the ecological importance of these insects, the objective of this study was to test the hypothesis that chronic exposure to sublethal concentrations of thiamethoxam decreases survival and mobility by causing damage to the brain and midgut of the social wasp Polybia paulista. The wasps were exposed to different concentrations of thiamethoxam, in order to obtain the mean lethal concentration (LC50), which was used as a reference for calculation of two sublethal concentrations (LC50/100 and LC50/10) employed in subsequent experiments. To calculate survival, groups of exposed (EW) and unexposed (UW) wasps were monitored until death, allowing calculation of the average lethal time. The EW and UW groups were evaluated after 12, 24, 48, and 72 h of exposure, considering their mobility and histopathological parameters of the midgut and brain. A lesion index based on semiquantitative analyses was used for comparison of histopathological damage. The results demonstrated that exposure to the LC50/10 led to a significantly shorter survival time of the P. paulista workers, compared to unexposed wasps. In addition, both sublethal concentrations decreased mobility and caused damage to the intestine (loss of brush border, presence of spherocrystals, loss of cytoplasmic material, and pyknosis) and the brain (loss of cell contact and pyknosis), regardless of the exposure time. The findings showed that, like bees, social wasps are nontarget insects susceptible to the detrimental consequences of neonicotinoid use, with exposure leading to impaired survival, locomotion, and physiology.
Collapse
Affiliation(s)
- Nathan Rodrigues Batista
- Centro de Estudos em Recursos Naturais, Laboratório de Ecologia Comportamental, Universidade Estadual de Mato Grosso Do Sul, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil.
| | - Cliver Fernandes Farder-Gomes
- Universidade Federal de São Carlos Campus Araras, Centro de Ciências Agrárias, Departamento de Ciências da Natureza, Matemática e Educação, Rodovia Anhanguera (SP-330), Km 174, Araras, SP, 13600-970, Brazil
| | - Roberta Cornélio Ferreira Nocelli
- Universidade Federal de São Carlos Campus Araras, Centro de Ciências Agrárias, Departamento de Ciências da Natureza, Matemática e Educação, Rodovia Anhanguera (SP-330), Km 174, Araras, SP, 13600-970, Brazil
| | - William Fernando Antonialli-Junior
- Centro de Estudos em Recursos Naturais, Laboratório de Ecologia Comportamental, Universidade Estadual de Mato Grosso Do Sul, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
2
|
Desyatirkina IA, Makarova AA, Pang S, Xu CS, Hess H, Polilov AA. Multiscale head anatomy of Megaphragma (Hymenoptera: Trichogrammatidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 76:101299. [PMID: 37666087 DOI: 10.1016/j.asd.2023.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023]
Abstract
Methods of three-dimensional electron microscopy have been actively developed recently and open up great opportunities for morphological work. This approach is especially useful for studying microinsects, since it is possible to obtain complete series of high-resolution sections of a whole insect. Studies on the genus Megaphragma are especially important, since the unique phenomenon of lysis of most of the neuron nuclei was discovered in species of this genus. In this study we reveal the anatomical structure of the head of Megaphragma viggianii at all levels from organs to subcellular structures. Despite the miniature size of the body, most of the organ systems of M. viggianii retain the structural plan and complexity of organization at all levels. The set of muscles and the well-developed stomatogastric nervous system of this species correspond to those of larger insects, and there is also a well-developed tracheal system in the head of this species. Reconstructions of the head of M. viggianii at the cellular and subcellular levels were obtained, and of volumetric data were analyzed. A total of 689 nucleated cells of the head were reconstructed. The ultrastructure of M. viggianii is surprisingly complex, and the evolutionary benefits of such complexity are probably among the factors limiting the further miniaturization of parasitoid wasps.
Collapse
Affiliation(s)
- Inna A Desyatirkina
- Department of Entomology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Anastasia A Makarova
- Department of Entomology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Song Pang
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, USA; Yale School of Medicine, New Haven, CT, USA
| | - C Shan Xu
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Harald Hess
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, USA
| | - Alexey A Polilov
- Department of Entomology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Yasmeen S, Amir M. Imidacloprid-induced mortality, histopathology and biochemical impairments in the larvae of oriental latrine fly (Chrysomya megacephala). MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:586-599. [PMID: 37078507 DOI: 10.1111/mve.12657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
The concentration-mortality response of third instar larvae of Chrysomya megacephala (Diptera: Calliphoridae) to a synthetic insecticide, imidacloprid, and its impact on histopathological, histochemical, and biochemical parameters were determined in laboratory assays. Larvae displayed a concentration and time-dependent mortality response for the insecticide. Histopathological studies exhibited quite noticeable modifications in the epithelial cells, peritrophic membrane, basement membrane and muscular layer of the larval midgut. The ultrastructural analysis demonstrated alterations in nuclei, lipid spheres, microvilli, mitochondria, rough endoplasmic reticulum and lysosomes. In addition, histochemical tests on the midgut were performed, which revealed a strong reaction for proteins and carbohydrates in the control group and a weak reaction in the group exposed to imidacloprid in a dose and time-dependent manner. Imidacloprid also caused a significant reduction in the total midgut content of carbohydrates, proteins, lipids and cholesterol. Larvae treated with imidacloprid also showed a reduction in the activities of acid and alkaline phosphatases at all concentrations compared to untreated larvae.
Collapse
Affiliation(s)
- Shagufta Yasmeen
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Amir
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
4
|
Miotelo L, Ferro M, Maloni G, Otero IVR, Nocelli RCF, Bacci M, Malaspina O. Transcriptomic analysis of Malpighian tubules from the stingless bee Melipona scutellaris reveals thiamethoxam-induced damages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158086. [PMID: 35985603 DOI: 10.1016/j.scitotenv.2022.158086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/21/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The concern about pesticide exposure to neotropical bees has been increasing in the last few years, and knowledge gaps have been identified. Although stingless bees, (e.g.: Melipona scutellaris), are more diverse than honeybees and they stand out in the pollination of several valuable economical crops, toxicity assessments with stingless bees are still scarce. Nowadays new approaches in ecotoxicological studies, such as omic analysis, were pointed out as a strategy to reveal mechanisms of how bees deal with these stressors. To date, no molecular techniques have been applied for the evaluation of target and/or non-target organs in stingless bees, such as the Malpighian tubules (Mt). Therefore, in the present study, we evaluated the differentially expressed genes (DEGs) in the Mt of M. scutellaris after one and eight days of exposure to LC50/100 (0.000543 ng a.i./μL) of thiamethoxam (TMX). Through functional annotation analysis of four transcriptome libraries, the time course line approach revealed 237 DEGs (nine clusters) associated with carbon/energy metabolism and cellular processes (lysosomes, autophagy, and glycan degradation). The expression profiles of Mt were altered by TMX in processes, such as detoxification, excretion, tissue regeneration, oxidative stress, apoptosis, and DNA repair. Transcriptome analysis showed that cell metabolism in Mt was mainly affected after 8 days of exposure. Nine genes were selected from different clusters and validated by RT-qPCR. According to our findings, TMX promotes several types of damage in Mt cells at the molecular level. Therefore, interference of different cellular processes directly affects the health of M. scutellaris by compromising the function of Mt.
Collapse
Affiliation(s)
- Lucas Miotelo
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| | - Milene Ferro
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Geovana Maloni
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Igor Vinicius Ramos Otero
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | | | - Mauricio Bacci
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Osmar Malaspina
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| |
Collapse
|
5
|
Trombin de Souza M, Trombin de Souza M, Bernardi D, Oliveira DDC, Morais MC, de Melo DJ, Richardi VS, Zarbin PHG, Zawadneak MAC. Essential Oil of Rosmarinus officinalis Ecotypes and Their Major Compounds: Insecticidal and Histological Assessment Against Drosophila suzukii and Their Impact on a Nontarget Parasitoid. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:955-966. [PMID: 34865075 DOI: 10.1093/jee/toab230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Essential oils (EOs) produced by plants in the Lamiaceae family may provide new insecticidal molecules. Novel control compounds are needed to control Drosophila suzukii (Matsumura), a severe economic invasive pest of thin-skinned fruit crops. Thus, we characterized the main compounds of EOs from three rosemary Rosmarinus officinalis ecotypes (ECOs) and evaluated their toxicity to D. suzukii adults, deterrence of oviposition behavior, and histological alterations in larvae. Additionally, we analyzed the lethal and sublethal effect on the pupal parasitoid Trichopria anastrephae. The main compounds identified in the R. officinalis ECOs were α-pinene, camphor and 1,8-cineole. In bioassays via topical application or ingestion, ECOs and their major compounds showed high toxicity on D. suzukii adults and a lower concentration could kill 50% and 90% of flies compared to spinetoram. The dry residues of a-pinene, 1,8-cineole, and camphor provided a repellent effect by reducing D. suzukii oviposition by ~47% compared to untreated fruit. Histological sections of 3rd instar larval D. suzukii posttreatment revealed damage to the fat body, Malpighian tubules, brain, salivary gland, and midgut, which contributed to high larval and pupal mortality. Survival and parasitism by adult T. anastrephae were not affected. Thus, R. officinalis EO and their compounds have potential for developing novel insecticides to manage D. suzukii.
Collapse
Affiliation(s)
| | | | - Daniel Bernardi
- Department of Plant Protection, Federal University of Pelotas, Faculty of Agronomy, Pelotas, Rio Grande do Sul, Brazil
| | - Daiana da Costa Oliveira
- Department of Plant Protection, Federal University of Pelotas, Faculty of Agronomy, Pelotas, Rio Grande do Sul, Brazil
| | - Maíra Chagas Morais
- Department of Plant Protection, Federal University of Pelotas, Faculty of Agronomy, Pelotas, Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|
6
|
Miotelo L, Mendes Dos Reis AL, Rosa-Fontana A, Karina da Silva Pachú J, Malaquias JB, Malaspina O, Roat TC. A food-ingested sublethal concentration of thiamethoxam has harmful effects on the stingless bee Melipona scutellaris. CHEMOSPHERE 2022; 288:132461. [PMID: 34624342 DOI: 10.1016/j.chemosphere.2021.132461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 05/26/2023]
Abstract
In recent years, the importance of bee's biodiversity in the Neotropical region has been evidencing the relevance of including native bees in risk assessments. Therefore, the sublethal effects of the insecticide thiamethoxam on the survival and morphological parameters of the stingless bee Melipona scutellaris were investigated in the present study. Cells from both non-target organs (Malpighian tubules and midgut) and target organs (brain) were analyzed for morphological alterations using light microscopy and transmission electron microscopy. The findings showed that when M. scutellaris foragers were exposed to a sublethal concentration of thiamethoxam (LC50/100 = 0.000543 ng a. i./μL), longevity was not reduced but brain function was affected, even with the non-target organs attempting to detoxify. The cellular damage in all the organs was mostly reflected in irregular nuclei shape and condensed chromatin, indicating cell death. The most frequent impairments in the Malpighian tubules were loss of microvilli, disorganization of the basal labyrinth, and cytoplasmic loss. These characteristics are related to an attempt by the cells to increase the excretion process, probably because of the high number of toxic molecules that reach the Malpighian tubules and need to be secreted. In general, damages that compromise the absorption of nutrients, excretion, memory, and learning processes, which are essential for the survival of M. scutellaris, were found. The present results also fill in gaps on how these bees respond to thiamethoxam exposure and will be useful in future risk assessments for the conservation of bee biodiversity.
Collapse
Affiliation(s)
- Lucas Miotelo
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| | - Ana Luiza Mendes Dos Reis
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| | - Annelise Rosa-Fontana
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| | - Jéssica Karina da Silva Pachú
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, SP, 13418-900, Brazil.
| | - José Bruno Malaquias
- Department of Biostatistics, Institute of Biosciences e IBB, São Paulo State University (UNESP), Botucatu, SP, 18618-693, Brazil.
| | - Osmar Malaspina
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| | - Thaisa Cristina Roat
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
7
|
Biochemical and histological alterations induced by nickel oxide nanoparticles in the ground beetle Blaps polychresta (Forskl, 1775) (Coleoptera: Tenebrionidae). PLoS One 2021; 16:e0255623. [PMID: 34559804 PMCID: PMC8462711 DOI: 10.1371/journal.pone.0255623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/30/2021] [Indexed: 12/03/2022] Open
Abstract
The present study evaluates the effect of nickel oxide nanoparticles on some biochemical parameters and midgut tissues in the ground beetle Blaps polychresta as an indicator organism for nanotoxicity. Serial doses of the NiO-NPs colloid (0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 mg/g) were prepared for injecting into the adult beetles. Insect survival was reported daily for 30 days, and the sublethal dose of 0.02 mg/g NiO-NPs was selected for the tested parameters. After the treatment, nickel was detected in the midgut tissues by X-ray microanalysis. The treated group demonstrated a significant increase in aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities when compared to the untreated group. However, the treated group demonstrated a significant decrease in ascorbate peroxidase (APOX) activity when compared to the untreated group. Histological and ultrastructural changes in the midgut tissues of treated and untreated beetles were also observed. The current findings provide a precedent for describing the physiological and histological changes caused by NiO-NPs in the ground beetle B. polychresta.
Collapse
|
8
|
Castellanos NL, Ferreira-Filho NA, Rodrigues HS, Martínez LC, Serrão JE, Oliveira EE. Imidacloprid-mediated alterations on the salivary glands of the Neotropical brown stink bug, Euschistus heros. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:678-688. [PMID: 33788078 DOI: 10.1007/s10646-021-02388-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The management of the Neotropical brown stinkbug Euschistus heros (Hemiptera: Pentatomidae) in soybean fields has been heavily dependent on the application of neonicotinoid insecticides. Neonicotinoids act primarily by impairing the function of the nicotinic acetylcholine receptors of the nervous system. These compounds also target specific organs (e.g., salivary glands), which may potentiate their insecticidal efficacy. Here, we evaluated whether the exposure to the neonicotinoid imidacloprid would cause cytomorphological changes in the salivary glands of E. heros. First, we determined the lethal concentrations (LCs) of imidacloprid through contact and ingestion. Subsequently, the cytomorphology of the salivary glands were evaluated in insect groups that survived exposure to the LC5 (3.75 mg a.i./L), LC50 (112.5 mg a.i./L), or LC75 (375.0 mg a.i./L, equivalent to the recommended field rate) doses. Imidacloprid induced apoptosis and necrosis in the salivary gland cells according to the insecticide concentration and salivary gland region. All concentrations increased apoptosis and injured cells (e.g., vacuolization, chromatin condensation, swelling of organelles, and plasma membrane rupture) in the principal and accessory salivary glands. Individuals that survived exposure to the highest concentrations (i.e., LC5 and LC50) were more affected, and exhibited several necrotic cells on their main principal salivary glands. Collectively, our results indicate that imidacloprid exerts toxic effects on the non-target organs, such as the salivary glands, which increases the efficacy of this compound in the management of stink bug infestations.
Collapse
Affiliation(s)
- Nathaly L Castellanos
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil.
| | | | - Higor S Rodrigues
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Luis Carlos Martínez
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - José E Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Eugenio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil.
| |
Collapse
|
9
|
Miotelo L, Mendes Dos Reis AL, Malaquias JB, Malaspina O, Roat TC. Apis mellifera and Melipona scutellaris exhibit differential sensitivity to thiamethoxam. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115770. [PMID: 33045589 DOI: 10.1016/j.envpol.2020.115770] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Apis mellifera is a pollinator insect model in pesticide risk assessment tests for bees. However, given the economic and ecological importance of stingless bees such as Melipona scutellaris in the Neotropical region, as well as the lack of studies on the effect of insecticides on these bees, toxicity tests for stingless bees should be carried out to understand whether insecticides affect both species of bees in the same manner. Thus, the present study quantified the differential sensitivity of the bees M. scutellaris and A. mellifera to the oral ingestion of the insecticide thiamethoxam by determining the mean lethal concentration (LC50), mean lethal time (LT50), and their effect on the insecticide target organ, the brain. The results showed that the stingless bee is more sensitive to the insecticide than A. mellifera, with a lower LC50 of 0.0543 ng active ingredient (a.i.)/μL for the stingless bee compared to 0.227 ng a.i./μL for A. mellifera. When exposed to a sublethal concentration, morphological and ultrastructural analyses were performed and evidenced a significant increase in spaces between nerve cells of both species. Thus, A. mellifera is not the most appropriate or unique model to determine the toxicity of insecticides to stingless bees.
Collapse
Affiliation(s)
- Lucas Miotelo
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Campus Rio Claro, São Paulo, Brazil.
| | - Ana Luiza Mendes Dos Reis
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Campus Rio Claro, São Paulo, Brazil.
| | - José Bruno Malaquias
- Department of Biostatistics, Institute of Biosciences - IBB, São Paulo State University (UNESP), Botucatu, SP, 18618-693, Brazil.
| | - Osmar Malaspina
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Campus Rio Claro, São Paulo, Brazil.
| | - Thaisa Cristina Roat
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Campus Rio Claro, São Paulo, Brazil.
| |
Collapse
|
10
|
de Cassia Santos Przepiura T, Navarro AM, da Rosa Ribeiro R, Gomes JR, Pitthan KV, de Miranda Soares MA. Mechanisms of programmed cell death in the midgut and salivary glands from Bradysia hygida (Diptera: Sciaridae) during pupal-adult metamorphosis. Cell Biol Int 2020; 44:1981-1990. [PMID: 32497316 DOI: 10.1002/cbin.11404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/19/2020] [Accepted: 06/02/2020] [Indexed: 11/08/2022]
Abstract
Programmed cell death is involved with the degeneration/remodeling of larval tissues and organs during holometabolous development. The midgut is a model to study the types of programmed cell death associated with metamorphosis because its structure while degenerating is a substrate for the formation of the adult organ. Another model is the salivary glands from dipteran because their elimination involves different cell death modes. This study aimed to investigate the models of programmed cell death operating during midgut replacement and salivary gland histolysis in Bradysia hygida. We carried out experiments of real-time observations, morphological analysis, glycogen detection, filamentous-actin localization, and nuclear acridine orange staining. Our findings allow us to establish that an intact actin cytoskeleton is required for midgut replacement in B. hygida and nuclear condensation and acridine orange staining precede the death of the larval cells. Salivary glands in histolysis present cytoplasmic blebbing, nuclear retraction, and acridine orange staining. This process can be partially reproduced in vitro. We propose that the larval midgut death involves autophagic and apoptotic features and apoptosis is a mechanism involved with salivary gland histolysis.
Collapse
Affiliation(s)
| | - Aryelle M Navarro
- Departament of Structural Biology, Molecular and Genetics, University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Rafaela da Rosa Ribeiro
- Instituto Israelita de Ensino e Pesquisa Albert Einstein (IIEPAE), São Paulo, São Paulo, Brazil
| | - José R Gomes
- Departament of Structural Biology, Molecular and Genetics, University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Karina V Pitthan
- Departament of Structural Biology, Molecular and Genetics, University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Maria A de Miranda Soares
- Departament of Structural Biology, Molecular and Genetics, University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| |
Collapse
|
11
|
Azevedo P, Butolo NP, de Alencar LD, Soares-Lima HM, Sales VR, Malaspina O, Nocelli RCF. Standardization of in vitro nervous tissue culture for honeybee: A high specificity toxicological approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110040. [PMID: 31835045 DOI: 10.1016/j.ecoenv.2019.110040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Bees are important pollinators that help to maintain the biodiversity of wild and cultivated plants. However, the increased and inappropriate use of agrochemicals has caused an imbalance in the populations of these insects visiting flowers for pollen and nectar collection. Therefore, new research methods for understanding the mechanisms of action of pesticides and their impacts on the brains of bees, such as neurotoxicity and cellular changes, in response to different active characteristics and dosages of insecticides are necessary. Thus, with the aim of developing tests with greater specificity at the level of cells or tissues, this study sought to standardize a method for the in vitro culture of the nervous tissue of Apis mellifera. For this purpose, the brains of six foragers bees were transferred to three different insect cell culture media and it supplementation with 10% foetal bovine serum (FBS): Grace, Schneider, Leibovitz, Grace + FBS, Schneider + FBS and Leibovitz + FBS media for each collection time. Nervous tissue was collected after 1, 6, 12 and 24 h of incubation in a humidified CO2 incubator at 32 °C, and histological sections of the organs were analysed. The results showed that Leibovitz medium and Leibovitz medium + serum are potential culture media for the cultivation of nervous tissue, since they resulted in less tissue spacing and tissue disarrangement. Therefore, additional supplements are necessary to obtain an ideal medium for the cultivation of A.mellifera nervous tissue.
Collapse
Affiliation(s)
- Patricia Azevedo
- Universidade Estadual Paulista 'Júlio de Mesquita Filho'(UNESP), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Programa de Pós-Graduação em Biologia Celular e Molecular, Campus Rio Claro, SP, Brazil.
| | - Nicole Pavan Butolo
- Universidade Estadual Paulista 'Júlio de Mesquita Filho'(UNESP), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Programa de Pós-Graduação em Biologia Celular e Molecular, Campus Rio Claro, SP, Brazil
| | - Luciano Delmondes de Alencar
- Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Grupo de Genética e Genômica da Conservação, Programa de Pós-Graduação em Genética e Biologia Molecular, Campinas, SP, Brazil
| | - Hellen Maria Soares-Lima
- Universidade Estadual Paulista 'Júlio de Mesquita Filho'(UNESP), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Programa de Pós-Graduação em Biologia Celular e Molecular, Campus Rio Claro, SP, Brazil
| | - Victor Ribeiro Sales
- Universidade Federal de São Carlos, Centro de Ciências Agrárias, Departamento de Ciências da Natureza, Matemática e Educação, Grupo de Abelhas e Serviços Ambientais, Campus Araras, SP, Brazil
| | - Osmar Malaspina
- Universidade Estadual Paulista 'Júlio de Mesquita Filho'(UNESP), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Programa de Pós-Graduação em Biologia Celular e Molecular, Campus Rio Claro, SP, Brazil
| | - Roberta Cornélio Ferreira Nocelli
- Universidade Federal de São Carlos, Centro de Ciências Agrárias, Departamento de Ciências da Natureza, Matemática e Educação, Grupo de Abelhas e Serviços Ambientais, Campus Araras, SP, Brazil
| |
Collapse
|
12
|
Grella TC, Soares-Lima HM, Malaspina O, Cornélio Ferreira Nocelli R. Semi-quantitative analysis of morphological changes in bee tissues: A toxicological approach. CHEMOSPHERE 2019; 236:124255. [PMID: 31323550 DOI: 10.1016/j.chemosphere.2019.06.225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
During foraging, bees are exposed to sublethal doses of insecticides, which can cause morphological changes to various organs, such as the midgut, Malpighian tubules, and mushroon body. Thus, the purpose of this study was to establish a scoring system to evaluate these alterations based on the damage caused and its reversibility. Therefore, a grade 1 score indicates a minimal and easily reversible lesion, increased apocrine secretion, increased cell elimination into the lumen, and a larger quantity of spherocrystals; grade 2 was assigned to moderate and typically reversible injuries, such as changes in the brush border, vacuolation/loss of cytoplasmic material, presence/height of the brush border, and cell swelling; and grade 3 was assigned to serious and irreversible, loss of cell nests of regenerative cells, pyknosis, and loss of contact between Kenyon cells. In addition, frequency values were assigned since the alterations can occur at different frequencies according to the insecticide and the bees exposed; the frequency ranges from 0 to 6, with 0 representing the absence of an alteration and 6 representing a high-frequency occurrence. Based on the analyses, we conclude that each change causes morphological damage, which may or may not be irreversible and could affect the health of the colony.
Collapse
Affiliation(s)
- Tatiane Caroline Grella
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Departamento de Biologia, Centro de Estudos de Insetos Sociais, Avenida 24-A, nº 1.515, Rio Claro, SP, CEP: 13.506-900, Brazil; Universidade Federal de São Carlos, Campus Araras, Centro de Ciências Agrárias, Departamento de Ciências da Natureza, Matemática e Educação, Rodovia Anhanguera (SP-330), Km 174, Araras, SP, CEP: 13.600-970, Brazil.
| | - Hellen Maria Soares-Lima
- Universidade Federal de São Carlos, Campus Sorocaba, Departamento de Biologia, Centro de Ciências e Tecnologia para Sustentabilidade, Rodovia João Leme dos Santos, SP-264, Km 110, Itinga, Sorocaba, SP, 18052-780, Brazil
| | - Osmar Malaspina
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Departamento de Biologia, Centro de Estudos de Insetos Sociais, Avenida 24-A, nº 1.515, Rio Claro, SP, CEP: 13.506-900, Brazil
| | - Roberta Cornélio Ferreira Nocelli
- Universidade Federal de São Carlos, Campus Araras, Centro de Ciências Agrárias, Departamento de Ciências da Natureza, Matemática e Educação, Rodovia Anhanguera (SP-330), Km 174, Araras, SP, CEP: 13.600-970, Brazil
| |
Collapse
|
13
|
Dabour K, Al Naggar Y, Masry S, Naiem E, Giesy JP. Cellular alterations in midgut cells of honey bee workers (Apis millefera L.) exposed to sublethal concentrations of CdO or PbO nanoparticles or their binary mixture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1356-1367. [PMID: 30360267 DOI: 10.1016/j.scitotenv.2018.09.311] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Beside many beneficial applications in industry, agriculture and medicine, nanoparticles (NPs) released into the environment might cause adverse effects. In the present study, effects of exposure to sublethal concentrations of PbO and CdO NPs, either separately or in combination on honey bee (A. mellifera) workers were assessed. Honey bee workers were fed sugar syrup contained (20% of LC50) of CdO (0.01 mg ml-1) and PbO (0.65 mg ml-1) NPs either separately or combined for nine days under laboratory conditions. Control bees were fed 1.5 M sucrose syrup without NPs. Effects on histological and cellular structure of mid gut cells were investigated using light and electron microscope. Percentages of incidence of apoptosis or/and necrosis in mid gut cells were also quantified by use of flow cytometry. Rapture of the peritrophic membrane (PM) was among the most observed histopathological alteration in bees fed sugar syrup contained CdO NPs separately or combined with PbO NPs. Common cytological alterations observed in epithelial cells were irregular distribution or/and condensation of nuclear chromatin, mitochondrial swelling and lysis, and rough endoplasmic reticulum (rER) dilation, fragmentation, and vesiculation and were quite similar in all treated groups compared to control. The greatest incidence (%) of necrosis was observed in bees fed the diet that contained CdO NPs alone. The greatest % of both apoptosis and necrosis was observed in bees fed sugar syrup spiked with sublethal concentrations of both metal oxide NPs. Joint action of the binary mixture of Cd and Pb oxide NPs on honey bees was concluded to be antagonistic. Collectively, exposure of honey bees to these metal oxide NPs even at sublethal concentrations will adversely affect viability of the colony and further studies are still required to determine the effects of these metal oxide NPs on behavior and pollination ecology of honeybees.
Collapse
Affiliation(s)
- Khaled Dabour
- Zoology Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt; Centre of Integrative Bee Research (CIBER), Entomology Department, University of California at Riverside, Riverside, CA 92507, USA.
| | - Saad Masry
- Department of Plant Protection and Molecular Diagnosis, Arid Lands Cultivation, Research Institute, City of Scientific Research and Technological Applications (SRTA-City), 21934 Alexandria, Egypt
| | - Elsaied Naiem
- Zoology Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - John P Giesy
- Department of Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SKS7N 5B3, Canada
| |
Collapse
|
14
|
Catae AF, Roat TC, Pratavieira M, Silva Menegasso ARD, Palma MS, Malaspina O. Exposure to a sublethal concentration of imidacloprid and the side effects on target and nontarget organs of Apis mellifera (Hymenoptera, Apidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:109-121. [PMID: 29127660 DOI: 10.1007/s10646-017-1874-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
The use of insecticides has become increasingly frequent, and studies indicate that these compounds are involved in the intoxication of bees. Imidacloprid is a widely used neonicotinoid; thus, we have highlighted the importance of assessing its oral toxicity to Africanized bees and used transmission electron microscopy to investigate the sublethal effects in the brain, the target organ, and the midgut, responsible for the digestion/absorption of food. In addition, the distribution of proteins involved in important biological processes in the brain were evaluated on the 1st day of exposure by MALDI-imaging analysis. Bioassays were performed to determine the Median Lethal Concentration (LC50) of imidacloprid to bees, and the value obtained was 1.4651 ng imidacloprid/μL diet. Based on this result, the sublethal concentration to be administered at 1, 4 and 8 days was established as a hundredth (1/100) of the LC50. The results obtained from the ultrastructural analysis showed alterations in the midgut cells of bees as nuclear and mitochondrial damage and an increase of vacuoles. The insecticide caused spacing among the Kenyon cells in the mushroom bodies, chromatin condensation and loss of mitochondrial cristae. The MALDI-imaging analysis showed an increase in the expression of such proteins as vascular endothelial growth factor receptor, amyloid protein precursor and protein kinase C, which are related to oxygen supply, neuronal degeneration and memory/learning, and a decrease in the expression of the nicotinic acetylcholine receptor alpha 1, which is fundamental to the synapses. These alterations demonstrated that imidacloprid could compromise the viability of the midgut epithelium, as well as inhibiting important cognitive processes in individuals, and may be reflected in losses of the colony.
Collapse
Affiliation(s)
- Aline Fernanda Catae
- Departamento de Biologia, Centro de Estudos de Insetos Sociais, UNESP - Univ. Estadual Paulista, campus de Rio Claro, Instituto de Biociências, Rio Claro, SP, Brazil.
| | - Thaisa Cristina Roat
- Departamento de Biologia, Centro de Estudos de Insetos Sociais, UNESP - Univ. Estadual Paulista, campus de Rio Claro, Instituto de Biociências, Rio Claro, SP, Brazil
| | - Marcel Pratavieira
- Departamento de Biologia, Centro de Estudos de Insetos Sociais, UNESP - Univ. Estadual Paulista, campus de Rio Claro, Instituto de Biociências, Rio Claro, SP, Brazil
| | - Anally Ribeiro da Silva Menegasso
- Departamento de Biologia, Centro de Estudos de Insetos Sociais, UNESP - Univ. Estadual Paulista, campus de Rio Claro, Instituto de Biociências, Rio Claro, SP, Brazil
| | - Mario Sergio Palma
- Departamento de Biologia, Centro de Estudos de Insetos Sociais, UNESP - Univ. Estadual Paulista, campus de Rio Claro, Instituto de Biociências, Rio Claro, SP, Brazil
| | - Osmar Malaspina
- Departamento de Biologia, Centro de Estudos de Insetos Sociais, UNESP - Univ. Estadual Paulista, campus de Rio Claro, Instituto de Biociências, Rio Claro, SP, Brazil
| |
Collapse
|
15
|
Golstein P. Conserved nucleolar stress at the onset of cell death. FEBS J 2017; 284:3791-3800. [DOI: 10.1111/febs.14095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/31/2017] [Accepted: 04/26/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Pierre Golstein
- Centre d'Immunologie de Marseille‐Luminy Aix Marseille Université Inserm, CNRS France
| |
Collapse
|
16
|
Shiba H, Yabu T, Sudayama M, Mano N, Arai N, Nakanishi T, Hosono K. Sequential steps of macroautophagy and chaperone-mediated autophagy are involved in the irreversible process of posterior silk gland histolysis during metamorphosis of Bombyx mori. ACTA ACUST UNITED AC 2016; 219:1146-53. [PMID: 26944491 DOI: 10.1242/jeb.130815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/31/2016] [Indexed: 12/19/2022]
Abstract
To elucidate the degradation process of the posterior silk gland during metamorphosis of the silkworm ITALIC! Bombyx mori, tissues collected on the 6th day after entering the 5th instar (V6), prior to spinning (PS), during spinning (SP) and after cocoon formation (CO) were used to analyze macroautophagy, chaperone-mediated autophagy (CMA) and the adenosine triphosphate (ATP)-dependent ubiquitin proteasome. Immediately after entering metamorphosis stage PS, the levels of ATP and phosphorylated p70S6 kinase protein decreased spontaneously and continued to decline at SP, followed by a notable restoration at CO. In contrast, phosphorylated AMP-activated protein kinase α (AMPKα) showed increases at SP and CO. Most of the Atg8 protein was converted to form II at all stages. The levels of ubiquitinated proteins were high at SP and CO, and low at PS. The proteasome activity was high at V6 and PS but low at SP and CO. In the isolated lysosome fractions, levels of Hsc70/Hsp70 protein began to increase at PS and continued to rise at SP and CO. The lysosomal cathepsin B/L activity showed a dramatic increase at CO. Our results clearly demonstrate that macroautophagy occurs before entering the metamorphosis stage and strongly suggest that the CMA pathway may play an important role in the histolysis of the posterior silk gland during metamorphosis.
Collapse
Affiliation(s)
- Hajime Shiba
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Takeshi Yabu
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Makoto Sudayama
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Nobuhiro Mano
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Naoto Arai
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Teruyuki Nakanishi
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Kuniaki Hosono
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
17
|
Wu YY, Zhou T, Wang Q, Dai PL, Xu SF, Jia HR, Wang X. Programmed Cell Death in the Honey Bee (Apis mellifera) (Hymenoptera: Apidae) Worker Brain Induced by Imidacloprid. JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:1486-1494. [PMID: 26470287 DOI: 10.1093/jee/tov146] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/18/2015] [Indexed: 06/05/2023]
Abstract
Honey bees are at an unavoidable risk of exposure to neonicotinoid pesticides, which are used worldwide. Compared with the well-studied roles of these pesticides in nontarget site (including midgut, ovary, or salivary glands), little has been reported in the target sites, the brain. In the current study, laboratory-reared adult worker honey bees (Apis mellifera L.) were treated with sublethal doses of imidacloprid. Neuronal apoptosis was detected using the TUNEL technique for DNA labeling. We observed significantly increased apoptotic markers in dose- and time-dependent manners in brains of bees exposed to imidacloprid. Neuronal activated caspase-3 and mRNA levels of caspase-1, as detected by immunofluorescence and real-time quantitative PCR, respectively, were significantly increased, suggesting that sublethal doses of imidacloprid may induce the caspase-dependent apoptotic pathway. Additionally, the overlap of apoptosis and autophagy in neurons was confirmed by transmission electron microscopy. It further suggests that a relationship exists between neurotoxicity and behavioral changes induced by sublethal doses of imidacloprid, and that there is a need to determine reasonable limits for imidacloprid application in the field to protect pollinators.
Collapse
Affiliation(s)
- Yan-Yan Wu
- Department of Bee Protection and Biological Safety, Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Ting Zhou
- Department of Bee Protection and Biological Safety, Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Qiang Wang
- Department of Bee Protection and Biological Safety, Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Ping-Li Dai
- Department of Bee Protection and Biological Safety, Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Shu-Fa Xu
- Department of Bee Protection and Biological Safety, Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hui-Ru Jia
- Department of Bee Protection and Biological Safety, Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xing Wang
- General Affairs Office, Beijing Management Station of Apiculture and Sericulture, Beijing 100029, China
| |
Collapse
|
18
|
de Almeida Rossi C, Roat TC, Tavares DA, Cintra-Socolowski P, Malaspina O. Brain morphophysiology of Africanized bee Apis mellifera exposed to sublethal doses of imidacloprid. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 65:234-243. [PMID: 23563487 DOI: 10.1007/s00244-013-9897-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/03/2013] [Indexed: 06/02/2023]
Abstract
Several synthetic substances are used in agricultural areas to combat insect pests; however, the indiscriminate use of these products may affect nontarget insects, such as bees. In Brazil, one of the most widely used insecticides is imidacloprid, which targets the nervous system of insects. Therefore, the aim of this study was to evaluate the effects of chronic exposure to sublethal doses of imidacloprid on the brain of the Africanized Apis mellifera. The organs of both control bees and bees exposed to insecticide were subjected to morphological, histochemical and immunocytochemical analysis after exposure to imidacloprid, respectively, for 1, 3, 5, 7, and 10 days. In mushroom bodies of bees exposed to imidacloprid concentrations of LD50/10 and in optic lobes of bees exposed to imidacloprid concentrations of LD50/10, LD50/100, and LD50/50, we observed the presence of condensed cells. The Feulgen reaction revealed the presence of some cells with pyknotic nuclei, whereas Xylidine Ponceau stain revealed strongly stained cells. These characteristics can indicate the occurrence of cell death. Furthermore, cells in mushroom bodies of bees exposed to imidacloprid concentrations of LD50/10 appeared to be swollen. Cell death was confirmed by immunocytochemical technique. Therefore, it was concluded that sublethal doses of imidacloprid have cytotoxic effects on exposed bee brains and that optic lobes are more sensitive to the insecticide than other regions of the brain.
Collapse
Affiliation(s)
- Caroline de Almeida Rossi
- Departamento de Biologia, Centro de Estudos de Insetos Sociais, Instituto de Biociências de Rio Claro, UNESP-Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, Rio Claro, SP 13500-900, Brazil
| | | | | | | | | |
Collapse
|
19
|
de Almeida Rossi C, Roat TC, Tavares DA, Cintra-Socolowski P, Malaspina O. Effects of sublethal doses of imidacloprid in malpighian tubules of africanizedApis mellifera(Hymenoptera, Apidae). Microsc Res Tech 2013; 76:552-8. [DOI: 10.1002/jemt.22199] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/06/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Caroline de Almeida Rossi
- Departamento de Biologia; UNESP-Univ. Estadual Paulista; Campus de Rio Claro, Centro de Estudos de Insetos Sociais, Avenida 24-A, n.1515, Bela Vista, Rio Claro; São Paulo; 13506-900; Brazil
| | - Thaisa Cristina Roat
- Departamento de Biologia; UNESP-Univ. Estadual Paulista; Campus de Rio Claro, Centro de Estudos de Insetos Sociais, Avenida 24-A, n.1515, Bela Vista, Rio Claro; São Paulo; 13506-900; Brazil
| | - Daiana Antonia Tavares
- Departamento de Biologia; UNESP-Univ. Estadual Paulista; Campus de Rio Claro, Centro de Estudos de Insetos Sociais, Avenida 24-A, n.1515, Bela Vista, Rio Claro; São Paulo; 13506-900; Brazil
| | - Priscila Cintra-Socolowski
- Departamento de Biologia; UNESP-Univ. Estadual Paulista; Campus de Rio Claro, Centro de Estudos de Insetos Sociais, Avenida 24-A, n.1515, Bela Vista, Rio Claro; São Paulo; 13506-900; Brazil
| | - Osmar Malaspina
- Departamento de Biologia; UNESP-Univ. Estadual Paulista; Campus de Rio Claro, Centro de Estudos de Insetos Sociais, Avenida 24-A, n.1515, Bela Vista, Rio Claro; São Paulo; 13506-900; Brazil
| |
Collapse
|
20
|
Yu X, Sun R, Yan H, Guo X, Xu B. Characterization of a sigma class glutathione S-transferase gene in the larvae of the honeybee (Apis cerana cerana) on exposure to mercury. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:356-64. [DOI: 10.1016/j.cbpb.2011.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 12/27/2011] [Accepted: 12/29/2011] [Indexed: 01/26/2023]
|
21
|
Campos-Pereira FD, Oliveira CA, Pigoso AA, Silva-Zacarin ECM, Barbieri R, Spatti EF, Marin-Morales MA, Severi-Aguiar GDC. Early cytotoxic and genotoxic effects of atrazine on Wistar rat liver: a morphological, immunohistochemical, biochemical, and molecular study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 78:170-177. [PMID: 22153302 DOI: 10.1016/j.ecoenv.2011.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/04/2011] [Accepted: 11/16/2011] [Indexed: 05/31/2023]
Abstract
Risk assessments suggest that intermediate and long-term exposure to triazine herbicides and its metabolites through water can cause severe damage to human health. The objective of this study was to investigate the possible effects of atrazine on Wistar rats submitted to subacute treatment. For this purpose, the activity of catalase and alanine aminotransferase was quantified, and the effect of the herbicide on cell membranes was examined based on the measurement of lipid peroxidation and consequent formation of malondialdehyde and on the mRNA expression of antioxidant enzymes (Mn-superoxide dismutase [SOD] and GSTM1) and connexins. In addition, we evaluated histopathological alterations in the liver, cellular expression of SOD and glutathione (GST), activation of heat shock proteins (HSPs) by immunohistochemistry, and the induction of apoptosis. The genotoxic potential of the herbicide was investigated by the micronucleus test in bone marrow smears. Adult male Wistar rats were treated with an aqueous solution of atrazine at a concentration of 400mg/kg/day, by gavage, for 14 consecutive days. Control groups were also included. The results showed an increase of catalase levels and maintenance of the expression of antioxidant enzymes (SOD and GST). In addition, lipid peroxidation, hepatic tissue degeneration, activation of HSP90, increased levels of connexin mRNA, and genotoxicity were observed. In conclusion, atrazine induced early hepatic oxidative stress that triggered defense mechanisms to maintain the morphophysiological integrity of the liver. Further studies are needed to better understand the effects of this herbicide on human health.
Collapse
Affiliation(s)
- Franco D Campos-Pereira
- Programa de Pós-Graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto, UNIARARAS, Avenida Dr. Maximiliano Barutto, no 500, Jd. Universitário, CEP 13607-339 Araras, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Meng F, Kang M, Liu L, Luo L, Xu B, Guo X. Characterization of the TAK1 gene in Apis cerana cerana (AccTAK1) and its involvement in the regulation of tissue-specific development. BMB Rep 2011; 44:187-92. [PMID: 21429297 DOI: 10.5483/bmbrep.2011.44.3.187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TGF-Β activated kinase-1 (TAK1) plays a pivotal role in developmental processes in many species. Previous research has mainly focused on the function of TAK1 in model organisms, and little is known about the function of TAK1 in hymenoptera insects. Here, we isolated and characterized the TAK1 gene from Apis cerana cerana. Promoter analysis of AccTAK1 revealed the presence of transcription factor binding sites related to early development. Real-time quantitative PCR and immunohistochemistry experiments revealed that AccTAK1 was expressed at high levels in fourth instar larvae, primarily in the abdomen, in the intestinal wall cells of the midgut and in the secretory cells of the salivary glands. In addition, AccTAK1 expression in fourth instar larvae could be dramatically induced by treatment with pesticides and organic solvents. These observations suggest that AccTAK1 may be involved in the regulation of early development in the larval salivary gland and midgut.
Collapse
Affiliation(s)
- Fei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Taian, Shandong, PR China
| | | | | | | | | | | |
Collapse
|
23
|
Morphological alterations induced by boric acid and fipronil in the midgut of worker honeybee (Apis mellifera L.) larvae. Cell Biol Toxicol 2009; 26:165-76. [DOI: 10.1007/s10565-009-9126-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 04/20/2009] [Indexed: 11/26/2022]
|
24
|
Sobotník J, Kalinová B, Cahlíková L, Weyda F, Ptácek V, Valterová I. Age-dependent changes in structure and function of the male labial gland in Bombus terrestris. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:204-214. [PMID: 17950308 DOI: 10.1016/j.jinsphys.2007.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/31/2007] [Accepted: 09/04/2007] [Indexed: 05/25/2023]
Abstract
The cephalic region of the labial gland in the buff-tailed bumblebee, Bombus terrestris, consists of numerous acini (formed by associated secretory cells and a central lumen) and connecting ducts. Age-dependent changes in secretion production (both qualitative and quantitative) are associated with changes in the amount of rough endoplasmic reticulum (RER), Golgi apparatus, and smooth endoplasmic reticulum (SER). The main secretory organelle is RER in the youngest individuals (pharate, and less-than-a-day old males), Golgi apparatus in 1-day-old males, and SER in males older than 2 days. Secretory cell death starts at 5 days of age, with maximal longevity to 10 days. Pheromone production starts immediately after eclosion, with pheromone quantities increasing until day 7. 2,3-dihydrofarnesol, the main component of the male-marking pheromone, appears in 1-day-old male glands, and reaches a maximum at 7 days of age, when its presence in the gland starts to decrease gradually. Older glands contain compounds not present in young ones. Variation in pheromone quantity and composition are reflected sensitively in the response of the queen antennae. Though queen antennae responded to gland extracts of all ages examined, maximum sensitivity was observed in response to extracts of glands 2-10 days old, while extracts of older glands gradually lose their effectiveness. Both major and minor components of the labial gland secretion extract elicited queen antennal responses suggesting that the pheromone is a multicomponent blend. Age-dependent changes in pheromone production, accumulation and tuning of pheromone activity are all synchronized approximately with male flight from the hive.
Collapse
Affiliation(s)
- Jan Sobotník
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | |
Collapse
|
25
|
Klepal W, Gruber D, Pflugfelder B. Natural cyclic degeneration by a sequence of programmed cell death modes in Semibalanus balanoides (Linnaeus, 1767) (Crustacea, Cirripedia Thoracica). ZOOMORPHOLOGY 2007. [DOI: 10.1007/s00435-007-0050-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|