1
|
Arenas Esteban D, Wang D, Kadu A, Olluyn N, Sánchez-Iglesias A, Gomez-Perez A, González-Casablanca J, Nicolopoulos S, Liz-Marzán LM, Bals S. Quantitative 3D structural analysis of small colloidal assemblies under native conditions by liquid-cell fast electron tomography. Nat Commun 2024; 15:6399. [PMID: 39080248 PMCID: PMC11289127 DOI: 10.1038/s41467-024-50652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Electron tomography has become a commonly used tool to investigate the three-dimensional (3D) structure of nanomaterials, including colloidal nanoparticle assemblies. However, electron microscopy is typically done under high-vacuum conditions, requiring sample preparation for assemblies obtained by wet colloid chemistry methods. This involves solvent evaporation and deposition on a solid support, which consistently alters the nanoparticle organization. Here, we suggest using electron tomography to study nanoparticle assemblies in their original colloidal liquid environment. To address the challenges related to electron tomography in liquid, we devise a method that combines fast data acquisition in a commercial liquid-cell with a dedicated alignment and reconstruction workflow. We present the advantages of this methodology in accurately characterizing two different systems. 3D reconstructions of assemblies comprising polystyrene-capped Au nanoparticles encapsulated in polymeric shells reveal less compact and more distorted configurations for experiments performed in a liquid medium compared to their dried counterparts. A similar expansion can be observed in quantitative analysis of the surface-to-surface distances of self-assembled Au nanorods in water rather than in a vacuum, in agreement with bulk measurements. This study, therefore, emphasizes the importance of developing high-resolution characterization tools that preserve the native environment of colloidal nanostructures.
Collapse
Affiliation(s)
- Daniel Arenas Esteban
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Da Wang
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Ajinkya Kadu
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
| | - Noa Olluyn
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Ana Sánchez-Iglesias
- CIC biomaGUNE, Paseo de Miramon 182, 20009, Donostia-San Sebastián, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramon 182, 20009, Donostia-San Sebastián, Spain
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018, Donostia-San Sebastián, Spain
| | | | | | | | - Luis M Liz-Marzán
- CIC biomaGUNE, Paseo de Miramon 182, 20009, Donostia-San Sebastián, Spain.
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramon 182, 20009, Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.
- Cinbio, Universidade de Vigo, 36310, Vigo, Spain.
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
2
|
Li JY, Wang ZB, Xu ZP, Xiao DD, Gu L, Wang H. Modes of Nanodroplet Formation and Growth on an Ultrathin Water Film. J Phys Chem B 2024; 128:3732-3741. [PMID: 38568211 DOI: 10.1021/acs.jpcb.3c07150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Using nanobubbles as geometrical confinements, we create a thin water film (∼10 nm) in a graphene liquid cell and investigate the evolution of its instability at the nanoscale under transmission electron microscopy. The breakdown of the water films, resulting in the subsequent formation and growth of nanodroplets, is visualized and generalized into different modes. We identified distinct droplet formation and growth modes by analyzing the dynamic processes involving 61 droplets and 110 liquid bridges within 31 Graphene Liquid Cells (GLCs). Droplet formation is influenced by their positions in GLCs, taking on a semicircular shape at the edge and a circular shape in the middle. Growth modes include liquid mass transfer driven by Plateau-Rayleigh instability and merging processes in and out-of-plane of the graphene interface. Droplet growth can lead to the formation of liquid bridges for which we obtain multiview projections. Data analysis reveals the general dynamics of liquid bridges, including drawing liquids from neighboring residual water films, merging with surrounding droplets, and merging with other liquid bridges. Our experimental observations provide insights into fluid transport at the nanoscale.
Collapse
Affiliation(s)
- Jia-Ye Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
| | - Zi-Bing Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
- Institute of Physics, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Zhi-Peng Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
| | - Dong-Dong Xiao
- Institute of Physics, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Science, Beijing 100190, P. R. China
- School of Material Science and Engineering, Tsinghua University, Beijing 100190, P. R. China
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
3
|
Xu J, Gao X, Zheng L, Jia X, Xu K, Ma Y, Wei X, Liu N, Peng H, Wang HW. Graphene sandwich-based biological specimen preparation for cryo-EM analysis. Proc Natl Acad Sci U S A 2024; 121:e2309384121. [PMID: 38252835 PMCID: PMC10835136 DOI: 10.1073/pnas.2309384121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
High-quality specimen preparation plays a crucial role in cryo-electron microscopy (cryo-EM) structural analysis. In this study, we have developed a reliable and convenient technique called the graphene sandwich method for preparing cryo-EM specimens. This method involves using two layers of graphene films that enclose macromolecules on both sides, allowing for an appropriate ice thickness for cryo-EM analysis. The graphene sandwich helps to mitigate beam-induced charging effect and reduce particle motion compared to specimens prepared using the traditional method with graphene support on only one side, therefore improving the cryo-EM data quality. These advancements may open new opportunities to expand the use of graphene in the field of biological electron microscopy.
Collapse
Affiliation(s)
- Jie Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Xiaoyin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Liming Zheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Xia Jia
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Kui Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yuwei Ma
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing100871, China
| | - Xiaoding Wei
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing100871, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Hailin Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
- Beijing Graphene Institute, Beijing100095, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| |
Collapse
|
4
|
Bijelić L, Ruiz-Zepeda F, Hodnik N. The role of high-resolution transmission electron microscopy and aberration corrected scanning transmission electron microscopy in unraveling the structure-property relationships of Pt-based fuel cells electrocatalysts. Inorg Chem Front 2024; 11:323-341. [PMID: 38235274 PMCID: PMC10790562 DOI: 10.1039/d3qi01998e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Platinum-based fuel cell electrocatalysts are structured on a nano level in order to extend their active surface area and maximize the utilization of precious and scarce platinum. Their performance is dictated by the atomic arrangement of their surface layers atoms via structure-property relationships. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are the preferred methods for characterizing these catalysts, due to their capacity to achieve local atomic-level resolutions. Size, morphology, strain and local composition are just some of the properties of Pt-based nanostructures that can be obtained by (S)TEM. Furthermore, advanced methods of (S)TEM are able to provide insights into the quasi-in situ, in situ or even operando stability of these nanostructures. In this review, we present state-of-the-art applications of (S)TEM in the investigation and interpretation of structure-activity and structure-stability relationships.
Collapse
Affiliation(s)
- Lazar Bijelić
- Laboratory for Electrocatalysis, Department of Materials Chemistry, National Insititute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 Nova Gorica SI-5000 Slovenia
| | - Francisco Ruiz-Zepeda
- Laboratory for Electrocatalysis, Department of Materials Chemistry, National Insititute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- Department of Physics and Chemistry of Materials, Institute for Metals and Technology IMT Lepi pot 11 1000 Ljubljana Slovenia
| | - Nejc Hodnik
- Laboratory for Electrocatalysis, Department of Materials Chemistry, National Insititute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 Nova Gorica SI-5000 Slovenia
| |
Collapse
|
5
|
Hirokawa S, Teshima H, Solís-Fernández P, Ago H, Li QY, Takahashi K. Random but limited pressure of graphene liquid cells. Ultramicroscopy 2023; 250:113747. [PMID: 37104983 DOI: 10.1016/j.ultramic.2023.113747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/08/2023] [Accepted: 04/22/2023] [Indexed: 04/29/2023]
Abstract
Even though many researchers have used graphene liquid cells for atomic-resolution observation of liquid samples in the last decade, no one has yet simultaneously measured their three-dimensional shape and pressure. In this study, we have done so with an atomic force microscope, for cells with base radii of 20-134 nm and height of 3.9-21.2 nm. Their inner pressure ranged from 1.0 to 63 MPa but the maximum value decreased as the base radius increased. We discuss the mechanism that results in this inverse relationship by introducing an adhesive force between the graphene membranes. Also, the sample preparation procedure used in this experiment is highly reproducible and transferable to a wide variety of substrates.
Collapse
Affiliation(s)
- Sota Hirokawa
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hideaki Teshima
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Pablo Solís-Fernández
- Global Innovation Center, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Hiroki Ago
- Global Innovation Center, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Qin-Yi Li
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Koji Takahashi
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
6
|
Wang Y, Rastogi D, Malek K, Sun J, Asa-Awuku A, Woehl TJ. Electric Field-Induced Water Condensation Visualized by Vapor-Phase Transmission Electron Microscopy. J Phys Chem A 2023; 127:2545-2553. [PMID: 36913529 DOI: 10.1021/acs.jpca.2c08187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Understanding the nanoscale water condensation dynamics in strong electric fields is important for improving the atmospheric modeling of cloud dynamics and emerging technologies utilizing electric fields for direct air moisture capture. Here, we use vapor-phase transmission electron microscopy (VPTEM) to directly image nanoscale condensation dynamics of sessile water droplets in electric fields. VPTEM imaging of saturated water vapor stimulated condensation of sessile water nanodroplets that grew to a size of ∼500 nm before evaporating over a time scale of a minute. Simulations showed that electron beam charging of the silicon nitride microfluidic channel windows generated electric fields of ∼108 V/m, which depressed the water vapor pressure and effected rapid nucleation of nanosized liquid water droplets. A mass balance model showed that droplet growth was consistent with electric field-induced condensation, while droplet evaporation was consistent with radiolysis-induced evaporation via conversion of water to hydrogen gas. The model quantified several electron beam-sample interactions and vapor transport properties, showed that electron beam heating was insignificant, and demonstrated that literature values significantly underestimated radiolytic hydrogen production and overestimated water vapor diffusivity. This work demonstrates a method for investigating water condensation in strong electric fields and under supersaturated conditions, which is relevant to vapor-liquid equilibrium in the troposphere. While this work identifies several electron beam-sample interactions that impact condensation dynamics, quantification of these phenomena here is expected to enable delineating these artifacts from the physics of interest and accounting for them when imaging more complex vapor-liquid equilibrium phenomena with VPTEM.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Dewansh Rastogi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Kotiba Malek
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Jiayue Sun
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Akua Asa-Awuku
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| |
Collapse
|
7
|
Optomechanical measurement of single nanodroplet evaporation with millisecond time-resolution. Nat Commun 2022; 13:6462. [PMID: 36309523 DOI: 10.1038/s41467-022-34219-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/18/2022] [Indexed: 11/08/2022] Open
Abstract
Tracking the evolution of an individual nanodroplet of liquid in real-time remains an outstanding challenge. Here a miniature optomechanical resonator detects a single nanodroplet landing on a surface and measures its subsequent evaporation down to a volume of twenty attoliters. The ultra-high mechanical frequency and sensitivity of the device enable a time resolution below the millisecond, sufficient to resolve the fast evaporation dynamics under ambient conditions. Using the device dual optical and mechanical capability, we determine the evaporation in the first ten milliseconds to occur at constant contact radius with a dynamics ruled by the mere Kelvin effect, producing evaporation despite a saturated surrounding gas. Over the following hundred of milliseconds, the droplet further shrinks while being accompanied by the spreading of an underlying puddle. In the final steady-state after evaporation, an extended thin liquid film is stabilized on the surface. Our optomechanical technique opens the unique possibility of monitoring all these stages in real-time.
Collapse
|
8
|
Lee C, Huang M, Luo D, Jang JE, Park C, Kang S, Ruoff RS, Jin S, Lee HW. Using Single-Crystal Graphene to Form Arrays of Nanocapsules Enabling the Observation of Light Elements in Liquid Cell Transmission Electron Microscopy. NANO LETTERS 2022; 22:7423-7431. [PMID: 36044736 DOI: 10.1021/acs.nanolett.2c02323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have designed and fabricated a TEM (transmission electron microscopy) liquid cell with hundreds of graphene nanocapsules arranged in a stack of two Si3N4-x membranes. These graphene nanocapsules are formed on arrays of nanoholes patterned on the Si3N4-x membrane by focused ion beam milling, allowing for better resolution than for the conventional graphene liquid cells, which enables the observation of light elements, such as atomic structures of silicon. We suggest that multiple nanocapsules provide opportunities for consecutive imaging under the same conditions in a single liquid cell. The use of single-crystal graphene windows offers an excellent signal-to-noise ratio and high spatial resolution. The motion of silicon nanoparticles (a low atomic number (Z) material) interacting with nanobubbles was observed, and analyzed, in detail. Our approach will help advance liquid-phase TEM observations by providing a straightforward method to encapsulate liquid between monolayers of various 2-dimensional materials.
Collapse
Affiliation(s)
| | - Ming Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Da Luo
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | | | | | | | - Rodney S Ruoff
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | | | | |
Collapse
|
9
|
Zhang X, Zhai W, Fan L, Kim F, Yu Y. In Situ Electron Microscopy Study of the Dynamics of Liquid Flow in Confined Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28882-28889. [PMID: 35708236 DOI: 10.1021/acsami.2c05494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Confined liquid has attracted great attention due to its potential applications in nanofluidic devices. With the development of liquid-cell transmission electron microscopy (LC-TEM), investigating the behaviors of confined liquid can be realized in real time. However, the dynamics of the liquid layer in liquid cells have not been fully understood. Here, nanoparticles (NPs) adhered to the cell window membranes are used as reference objects to study the flow regime of the liquid layer, which causes cooperative motion of the membranes and the NPs. Two categories of motion behaviors are investigated. One is the contraction of NPs toward the interior viewing area which results from the spreading out of the liquid to the surrounding region, with the bending of the membranes increasing with the loss of liquid in the viewing area. The other motion behavior is the occasional movement of all the NPs in the same direction with the directional movement of the liquid layer. This work offers a new method to study the dynamics of liquids by LC-TEM, the discoveries of which are valuable for understanding the confined liquid dynamics.
Collapse
Affiliation(s)
- Xiuli Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Wenbo Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Li Fan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Franklin Kim
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
10
|
Alam SB, Soligno G, Yang J, Bustillo KC, Ercius P, Zheng H, Whitelam S, Chan EM. Dynamics of Polymer Nanocapsule Buckling and Collapse Revealed by In Situ Liquid-Phase TEM. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7168-7178. [PMID: 35621188 DOI: 10.1021/acs.langmuir.2c00432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanocapsules are hollow nanoscale shells that have applications in drug delivery, batteries, self-healing materials, and as model systems for naturally occurring shell geometries. In many applications, nanocapsules are designed to release their cargo as they buckle and collapse, but the details of this transient buckling process have not been directly observed. Here, we use in situ liquid-phase transmission electron microscopy to record the electron-irradiation-induced buckling in spherical 60-187 nm polymer capsules with ∼3.5 nm walls. We observe in real time the release of aqueous cargo from these nanocapsules and their buckling into morphologies with single or multiple indentations. The in situ buckling of nanoscale capsules is compared to ex situ measurements of collapsed and micrometer-sized capsules and to Monte Carlo (MC) simulations. The shape and dynamics of the collapsing nanocapsules are consistent with MC simulations, which reveal that the excessive wrinkling of nanocapsules with ultrathin walls results from their large Föppl-von Kármán numbers around 105. Our experiments suggest design rules for nanocapsules with the desired buckling response based on parameters such as capsule radius, wall thickness, and collapse rate.
Collapse
Affiliation(s)
- Sardar B Alam
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Giuseppe Soligno
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Debye Institute for Nanomaterials Science, Utrecht University, Utrecht 3584 CC, The Netherlands
| | - Jiwoong Yang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Karen C Bustillo
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peter Ercius
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Stephen Whitelam
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Zhang Z, Qiang J, Wang S, Xu M, Gan M, Rao Z, Tian T, Ke S, Zhou Y, Hu Y, Leung CW, Mak CL, Fei L. Visualization of Bubble Nucleation and Growth Confined in 2D Flakes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103301. [PMID: 34473395 DOI: 10.1002/smll.202103301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The nucleation and growth of bubbles within a solid matrix is a ubiquitous phenomenon that affects many natural and synthetic processes. However, such a bubbling process is almost "invisible" to common characterization methods because it has an intrinsically multiphased nature and occurs on very short time/length scales. Using in situ transmission electron microscopy to explore the decomposition of a solid precursor that emits gaseous byproducts, the direct observation of a complete nanoscale bubbling process confined in ultrathin 2D flakes is presented here. This result suggests a three-step pathway for bubble formation in the confined environment: void formation via spinodal decomposition, bubble nucleation from the spherization of voids, and bubble growth by coalescence. Furthermore, the systematic kinetics analysis based on COMSOL simulations shows that bubble growth is actually achieved by developing metastable or unstable necks between neighboring bubbles before coalescing into one. This thorough understanding of the bubbling mechanism in a confined geometry has implications for refining modern nucleation theories and controlling bubble-related processes in the fabrication of advanced materials (i.e., topological porous materials).
Collapse
Affiliation(s)
- Zhouyang Zhang
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jun Qiang
- State Key Laboratory of High-Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Shensong Wang
- Hubei Key Laboratory of Ferro- & Piezoelectric Materials and Devices, School of Microelectronics, Hubei University, Wuhan, Hubei, 430062, China
| | - Ming Xu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Min Gan
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zhenggang Rao
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Tingfang Tian
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shanming Ke
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yangbo Zhou
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yongming Hu
- Hubei Key Laboratory of Ferro- & Piezoelectric Materials and Devices, School of Microelectronics, Hubei University, Wuhan, Hubei, 430062, China
| | - Chi Wah Leung
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chee Leung Mak
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Linfeng Fei
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| |
Collapse
|
12
|
Verification of water presence in graphene liquid cells. Micron 2021; 149:103109. [PMID: 34332298 DOI: 10.1016/j.micron.2021.103109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022]
Abstract
Graphene liquid cells (GLCs) present the thinnest possible sample enclosures for liquid phase electron microscopy. However, the actual presence of liquid within a GLC is not always guaranteed. Of key importance is to reliably test the presence of the liquid, which is most frequently water or saline. Here, the commonly used methods for verifying the presence of water were evaluated. It is shown that depending on the type of sample, applying a single criterion does not always conclusively verify the presence of water. Testing liquid filling for a specific GLC sample preparation protocol should thus be considered critically. The most reliable method is direct observation of the water exciton peak using electron energy loss spectroscopy (EELS). But if this method cannot be carried out, water filling of the GLC can be verified from a combination of higher contrast in the image, the presence of bubbles, and an oxygen signal in the EEL spectrum, which can be accomplished at a high electron dose in spot mode. Nanoparticle movement does not always occur in a GLC.
Collapse
|
13
|
Azim S, Bultema LA, de Kock MB, Osorio-Blanco ER, Calderón M, Gonschior J, Leimkohl JP, Tellkamp F, Bücker R, Schulz EC, Keskin S, de Jonge N, Kassier GH, Miller RJD. Environmental Liquid Cell Technique for Improved Electron Microscopic Imaging of Soft Matter in Solution. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:44-53. [PMID: 33280632 DOI: 10.1017/s1431927620024654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid-phase transmission electron microscopy is a technique for simultaneous imaging of the structure and dynamics of specimens in a liquid environment. The conventional sample geometry consists of a liquid layer tightly sandwiched between two Si3N4 windows with a nominal spacing on the order of 0.5 μm. We describe a variation of the conventional approach, wherein the Si3N4 windows are separated by a 10-μm-thick spacer, thus providing room for gas flow inside the liquid specimen enclosure. Adjusting the pressure and flow speed of humid air inside this environmental liquid cell (ELC) creates a stable liquid layer of controllable thickness on the bottom window, thus facilitating high-resolution observations of low mass-thickness contrast objects at low electron doses. We demonstrate controllable liquid thicknesses in the range 160 ± 34 to 340 ± 71 nm resulting in corresponding edge resolutions of 0.8 ± 0.06 to 1.7 ± 0.8 nm as measured for immersed gold nanoparticles. Liquid layer thickness 40 ± 8 nm allowed imaging of low-contrast polystyrene particles. Hydration effects in the ELC have been studied using poly-N-isopropylacrylamide nanogels with a silica core. Therefore, ELC can be a suitable tool for in situ investigations of liquid specimens.
Collapse
Affiliation(s)
- Sana Azim
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Lindsey A Bultema
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Michiel B de Kock
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
- Centre for Structural Systems Biology, Department of Chemistry, University of Hamburg, Notkestraße 85, 22607Hamburg, Germany
| | | | - Marcelo Calderón
- POLYMAT & Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| | - Josef Gonschior
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Jan-Philipp Leimkohl
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Friedjof Tellkamp
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Robert Bücker
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Eike C Schulz
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Sercan Keskin
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123Saarbrücken, Germany
| | - Niels de Jonge
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123Saarbrücken, Germany
- Department of Physics, Saarland University, Campus D2 2, 66123Saarbrücken, Germany
| | - Günther H Kassier
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
- Departments of Chemistry and Physics, University of Toronto, 80 St. Georg Street, Toronto, ONM5S 3H6, Canada
| |
Collapse
|
14
|
Park J, Koo K, Noh N, Chang JH, Cheong JY, Dae KS, Park JS, Ji S, Kim ID, Yuk JM. Graphene Liquid Cell Electron Microscopy: Progress, Applications, and Perspectives. ACS NANO 2021; 15:288-308. [PMID: 33395264 DOI: 10.1021/acsnano.0c10229] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene liquid cell electron microscopy (GLC-EM), a cutting-edge liquid-phase EM technique, has become a powerful tool to directly visualize wet biological samples and the microstructural dynamics of nanomaterials in liquids. GLC uses graphene sheets with a one carbon atom thickness as a viewing window and a liquid container. As a result, GLC facilitates atomic-scale observation while sustaining intact liquids inside an ultra-high-vacuum transmission electron microscopy chamber. Using GLC-EM, diverse scientific results have been recently reported in the material, colloidal, environmental, and life science fields. Here, the developments of GLC fabrications, such as first-generation veil-type cells, second-generation well-type cells, and third-generation liquid-flowing cells, are summarized. Moreover, recent GLC-EM studies on colloidal nanoparticles, battery electrodes, mineralization, and wet biological samples are also highlighted. Finally, the considerations and future opportunities associated with GLC-EM are discussed to offer broad understanding and insight on atomic-resolution imaging in liquid-state dynamics.
Collapse
Affiliation(s)
- Jungjae Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kunmo Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Namgyu Noh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Joon Ha Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jun Young Cheong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyun Seong Dae
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji Su Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sanghyeon Ji
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jong Min Yuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Nag S, Tomo Y, Takahashi K, Kohno M. Mechanistic Insights into Nanobubble Merging Studied Using In Situ Liquid-Phase Electron Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:874-881. [PMID: 33400870 DOI: 10.1021/acs.langmuir.0c03208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanobubbles have attracted great interest in recent times because of their application in water treatment, surface cleaning, and targeted drug delivery, yet the challenge remains to gain thorough understanding of their unique behavior and dynamics for their utilization in numerous potential applications. In this work, we have used a liquid-phase electron microscopy technique to gain insights into the quasistatic merging of surface nanobubbles. The electron beam environment was controlled in order to suppress any new nucleation and slow down the merging process. The transmission electron microscopy study reveals that merging of closely positioned surface nanobubbles is initiated by gradual localized changes in the physical properties of the region between the adjoining nanobubble boundary. The observed phenomenon is then analyzed and discussed based on the different perceptions: localized liquid density gradient and bridge formation for gas exchange. In this study, it is estimated that the merging of the stable nanobubbles is initiated by the formation of a thin gas layer. This work not only enhances our understanding of the merging process of stable surface nanobubbles but will also lead to exploration of new domains for nanobubble applications.
Collapse
Affiliation(s)
- Sarthak Nag
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| | - Yoko Tomo
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Koji Takahashi
- Department of Aeronautics and Astronautics, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| | - Masamichi Kohno
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
16
|
Alam SB, Yang J, Bustillo KC, Ophus C, Ercius P, Zheng H, Chan EM. Hybrid nanocapsules for in situ TEM imaging of gas evolution reactions in confined liquids. NANOSCALE 2020; 12:18606-18615. [PMID: 32970077 DOI: 10.1039/d0nr05281g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Liquid cell transmission electron microscopy (TEM) enables the direct observation of dynamic physical and chemical processes in liquids at the nanoscale. Quantitative investigations into reactions with fast kinetics and/or multiple reagents will benefit from further advances in liquid cell design that facilitate rapid in situ mixing and precise control over reagent volumes and concentrations. This work reports the development of inorganic-organic nanocapsules for high-resolution TEM imaging of nanoscale reactions in liquids with well-defined zeptoliter volumes. These hybrid nanocapsules, with 48 nm average diameter, consist of a thin layer of gold coating a lipid vesicle. As a model reaction, the nucleation, growth, and diffusion of nanobubbles generated by the radiolysis of water is investigated inside the nanocapsules. When the nanobubbles are sufficiently small (10-25 nm diameter), they are mobile in the nanocapsules, but their movement deviates from Brownian motion, which may result from geometric confinement by the nanocapsules. Gases and fluids can be transported between two nanocapsules when they fuse, demonstrating in situ mixing without using complex microfluidic schemes. The ability to synthesize nanocapsules with controlled sizes and to monitor dynamics simultaneously inside multiple nanocapsules provides opportunities to investigate nanoscale processes such as single nanoparticle synthesis in confined volumes and biological processes such as biomineralization and membrane dynamics.
Collapse
Affiliation(s)
- Sardar B Alam
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Hirokawa S, Teshima H, Solís-Fernández P, Ago H, Tomo Y, Li QY, Takahashi K. Nanoscale Bubble Dynamics Induced by Damage of Graphene Liquid Cells. ACS OMEGA 2020; 5:11180-11185. [PMID: 32455241 PMCID: PMC7241020 DOI: 10.1021/acsomega.0c01207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/24/2020] [Indexed: 05/13/2023]
Abstract
Graphene liquid cells provide the highest possible spatial resolution for liquid-phase transmission electron microscopy. Here, in graphene liquid cells (GLCs), we studied the nanoscale dynamics of bubbles induced by controllable damage in graphene. The extent of damage depended on the electron dose rate and the presence of bubbles in the cell. After graphene was damaged, air leaked from the bubbles into the water. We also observed the unexpected directional nucleation of new bubbles, which is beyond the explanation of conventional diffusion theory. We attributed this to the effect of nanoscale confinement. These findings provide new insights into complex fluid phenomena under nanoscale confinement.
Collapse
Affiliation(s)
- Sota Hirokawa
- Department
of Aeronautics and Astronautics, Kyushu
University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hideaki Teshima
- Department
of Aeronautics and Astronautics, Kyushu
University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International
Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Pablo Solís-Fernández
- Global
Innovation Center, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Hiroki Ago
- Global
Innovation Center, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Yoko Tomo
- Department
of Mechanical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Qin-Yi Li
- Department
of Aeronautics and Astronautics, Kyushu
University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International
Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Koji Takahashi
- Department
of Aeronautics and Astronautics, Kyushu
University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International
Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- . Tel: +81-92-802-3015
| |
Collapse
|
18
|
Pu S, Gong C, Robertson AW. Liquid cell transmission electron microscopy and its applications. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191204. [PMID: 32218950 PMCID: PMC7029903 DOI: 10.1098/rsos.191204] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Transmission electron microscopy (TEM) has long been an essential tool for understanding the structure of materials. Over the past couple of decades, this venerable technique has undergone a number of revolutions, such as the development of aberration correction for atomic level imaging, the realization of cryogenic TEM for imaging biological specimens, and new instrumentation permitting the observation of dynamic systems in situ. Research in the latter has rapidly accelerated in recent years, based on a silicon-chip architecture that permits a versatile array of experiments to be performed under the high vacuum of the TEM. Of particular interest is using these silicon chips to enclose fluids safely inside the TEM, allowing us to observe liquid dynamics at the nanoscale. In situ imaging of liquid phase reactions under TEM can greatly enhance our understanding of fundamental processes in fields from electrochemistry to cell biology. Here, we review how in situ TEM experiments of liquids can be performed, with a particular focus on microchip-encapsulated liquid cell TEM. We will cover the basics of the technique, and its strengths and weaknesses with respect to related in situ TEM methods for characterizing liquid systems. We will show how this technique has provided unique insights into nanomaterial synthesis and manipulation, battery science and biological cells. A discussion on the main challenges of the technique, and potential means to mitigate and overcome them, will also be presented.
Collapse
|
19
|
Yang J, Choi MK, Sheng Y, Jung J, Bustillo K, Chen T, Lee SW, Ercius P, Kim JH, Warner JH, Chan EM, Zheng H. MoS 2 Liquid Cell Electron Microscopy Through Clean and Fast Polymer-Free MoS 2 Transfer. NANO LETTERS 2019; 19:1788-1795. [PMID: 30741548 DOI: 10.1021/acs.nanolett.8b04821] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two dimensional (2D) materials have found various applications because of their unique physical properties. For example, graphene has been used as the electron transparent membrane for liquid cell transmission electron microscopy (TEM) due to its high mechanical strength and flexibility, single-atom thickness, chemical inertness, etc. Here, we report using 2D MoS2 as a functional substrate as well as the membrane window for liquid cell TEM, which is enabled by our facile and polymer-free MoS2 transfer process. This provides the opportunity to investigate the growth of Pt nanocrystals on MoS2 substrates, which elucidates the formation mechanisms of such heterostructured 2D materials. We find that Pt nanocrystals formed in MoS2 liquid cells have a strong tendency to align their crystal lattice with that of MoS2, suggesting a van der Waals epitaxial relationship. Importantly, we can study its impact on the kinetics of the nanocrystal formation. The development of MoS2 liquid cells will allow further study of various liquid phenomena on MoS2, and the polymer-free MoS2 transfer process will be implemented in a wide range of applications.
Collapse
Affiliation(s)
- Jiwoong Yang
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Moon Kee Choi
- Department of Bioengineering and Tsinghua Berkeley Shenzhen Institute , University of California , Berkeley , California 94720 , United States
- Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Yuewen Sheng
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| | - Jaebong Jung
- School of Mechanical Engineering , Pusan National University , Busan 46241 , South Korea
| | - Karen Bustillo
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Tongxin Chen
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| | - Seung-Wuk Lee
- Department of Bioengineering and Tsinghua Berkeley Shenzhen Institute , University of California , Berkeley , California 94720 , United States
- Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Peter Ercius
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Ji Hoon Kim
- School of Mechanical Engineering , Pusan National University , Busan 46241 , South Korea
| | - Jamie H Warner
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| | - Emory M Chan
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Haimei Zheng
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Department of Materials Science and Engineering , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
20
|
Hauwiller MR, Ondry JC, Chan CM, Khandekar P, Yu J, Alivisatos AP. Gold Nanocrystal Etching as a Means of Probing the Dynamic Chemical Environment in Graphene Liquid Cell Electron Microscopy. J Am Chem Soc 2019; 141:4428-4437. [PMID: 30777753 DOI: 10.1021/jacs.9b00082] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Graphene liquid cell electron microscopy has the necessary temporal and spatial resolution to enable the in situ observation of nanoscale dynamics in solution. However, the chemistry of the solution in the liquid cell during imaging is as yet poorly understood due to the generation of a complex mixture of radiolysis products by the electron beam. In this work, the etching trajectories of nanocrystals were used as a probe to determine the effect of the electron beam dose rate and preloaded etchant, FeCl3, on the chemistry of the liquid cell. Initially, illuminating the sample at a low electron beam dose rate generates hydrogen bubbles, providing a reservoir of sacrificial reductant. Increasing the electron beam dose rate leads to a constant etching rate that varies linearly with the electron beam dose rate. Comparing these results with the oxidation potentials of the species in solution, the electron beam likely controls the total concentration of oxidative species in solution and FeCl3 likely controls the relative ratio of oxidative species, independently determining the etching rate and chemical potential of the reaction, respectively. Correlating these liquid cell etching results with the ex situ oxidative etching of gold nanocrystals using FeCl3 provides further insight into the liquid cell chemistry while corroborating the liquid cell dynamics with ex situ synthetic behavior. This understanding of the chemistry in the liquid cell will allow researchers to better control the liquid cell electron microscopy environment, allowing new nanoscale materials science experiments to be conducted systematically in a reproducible manner.
Collapse
Affiliation(s)
| | | | | | | | | | - A Paul Alivisatos
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Kavli Energy NanoScience Institute , University of California-Berkeley and Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|