1
|
Saber H, Chebloune Y, Moussaoui A. Molecular Characterization of Aspergillus flavus Strains Isolated from Animal Feeds. Pol J Microbiol 2022; 71:589-599. [PMID: 36537059 PMCID: PMC9944975 DOI: 10.33073/pjm-2022-048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
Aflatoxin (AF)-producing fungi such as Aspergillus flavus commonly contaminate animal feeds, causing high economic losses. A. flavus is the most prevalent and produces AFB1, a potent mutagen, and carcinogen threatening human and animal health. Aspergillaceae is a large group of closely related fungi sharing number of morphological and genetic similarities that complicate the diagnosis of highly pathogenic strains. We used here morphological and molecular assays to characterize fungal isolates from animal feeds in Southwestern Algeria. These tools helped to identify 20 out of 30 Aspergillus strains, and 15 of them belonged to the Aspergillus section Flavi. Further analyses detected four out of 15 as belonging to Aspergillus flavus-parasiticus group. PCR targeting the AF genes' aflR-aflS(J) intergenic region amplified a single 674 bp amplicon in all four isolates. The amplicons were digested with a BglII endonuclease, and three specific fragments were observed for A. flavus but A. parasitucus lacked two typical fragments. Sequencing data of four amplicons confirmed the presence of the two BglII restriction sites yielding the three fragments, confirming that all four strains were A. flavus. In addition, this analysis illustrated the genetic variability within the A. flavus strains.
Collapse
Affiliation(s)
- Hadjer Saber
- Laboratory of Plant Resources Valorization and Food Safety in Semi-Arid Areas of Southwestern Algeria, Department of Biology, University of Bechar, Bechar, Algeria
| | - Yahia Chebloune
- USC 1450 INRAE/UGA Lentiviral Pathogenesis and Vaccination Laboratory, Department of Biology, University of Grenoble Alpes, Saint-Martin-d’Hères, France, Y. Chebloune, Lentiviral Pathogenesis and Vaccination Laboratory, PAVAL Lab., Department of Biology, University of Grenoble Alpes, Saint-Martin-d’Hères, France;
| | - Abdallah Moussaoui
- Laboratory of Plant Resources Valorization and Food Safety in Semi-Arid Areas of Southwestern Algeria, Department of Biology, University of Bechar, Bechar, Algeria
| |
Collapse
|
2
|
Rudramurthy SM, Paul RA, Chakrabarti A, Mouton JW, Meis JF. Invasive Aspergillosis by Aspergillus flavus: Epidemiology, Diagnosis, Antifungal Resistance, and Management. J Fungi (Basel) 2019; 5:jof5030055. [PMID: 31266196 PMCID: PMC6787648 DOI: 10.3390/jof5030055] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Aspergillus flavus is the second most common etiological agent of invasive aspergillosis (IA) after A. fumigatus. However, most literature describes IA in relation to A. fumigatus or together with other Aspergillus species. Certain differences exist in IA caused by A. flavus and A. fumigatus and studies on A. flavus infections are increasing. Hence, we performed a comprehensive updated review on IA due to A. flavus. A. flavus is the cause of a broad spectrum of human diseases predominantly in Asia, the Middle East, and Africa possibly due to its ability to survive better in hot and arid climatic conditions compared to other Aspergillus spp. Worldwide, ~10% of cases of bronchopulmonary aspergillosis are caused by A. flavus. Outbreaks have usually been associated with construction activities as invasive pulmonary aspergillosis in immunocompromised patients and cutaneous, subcutaneous, and mucosal forms in immunocompetent individuals. Multilocus microsatellite typing is well standardized to differentiate A. flavus isolates into different clades. A. flavus is intrinsically resistant to polyenes. In contrast to A. fumigatus, triazole resistance infrequently occurs in A. flavus and is associated with mutations in the cyp51C gene. Overexpression of efflux pumps in non-wildtype strains lacking mutations in the cyp51 gene can also lead to high voriconazole minimum inhibitory concentrations. Voriconazole remains the drug of choice for treatment, and amphotericin B should be avoided. Primary therapy with echinocandins is not the first choice but the combination with voriconazole or as monotherapy may be used when the azoles and amphotericin B are contraindicated.
Collapse
Affiliation(s)
- Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Research, Chandigarh 160012, India.
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015GD Rotterdam, The Netherlands.
| | - Raees A Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Research, Chandigarh 160012, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Research, Chandigarh 160012, India
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015GD Rotterdam, The Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ) and Center of Expertise, 6532SZ Nijmegen, The Netherlands
- Center of Expertise in Mycology Radboudumc/CWZ, 6532SZ Nijmegen, The Netherlands
| |
Collapse
|
3
|
Refojo N, Duarte-Escalante E, Dignani MC, Hevia AI, Abrantes RA, Davel G, Canteros C, Frías de León MG, Acosta-Altamirano G, Zúñiga G, Reyes-Montes MDR. [Genotyping of clinical isolates of Aspergillus flavus and its relationship with environmental isolates of an oncohematological center]. Rev Iberoam Micol 2012; 30:25-30. [PMID: 23036749 DOI: 10.1016/j.riam.2012.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 08/09/2012] [Accepted: 09/10/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND During 4 months, and while conducting an environmental sampling of air, 2 cases of aspergillosis by Aspergillus flavus (A. flavus) were diagnosed at an oncohematological center in Buenos Aires, Argentina. AIMS The aim of this study was to know the variability and the genetic relationship between the clinical and environmental isolates, obtained in the oncohematological center. METHODS Two genotyping techniques of different discriminatory power (RAPD and AFLP) were used. A genetic similarity matrix was calculated using Jaccard method and was the basis for the construction of a dendrogram by UPGMA. The level of genetic variability was assessed by measuring the percentage of polymorphic loci, number of effective allele, expected heterocygozity and association index test (I(A)). RESULTS The dendrogram reveals that the A. flavus isolates recovered from the patients were not genetically related to those gotten from the rooms occupied by the patients. The environmental isolates had higher values of genetic diversity than the clinical isolates. The I(A) estimated for all the isolates suggest that recombination events occurred. CONCLUSIONS Patients 1 and 2 were not infected with isolates from the nosocomial environment. Clinical and environmental isolates of A. flavus showed high genetic variability among them.
Collapse
Affiliation(s)
- Nicolás Refojo
- Departamento de Micología, INEI ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wang DY, Hadj-Henni L, Thierry S, Arné P, Chermette R, Botterel F, Hadrich I, Makni F, Ayadi A, Ranque S, Huang WY, Guillot J. Simple and highly discriminatory VNTR-based multiplex PCR for tracing sources of Aspergillus flavus isolates. PLoS One 2012; 7:e44204. [PMID: 23028503 PMCID: PMC3444452 DOI: 10.1371/journal.pone.0044204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/30/2012] [Indexed: 11/26/2022] Open
Abstract
Aspergillus flavus is second only to A. fumigatus in causing invasive aspergillosis and it is the major agent responsible for fungal sinusitis, keratitis and endophthalmitis in many countries in the Middle East, Africa and Southeast Asia. Despite the growing challenge due to A. flavus, data on the molecular epidemiology of this fungus remain scarce. The objective of the present study was to develop a new typing method based on the detection of VNTR (Variable number tandem repeat) markers. Eight VNTR markers located on 6 different chromosomes (1, 2, 3, 5, 7 and 8) of A. flavus were selected, combined by pairs for multiplex amplifications and tested on 30 unrelated isolates and six reference strains. The Simpson index for individual markers ranged from 0.398 to 0.818. A combined loci index calculated with all the markers yielded an index of 0.998. The MLVA (Multiple Locus VNTR Analysis) technique proved to be specific and reproducible. In a second time, a total of 55 isolates from Chinese avian farms and from a Tunisian hospital have been evaluated. One major cluster of genotypes could be defined by using the graphing algorithm termed Minimum Spanning Tree. This cluster comprised most of the isolates collected in an avian farm in southern China. The MLVA technique should be considered as an excellent and cost-effective typing method that could be used in many laboratories without the need for sophisticated equipment.
Collapse
Affiliation(s)
- Dong Ying Wang
- Parasitology Department, College of Animal Science and Technology, Guangxi University, Nanning, China
- ANSES, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
| | - Leila Hadj-Henni
- ANSES, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
| | - Simon Thierry
- ANSES, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
| | - Pascal Arné
- ENVA, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
| | - René Chermette
- ENVA, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
| | | | - Inès Hadrich
- Laboratoire de Biologie Moléculaire Parasitaire et Fongique, Faculté de Médecine de Sfax, Sfax, Tunisia
| | - Fattouma Makni
- Laboratoire de Biologie Moléculaire Parasitaire et Fongique, Faculté de Médecine de Sfax, Sfax, Tunisia
| | - Ali Ayadi
- Laboratoire de Biologie Moléculaire Parasitaire et Fongique, Faculté de Médecine de Sfax, Sfax, Tunisia
| | - Stéphane Ranque
- Aix-Marseille Université, UMR MD3, Marseille, France
- APHM, Timone, Laboratoire de Parasitologie-Mycologie, Marseille, France
| | - Wei Yi Huang
- Parasitology Department, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jacques Guillot
- ENVA, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
- * E-mail:
| |
Collapse
|
5
|
De Ravin SS, Challipalli M, Anderson V, Shea YR, Marciano B, Hilligoss D, Marquesen M, Decastro R, Liu YC, Sutton DA, Wickes BL, Kammeyer PL, Sigler L, Sullivan K, Kang EM, Malech HL, Holland SM, Zelazny AM. Geosmithia argillacea: an emerging cause of invasive mycosis in human chronic granulomatous disease. Clin Infect Dis 2011; 52:e136-43. [PMID: 21367720 DOI: 10.1093/cid/ciq250] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Chronic granulomatous disease (CGD) is an inherited disorder of the nicotinamide adenine dinucleotide phosphate oxidase that leads to defective production of microbicidal superoxide and other oxidative radicals, resulting in increased susceptibility to invasive infections, especially those due to fungi. METHODS Geosmithia argillacea was identified from cultured isolates by genomic sequencing of the internal transcribed spacer region. Isolates previously identified as Paecilomyces variotii, a filamentous fungus closely resembling G. argillacea, were also examined. RESULTS We identified G. argillacea as the cause of invasive mycosis in 7 CGD patients. In 5 cases, the fungus had been previously identified morphologically as P. variotii. All patients had pulmonary lesions; 1 had disseminated lesions following inhalational pneumonia. Infections involved the chest wall and contiguous ribs in 2 patients and disseminated to the brain in 1 patient. Four patients with pneumonia underwent surgical intervention. All patients responded poorly to medical treatment, and 3 died. CONCLUSIONS We report the first cases of invasive mycosis caused by G. argillacea in CGD patients. G. argillacea infections in CGD are often refractory and severe with a high fatality rate. Surgical intervention has been effective in some cases. G. argillacea is a previously underappreciated and frequently misidentified pathogen in CGD that should be excluded when P. variotii is identified morphologically.
Collapse
Affiliation(s)
- Suk See De Ravin
- Laboratory of Host Defense, National Institutes of Allergy and Infectious Diseases, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
A review molecular typing methods for Aspergillus flavus isolates. Mycopathologia 2011; 172:83-93. [PMID: 21369748 DOI: 10.1007/s11046-011-9406-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
Aspergillus flavus is the second most important Aspergillus species causing human infections. The importance of this fungus increases in regions with a dry and hot climate. Small phylogenetic studies in Aspergillus flavus indicate that the morphological species contains several genetically isolated species. Different genotyping methods have been developed and employed in order to better understand the genetic and epidemiological relationships between environmental and clinical isolates. Understanding pathogen distribution and relatedness is essential for determining the epidemiology of nosocomial infections and aiding in the design of rational pathogen control methods. Typing techniques can also give us a deeper understanding of the colonization pattern in patients. Most of these studies focused on Aspergillus fumigatus because it is medically the most isolated species. To date, there has not been any publication exclusively reviewing the molecular typing techniques for Aspergillus flavus in the literature. This article reviews all these different available methods for this organism.
Collapse
|
7
|
Rudramurthy SM, de Valk HA, Chakrabarti A, Meis JFGM, Klaassen CHW. High resolution genotyping of clinical Aspergillus flavus isolates from India using microsatellites. PLoS One 2011; 6:e16086. [PMID: 21264229 PMCID: PMC3022034 DOI: 10.1371/journal.pone.0016086] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/06/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Worldwide, Aspergillus flavus is the second leading cause of allergic, invasive and colonizing fungal diseases in humans. However, it is the most common species causing fungal rhinosinusitis and eye infections in tropical countries. Despite the growing challenges due to A. flavus, the molecular epidemiology of this fungus has not been well studied. We evaluated the use of microsatellites for high resolution genotyping of A. flavus from India and a possible connection between clinical presentation and genotype of the involved isolate. METHODOLOGY/PRINCIPAL FINDINGS A panel of nine microsatellite markers were selected from the genome of A. flavus NRRL 3357. These markers were used to type 162 clinical isolates of A. flavus. All nine markers proved to be polymorphic displaying up to 33 alleles per marker. Thirteen isolates proved to be a mixture of different genotypes. Among the 149 pure isolates, 124 different genotypes could be recognized. The discriminatory power (D) for the individual markers ranged from 0.657 to 0.954. The D value of the panel of nine markers combined was 0.997. The multiplex multicolor approach was instrumental in rapid typing of a large number of isolates. There was no correlation between genotype and the clinical presentation of the infection. CONCLUSIONS/SIGNIFICANCE There is a large genotypic diversity in clinical A. flavus isolates from India. The presence of more than one genotype in clinical samples illustrates the possibility that persons may be colonized by multiple genotypes and that any isolate from a clinical specimen is not necessarily the one actually causing infection. Microsatellites are excellent typing targets for discriminating between A. flavus isolates from various origins.
Collapse
Affiliation(s)
- Shivaprakash M. Rudramurthy
- Mycology Division, Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Hanneke A. de Valk
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Arunaloke Chakrabarti
- Mycology Division, Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jacques F. G. M. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Corné H. W. Klaassen
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|