1
|
Schmidt M, Byrne JM, Maasilta IJ. Bio-imaging with the helium-ion microscope: A review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1-23. [PMID: 33489663 PMCID: PMC7801799 DOI: 10.3762/bjnano.12.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/26/2020] [Indexed: 06/01/2023]
Abstract
Scanning helium-ion microscopy (HIM) is an imaging technique with sub-nanometre resolution and is a powerful tool to resolve some of the tiniest structures in biology. In many aspects, the HIM resembles a field-emission scanning electron microscope (FE-SEM), but the use of helium ions rather than electrons provides several advantages, including higher surface sensitivity, larger depth of field, and a straightforward charge-compensating electron flood gun, which enables imaging of non-conductive samples, rendering HIM a promising high-resolution imaging technique for biological samples. Starting with studies focused on medical research, the last decade has seen some particularly spectacular high-resolution images in studies focused on plants, microbiology, virology, and geomicrobiology. However, HIM is not just an imaging technique. The ability to use the instrument for milling biological objects as small as viruses offers unique opportunities which are not possible with more conventional focused ion beams, such as gallium. Several pioneering technical developments, such as methods to couple secondary ion mass spectrometry (SIMS) or ionoluminescence with the HIM, also offer the possibility for new and exciting research on biological materials. In this review, we present a comprehensive overview of almost all currently published literature which has demonstrated the application of HIM for imaging of biological specimens. We also discuss some technical features of this unique type of instrument and highlight some of the new advances which will likely become more widely used in the years to come.
Collapse
Affiliation(s)
- Matthias Schmidt
- Helmholtz-Centre for Environmental Research GmbH - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - James M Byrne
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, United Kingdom
| | - Ilari J Maasilta
- Nanoscience Center, Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| |
Collapse
|
2
|
Bandara CD, Ballerin G, Leppänen M, Tesfamichael T, Ostrikov KK, Whitchurch CB. Resolving Bio-Nano Interactions of E. coli Bacteria-Dragonfly Wing Interface with Helium Ion and 3D-Structured Illumination Microscopy to Understand Bacterial Death on Nanotopography. ACS Biomater Sci Eng 2020; 6:3925-3932. [PMID: 33463326 DOI: 10.1021/acsbiomaterials.9b01973] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obtaining a comprehensive understanding of the bactericidal mechanisms of natural nanotextured surfaces is crucial for the development of fabricated nanotextured surfaces with efficient bactericidal activity. However, the scale, nature, and speed of bacteria-nanotextured surface interactions make the characterization of the interaction a challenging task. There are currently several different opinions regarding the possible mechanisms by which bacterial membrane damage occurs upon interacting with nanotextured surfaces. Advanced imaging methods could clarify this by enabling visualization of the interaction. Charged particle microscopes can achieve the required nanoscale resolution but are limited to dry samples. In contrast, light-based methods enable the characterization of living (hydrated) samples but are limited by the resolution achievable. Here we utilized both helium ion microscopy (HIM) and 3D structured illumination microscopy (3D-SIM) techniques to understand the interaction of Gram-negative bacterial membranes with nanopillars such as those found on dragonfly wings. Helium ion microscopy enables cutting and imaging at nanoscale resolution, while 3D-SIM is a super-resolution optical microscopy technique that allows visualization of live, unfixed bacteria at ∼100 nm resolution. Upon bacteria-nanopillar interaction, the energy stored due to the bending of natural nanopillars was estimated and compared with fabricated vertically aligned carbon nanotubes. With the same deflection, shorter dragonfly wing nanopillars store slightly higher energy compared to carbon nanotubes. This indicates that fabricated surfaces may achieve similar bactericidal efficiency as dragonfly wings. This study reports in situ characterization of bacteria-nanopillar interactions in real-time close to its natural state. These microscopic approaches will help further understanding of bacterial membrane interactions with nanotextured surfaces and the bactericidal mechanisms of nanotopographies so that more efficient bactericidal nanotextured surfaces can be designed and fabricated, and their bacteria-nanotopography interactions can be assessed in situ.
Collapse
Affiliation(s)
- Chaturanga D Bandara
- The ithree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.,School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Giulia Ballerin
- The ithree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Miika Leppänen
- Nanoscience Center, Department of Physics, Department of Biological and Environmental Science, University of Jyvaskyla, FI-40014 Jyvaskyla, Finland
| | - Tuquabo Tesfamichael
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Kostya Ken Ostrikov
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Cynthia B Whitchurch
- The ithree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
3
|
Cao JJ, Hou ZS, Tian ZN, Hua JG, Zhang YL, Chen QD. Bioinspired Zoom Compound Eyes Enable Variable-Focus Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10107-10117. [PMID: 32046483 DOI: 10.1021/acsami.9b21008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Natural compound eyes provide the inspiration for developing artificial optical devices that feature a large field of view (FOV). However, the imaging ability of artificial compound eyes is generally based on the large number of ommatidia. The lack of a tunable imaging mechanism significantly limits the practical applications of artificial compound eyes, for instance, distinguishing targets at different distances. Herein, we reported zoom compound eyes that enable variable-focus imaging by integrating a deformable poly(dimethylsiloxane) (PDMS) microlens array (MLA) with a microfluidic chamber. The thin and soft PDMS MLA was fabricated by soft lithography using a hard template prepared by a combined technology of femtosecond laser processing and wet etching. As compared with other mechanical machining strategies, our combined technology features high flexibility, efficiency, and uniformity, as well as designable processing capability, since the size, distribution, and arrangement of the ommatidia can be well controlled during femtosecond laser processing. By tuning the volume of water injected into the chamber, the PDMS MLA can deform from a planar structure to a hemispherical shape, evolving into a tunable compound eye of variable FOV up to 180°. More importantly, the tunable chamber can functionalize as the main zoom lens for tunable imaging, which endows the compound eye with the additional capability of distinguishing targets at different distances. Its focal length can be turned from 3.03 mm to infinity with an angular resolution of 3.86 × 10-4 rad. This zoom compound eye combines the advantages of monocular eyes and compound eyes together, holding great promise for developing advanced micro-optical devices that enable large FOV and variable-focus imaging.
Collapse
Affiliation(s)
- Jia-Ji Cao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhi-Shan Hou
- State Key Laboratory of Precision Measurement Technology & Instruments, Department of Precision Instrument, Tsinghua University, Haidian District, Beijing 100084, China
| | - Zhen-Nan Tian
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jian-Guan Hua
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yong-Lai Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Qi-Dai Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
4
|
Wirtz T, De Castro O, Audinot JN, Philipp P. Imaging and Analytics on the Helium Ion Microscope. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:523-543. [PMID: 30699036 DOI: 10.1146/annurev-anchem-061318-115457] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The helium ion microscope (HIM) has emerged as an instrument of choice for patterning, imaging and, more recently, analytics at the nanoscale. Here, we review secondary electron imaging on the HIM and the various methodologies and hardware components that have been developed to confer analytical capabilities to the HIM. Secondary electron-based imaging can be performed at resolutions down to 0.5 nm with high contrast, with high depth of field, and directly on insulating samples. Analytical methods include secondary electron hyperspectral imaging (SEHI), scanning transmission ion microscopy (STIM), backscattering spectrometry and, in particular, secondary ion mass spectrometry (SIMS). The SIMS system that was specifically designed for the HIM allows the detection of all elements, the differentiation between isotopes, and the detection of trace elements. It provides mass spectra, depth profiles, and 2D or 3D images with lateral resolutions down to 10 nm.
Collapse
Affiliation(s)
- Tom Wirtz
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg;
| | - Olivier De Castro
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg;
| | - Jean-Nicolas Audinot
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg;
| | - Patrick Philipp
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg;
| |
Collapse
|
5
|
Leppänen M, Sundberg LR, Laanto E, de Freitas Almeida GM, Papponen P, Maasilta IJ. Imaging Bacterial Colonies and Phage-Bacterium Interaction at Sub-Nanometer Resolution Using Helium-Ion Microscopy. ACTA ACUST UNITED AC 2017; 1:e1700070. [PMID: 32646179 DOI: 10.1002/adbi.201700070] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/01/2017] [Indexed: 11/11/2022]
Abstract
Imaging of microbial interactions has so far been based on well-established electron microscopy methods. This study presents a new way to study bacterial colonies and interactions between bacteria and their viruses, bacteriophages (phages), in situ on agar plates using helium ion microscopy (HIM). In biological imaging, HIM has advantages over traditional scanning electron microscopy with its sub-nanometer resolution, increased surface sensitivity, and the possibility to image nonconductive samples. Furthermore, by controlling the He beam dose or by using heavier Ne ions, the HIM instrument provides the possibility to mill out material in the samples, allowing for subsurface imaging and in situ sectioning. Here, the first HIM-images of bacterial colonies and phage-bacterium interactions are presented at different stages of the infection as they occur on an agar culture. The feasibility of neon and helium milling is also demonstrated to reveal the subsurface structures of bacterial colonies on agar substrate, and in some cases also structure inside individual bacteria after cross-sectioning. The study concludes that HIM offers great opportunities to advance the studies of microbial imaging, in particular in the area of interaction of viruses with cells.
Collapse
Affiliation(s)
- Miika Leppänen
- Nanoscience Center, Department of Physics, University of Jyvaskyla, P. O. Box 35, FI-40014, Jyväskylä, Finland.,Nanoscience Center, Center of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyvaskyla, FI-40014, Jyväskylä, Finland
| | - Lotta-Riina Sundberg
- Nanoscience Center, Center of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyvaskyla, FI-40014, Jyväskylä, Finland
| | - Elina Laanto
- Nanoscience Center, Center of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyvaskyla, FI-40014, Jyväskylä, Finland
| | - Gabriel Magno de Freitas Almeida
- Nanoscience Center, Center of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyvaskyla, FI-40014, Jyväskylä, Finland
| | - Petri Papponen
- Nanoscience Center, Center of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyvaskyla, FI-40014, Jyväskylä, Finland
| | - Ilari J Maasilta
- Nanoscience Center, Department of Physics, University of Jyvaskyla, P. O. Box 35, FI-40014, Jyväskylä, Finland
| |
Collapse
|
6
|
Kaya M, Sargin I, Al-jaf I, Erdogan S, Arslan G. Characteristics of corneal lens chitin in dragonfly compound eyes. Int J Biol Macromol 2016; 89:54-61. [DOI: 10.1016/j.ijbiomac.2016.04.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/12/2016] [Accepted: 04/19/2016] [Indexed: 12/19/2022]
|
7
|
Chandran R, Williams L, Hung A, Nowlin K, LaJeunesse D. SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles. Micron 2015; 82:74-85. [PMID: 26774746 DOI: 10.1016/j.micron.2015.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/18/2023]
Abstract
The cuticles of insects and arthropods have some of the most diverse material properties observed in nature, so much so that it is difficult to imagine that all cutciles are primarily composed of the same two materials: a fibrous chitin network and a matrix composed of cuticle proteins. Various factors contribute to the mechanical and optical properties of an insect or arthropod cuticle including the thickness and composition. In this paper, we also identified another factor that may contribute to the optical, surface, and mechanical properties of a cuticle, i.e. the organization of chitin nanofibers and chitin fiber bundles. Self-assembled chitin nanofibers serve as the foundation for all higher order chitin structures in the cuticles of insects and other arthropods via interactions with structural cuticle proteins. Using a technique that enables the characterization of chitin organization in the cuticle of intact insects and arthropod exoskeletons, we demonstrate a structure/function correlation of chitin organization with larger scale anatomical structures. The chitin scaffolds in cuticles display an extraordinarily diverse set of morphologies that may reflect specific mechanical or physical properties. After removal of the proteinaceous and mineral matrix of a cuticle, we observe using SEM diverse nanoscale and micro scale organization of in-situ chitin in the wing, head, eye, leg, and dorsal and ventral thoracic regions of the periodical cicada Magicicada septendecim and in other insects and arthropods. The organization of chitin also appears to have a significant role in the organization of nanoscale surface structures. While microscale bristles and hairs have long been known to be chitin based materials formed as cellular extensions, we have found a nanostructured layer of chitin in the cuticle of the wing of the dog day annual cicada Tibicen tibicens, which may be the scaffold for the nanocone arrays found on the wing. We also use this process to examine the chitin organizations in the fruit fly, Drosophila melanogaster, and the Atlantic brown shrimp, Farfantepenaeus aztecus. Interestingly many of the homologous anatomical structures from diverse arthropods exhibit similar patterns of chitin organization suggesting that a common set of parameters, govern chitin organization.
Collapse
Affiliation(s)
- Rakkiyappan Chandran
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, 2907 East Gate City Blvd., Greensboro, NC 27401, United States
| | - Lee Williams
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, 2907 East Gate City Blvd., Greensboro, NC 27401, United States
| | - Albert Hung
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Blvd., Greensboro, NC 27401, United States
| | - Kyle Nowlin
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, 2907 East Gate City Blvd., Greensboro, NC 27401, United States
| | - Dennis LaJeunesse
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, 2907 East Gate City Blvd., Greensboro, NC 27401, United States.
| |
Collapse
|
8
|
Abstract
Nipple-like nanostructures covering the corneal surfaces of moths, butterflies, and Drosophila have been studied by electron and atomic force microscopy, and their antireflective properties have been described. In contrast, corneal nanostructures of the majority of other insect orders have either been unexamined or examined by methods that did not allow precise morphological characterization. Here we provide a comprehensive analysis of corneal surfaces in 23 insect orders, revealing a rich diversity of insect corneal nanocoatings. These nanocoatings are categorized into four major morphological patterns and various transitions between them, many, to our knowledge, never described before. Remarkably, this unexpectedly diverse range of the corneal nanostructures replicates the complete set of Turing patterns, thus likely being a result of processes similar to those modeled by Alan Turing in his famous reaction-diffusion system. These findings reveal a beautiful diversity of insect corneal nanostructures and shed light on their molecular origin and evolutionary diversification. They may also be the first-ever biological example of Turing nanopatterns.
Collapse
|
9
|
Nowlin K, Boseman A, Covell A, LaJeunesse D. Adhesion-dependent rupturing of Saccharomyces cerevisiae on biological antimicrobial nanostructured surfaces. J R Soc Interface 2015; 12:20140999. [PMID: 25551144 DOI: 10.1098/rsif.2014.0999] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recent studies have shown that some nanostructured surfaces (NSS), many of which are derived from surfaces found on insect cuticles, rupture and kill adhered prokaryotic microbes. Most important, the nanoscale topography is directly responsible for this effect. Although parameters such as cell adhesion and cell wall rigidity have been suggested to play significant roles in this process, there is little experimental evidence regarding the underlying mechanisms involving NSS-induced microbial rupture. In this work, we report the NSS-induced rupturing of a eukaryotic microorganism, Saccharomyces cerevisiae. We show that the amount of NSS-induced rupture of S. cerevisiae is dependent on both the adhesive qualities of the yeast cell and the nanostructure geometry of the NSS. Thus, we are providing the first empirical evidence that these parameters play a direct role in the rupturing of microbes on NSS. Our observations of this phenomenon with S. cerevisiae, particularly the morphological changes, are strikingly similar to that reported for bacteria despite the differences in the yeast cell wall structure. Consequently, NSS provide a novel approach for the control of microbial growth and development of broad-spectrum microbicidal surfaces.
Collapse
|
10
|
Joens MS, Huynh C, Kasuboski JM, Ferranti D, Sigal YJ, Zeitvogel F, Obst M, Burkhardt CJ, Curran KP, Chalasani SH, Stern LA, Goetze B, Fitzpatrick JAJ. Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution. Sci Rep 2013; 3:3514. [PMID: 24343236 PMCID: PMC3865489 DOI: 10.1038/srep03514] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/26/2013] [Indexed: 11/08/2022] Open
Abstract
Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure.
Collapse
Affiliation(s)
- Matthew S. Joens
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Chuong Huynh
- Ion Microscopy Innovation Center, Carl Zeiss Microscopy LLC, One Corporation Way, Peabody, MA 01960, USA
| | - James M. Kasuboski
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - David Ferranti
- Ion Microscopy Innovation Center, Carl Zeiss Microscopy LLC, One Corporation Way, Peabody, MA 01960, USA
| | - Yury J. Sigal
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fabian Zeitvogel
- Center for Applied Geosciences, University Tübingen, Hoelderlinstr. 12, 72074 Tuebingen, Germany
| | - Martin Obst
- Center for Applied Geosciences, University Tübingen, Hoelderlinstr. 12, 72074 Tuebingen, Germany
| | - Claus J. Burkhardt
- NMI Natural and Medical Sciences Institute, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Kevin P. Curran
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sreekanth H. Chalasani
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lewis A. Stern
- Ion Microscopy Innovation Center, Carl Zeiss Microscopy LLC, One Corporation Way, Peabody, MA 01960, USA
| | - Bernhard Goetze
- Ion Microscopy Innovation Center, Carl Zeiss Microscopy LLC, One Corporation Way, Peabody, MA 01960, USA
| | - James A. J. Fitzpatrick
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|