1
|
Tyagi A, Mir ZA, Ali S. Revisiting the Role of Sensors for Shaping Plant Research: Applications and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2024; 24:3261. [PMID: 38894052 PMCID: PMC11174810 DOI: 10.3390/s24113261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024]
Abstract
Plant health monitoring is essential for understanding the impact of environmental stressors (biotic and abiotic) on crop production, and for tailoring plant developmental and adaptive responses accordingly. Plants are constantly exposed to different stressors like pathogens and soil pollutants (heavy metals and pesticides) which pose a serious threat to their survival and to human health. Plants have the ability to respond to environmental stressors by undergoing rapid transcriptional, translational, and metabolic reprogramming at different cellular compartments in order to balance growth and adaptive responses. However, plants' exceptional responsiveness to environmental cues is highly complex, which is driven by diverse signaling molecules such as calcium Ca2+, reactive oxygen species (ROS), hormones, small peptides and metabolites. Additionally, other factors like pH also influence these responses. The regulation and occurrence of these plant signaling molecules are often undetectable, necessitating nondestructive, live research approaches to understand their molecular complexity and functional traits during growth and stress conditions. With the advent of sensors, in vivo and in vitro understanding of some of these processes associated with plant physiology, signaling, metabolism, and development has provided a novel platform not only for decoding the biochemical complexity of signaling pathways but also for targeted engineering to improve diverse plant traits. The application of sensors in detecting pathogens and soil pollutants like heavy metal and pesticides plays a key role in protecting plant and human health. In this review, we provide an update on sensors used in plant biology for the detection of diverse signaling molecules and their functional attributes. We also discuss different types of sensors (biosensors and nanosensors) used in agriculture for detecting pesticides, pathogens and pollutants.
Collapse
Affiliation(s)
- Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Zahoor Ahmad Mir
- Department of Plant Science and Agriculture, University of Manitoba, Winnipeg, MB R2M0TB, Canada;
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
2
|
Guliy OI, Karavaeva OA, Smirnov AV, Eremin SA, Bunin VD. Optical Sensors for Bacterial Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:9391. [PMID: 38067765 PMCID: PMC10708710 DOI: 10.3390/s23239391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Analytical devices for bacterial detection are an integral part of modern laboratory medicine, as they permit the early diagnosis of diseases and their timely treatment. Therefore, special attention is directed to the development of and improvements in monitoring and diagnostic methods, including biosensor-based ones. A promising direction in the development of bacterial detection methods is optical sensor systems based on colorimetric and fluorescence techniques, the surface plasmon resonance, and the measurement of orientational effects. This review shows the detecting capabilities of these systems and the promise of electro-optical analysis for bacterial detection. It also discusses the advantages and disadvantages of optical sensor systems and the prospects for their further improvement.
Collapse
Affiliation(s)
- Olga I. Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia;
| | - Olga A. Karavaeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia;
| | - Andrey V. Smirnov
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia;
| | - Sergei A. Eremin
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russia;
| | | |
Collapse
|
3
|
Nanotechnology for Nanophytopathogens: From Detection to the Management of Plant Viruses. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8688584. [PMID: 36225980 PMCID: PMC9550482 DOI: 10.1155/2022/8688584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
Plant viruses are the most destructive pathogens which cause devastating losses to crops due to their diversity in the genome, rapid evolution, mutation or recombination in the genome, and lack of management options. It is important to develop a reliable remedy to improve the management of plant viral diseases in economically important crops. Some reports show the efficiency of metal nanoparticles and engineered nanomaterials and their wide range of applications in nanoagriculture. Currently, there are reports for the use of nanoparticles as an antibacterial and antifungal agent in plants and animals too, but few reports as plant antiviral. “Nanophytovirology” has been emerged as a new branch that covers nanobased management approaches to deal with devastating plant viruses. Varied nanoparticles have specific physicochemical properties that help them to interact in various unique and useful ways with viruses and their vectors along with the host plants. To explore the antiviral role of nanoparticles and for the effective management of plant viruses, it is imperative to understand all minute details such as the concentration/dosage of nanoparticles, time of application, application interval, and their mechanism of action. This review focused on different aspects of metal nanoparticles and metal oxides such as their interaction with plant viruses to explore the antiviral role and the multidimensional perspective of nanotechnology in plant viral disease detection, treatment, and management.
Collapse
|
4
|
Cassedy A, Mullins E, O'Kennedy R. Sowing seeds for the future: The need for on-site plant diagnostics. Biotechnol Adv 2020; 39:107358. [DOI: 10.1016/j.biotechadv.2019.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 01/28/2019] [Accepted: 02/21/2019] [Indexed: 01/09/2023]
|
5
|
Bilkiss M, Shiddiky MJA, Ford R. Advanced Diagnostic Approaches for Necrotrophic Fungal Pathogens of Temperate Legumes With a Focus on Botrytis spp. Front Microbiol 2019; 10:1889. [PMID: 31474966 PMCID: PMC6702891 DOI: 10.3389/fmicb.2019.01889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/30/2019] [Indexed: 01/05/2023] Open
Abstract
Plant pathogens reduce global crop productivity by up to 40% per annum, causing enormous economic loss and potential environmental effects from chemical management practices. Thus, early diagnosis and quantitation of the causal pathogen species for accurate and timely disease control is crucial. Botrytis Gray Mold (BGM), caused by Botrytis cinerea and B. fabae, can seriously impact production of temperate grain legumes separately or within a complex. Accordingly, several immunogenic and molecular probe-type protocols have been developed for their diagnosis, but these have varying levels of species-specificity, sensitivity and consequent usefulness within the paddock. To substantially improve speed, accuracy and sensitivity, advanced nanoparticle-based biosensor approaches have been developed. These novel methods have made enormous impact toward disease diagnosis in the medical sciences and offer potential for transformational change within the field of plant pathology and disease management, with early and accurate diagnosis at the point-of-care in the field. Here we review several recently developed diagnostic tools that build on traditional approaches and are available for pathogen diagnosis, specifically for Botrytis spp. diagnostic applications. We then identify the specific gaps in knowledge and current limitations to these existing tools.
Collapse
Affiliation(s)
- Marzia Bilkiss
- School of Environment and Science, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia.,Queensland Micro- and Nanotechnology Centre (QMNC), Nathan, QLD, Australia
| | - Rebecca Ford
- School of Environment and Science, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
6
|
Li Z, Paul R, Ba Tis T, Saville AC, Hansel JC, Yu T, Ristaino JB, Wei Q. Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. NATURE PLANTS 2019; 5:856-866. [PMID: 31358961 DOI: 10.1038/s41477-019-0476-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/13/2019] [Indexed: 05/20/2023]
Abstract
Plant pathogen detection conventionally relies on molecular technology that is complicated, time-consuming and constrained to centralized laboratories. We developed a cost-effective smartphone-based volatile organic compound (VOC) fingerprinting platform that allows non-invasive diagnosis of late blight caused by Phytophthora infestans by monitoring characteristic leaf volatile emissions in the field. This handheld device integrates a disposable colourimetric sensor array consisting of plasmonic nanocolorants and chemo-responsive organic dyes to detect key plant volatiles at the ppm level within 1 min of reaction. We demonstrate the multiplexed detection and classification of ten individual plant volatiles with this field-portable VOC-sensing platform, which allows for early detection of tomato late blight 2 d after inoculation, and differentiation from other pathogens of tomato that lead to similar symptoms on tomato foliage. Furthermore, we demonstrate a detection accuracy of ≥95% in diagnosis of P. infestans in both laboratory-inoculated and field-collected tomato leaves in blind pilot tests. Finally, the sensor platform has been beta-tested for detection of P. infestans in symptomless tomato plants in the greenhouse setting.
Collapse
Affiliation(s)
- Zheng Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Taleb Ba Tis
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - Amanda C Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Jeana C Hansel
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Tao Yu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jean B Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
7
|
Tam YJ, Zeenathul NA, Rezaei MA, Mustafa NH, Azmi MLM, Bahaman AR, Lo SC, Tan JS, Hani H, Rasedee A. Wide dynamic range of surface-plasmon-resonance-based assay for hepatitis B surface antigen antibody optimal detection in comparison with ELISA. Biotechnol Appl Biochem 2017; 64:735-744. [PMID: 27506960 DOI: 10.1002/bab.1528] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/01/2016] [Indexed: 11/09/2022]
Abstract
Limit of detection (LOD), limit of quantification, and the dynamic range of detection of hepatitis B surface antigen antibody (anti-HBs) using a surface plasmon resonance (SPR) chip-based approach with Pichia pastoris-derived recombinant hepatitis B surface antigen (HBsAg) as recognition element were established through the scouting for optimal conditions for the improvement of immobilization efficiency and in the use of optimal regeneration buffer. Recombinant HBsAg was immobilized onto the sensor surface of a CM5 chip at a concentration of 150 mg/L in sodium acetate buffer at pH 4 with added 0.6% Triton X-100. A regeneration solution of 20 mM HCl was optimally found to effectively unbind analytes from the ligand, thus allowing for multiple screening cycles. A dynamic range of detection of ∼0.00098-0.25 mg/L was obtained, and a sevenfold higher LOD, as well as a twofold increase in coefficient of variance of the replicated results, was shown as compared with enzyme-linked immunosorbent assay (ELISA). Evaluation of the assay for specificity showed no cross-reactivity with other antibodies tested. The ability of SPR chip-based assay and ELISA to detect anti-HBs in human serum was comparable, indicating that the SPR chip-based assay with its multiple screening capacity has greater advantage over ELISA.
Collapse
Affiliation(s)
- Yew Joon Tam
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia.,Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nazariah Allaudin Zeenathul
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia.,Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Morvarid Akhavan Rezaei
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia.,Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nor Hidayah Mustafa
- Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Lila Mohd Azmi
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Abdul Rani Bahaman
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sewn Cen Lo
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia.,Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Joo Shun Tan
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Homayoun Hani
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Abdullah Rasedee
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
8
|
Khater M, de la Escosura-Muñiz A, Merkoçi A. Biosensors for plant pathogen detection. Biosens Bioelectron 2016; 93:72-86. [PMID: 27818053 DOI: 10.1016/j.bios.2016.09.091] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/15/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
Infectious plant diseases are caused by pathogenic microorganisms such as fungi, bacteria, viruses, viroids, phytoplasma and nematodes. Worldwide, plant pathogen infections are among main factors limiting crop productivity and increasing economic losses. Plant pathogen detection is important as first step to manage a plant disease in greenhouses, field conditions and at the country boarders. Current immunological techniques used to detect pathogens in plant include enzyme-linked immunosorbent assays (ELISA) and direct tissue blot immunoassays (DTBIA). DNA-based techniques such as polymerase chain reaction (PCR), real time PCR (RT-PCR) and dot blot hybridization have also been proposed for pathogen identification and detection. However these methodologies are time-consuming and require complex instruments, being not suitable for in-situ analysis. Consequently, there is strong interest for developing new biosensing systems for early detection of plant diseases with high sensitivity and specificity at the point-of-care. In this context, we revise here the recent advancement in the development of advantageous biosensing systems for plant pathogen detection based on both antibody and DNA receptors. The use of different nanomaterials such as nanochannels and metallic nanoparticles for the development of innovative and sensitive biosensing systems for the detection of pathogens (i.e. bacteria and viruses) at the point-of-care is also shown. Plastic and paper-based platforms have been used for this purpose, offering cheap and easy-to-use really integrated sensing systems for rapid on-site detection. Beside devices developed at research and development level a brief revision of commercially available kits is also included in this review.
Collapse
Affiliation(s)
- Mohga Khater
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, 08193 Barcelona, Spain; On leave from Agricultural Research Center (ARC), Ministry of Agriculture and Land Reclamation, Giza, Egypt
| | - Alfredo de la Escosura-Muñiz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, 08193 Barcelona, Spain
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, 08193 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
9
|
Ray M, Ray A, Dash S, Mishra A, Achary KG, Nayak S, Singh S. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors. Biosens Bioelectron 2016; 87:708-723. [PMID: 27649327 DOI: 10.1016/j.bios.2016.09.032] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/25/2016] [Accepted: 09/10/2016] [Indexed: 11/19/2022]
Abstract
Fungal diseases in commercially important plants results in a significant reduction in both quality and yield, often leading to the loss of an entire plant. In order to minimize the losses, it is essential to detect and identify the pathogens at an early stage. Early detection and accurate identification of pathogens can control the spread of infection. The present article provides a comprehensive overview of conventional methods, current trends and advances in fungal pathogen detection with an emphasis on biosensors. Traditional techniques are the "gold standard" in fungal detection which relies on symptoms, culture-based, morphological observation and biochemical identifications. In recent times, with the advancement of biotechnology, molecular and immunological approaches have revolutionized fungal disease detection. But the drawback lies in the fact that these methods require specific and expensive equipments. Thus, there is an urgent need for rapid, reliable, sensitive, cost effective and easy to use diagnostic methods for fungal pathogen detection. Biosensors would become a promising and attractive alternative, but they still have to be subjected to some modifications, improvements and proper validation for on-field use.
Collapse
Affiliation(s)
- Monalisa Ray
- Centre of Biotechnology, Siksha O Anusandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India
| | - Asit Ray
- Centre of Biotechnology, Siksha O Anusandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India
| | - Swagatika Dash
- Centre of Biotechnology, Siksha O Anusandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India
| | - Abtar Mishra
- Centre of Biotechnology, Siksha O Anusandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India
| | | | - Sanghamitra Nayak
- Centre of Biotechnology, Siksha O Anusandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India
| | - Shikha Singh
- Centre of Biotechnology, Siksha O Anusandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India.
| |
Collapse
|
10
|
Pahlow S, Kloß S, Blättel V, Kirsch K, Hübner U, Cialla D, Rösch P, Weber K, Popp J. Isolation and enrichment of pathogens with a surface-modified aluminium chip for Raman spectroscopic applications. Chemphyschem 2013; 14:3600-5. [PMID: 23943577 DOI: 10.1002/cphc.201300543] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/07/2013] [Indexed: 11/09/2022]
Abstract
We developed a Raman-compatible chip for isolating microorganisms from complex media. The isolation of bacteria is achieved by using antibodies as capture molecules. Due to the very specific interaction with the targets, this approach is promising for isolation of bacteria even from complex matrices such as body fluids. Our choice of capture molecules also enabled the investigation of samples containing yet unidentified bacteria, as the antibodies can capture a large variety of bacteria based on their analogue cell wall surface structures. The capability of our system is demonstrated for a broad range of different Gram-positive and Gram-negative germs. Subsequent identification is done by recording Raman spectra of the bacteria. Further, it is shown that classification with chemometric methods is possible.
Collapse
Affiliation(s)
- Susanne Pahlow
- Spectroscopy and Imaging, Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena (Germany), Fax: (+49) (0)3641 206 399; Institute of Physical Chemistry, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
An overview of transducers as platform for the rapid detection of foodborne pathogens. Appl Microbiol Biotechnol 2013; 97:1829-40. [PMID: 23329385 DOI: 10.1007/s00253-013-4692-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/29/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
Abstract
The driving advent of portable, integrated biosensing ways for pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques. The miniaturization and automation of integrated detection systems present a significant advantage for rapid, portable detection of foodborne microbes. In this review, we have highlighted current developments and directions in foodborne pathogen detection systems. Recent progress in the biosensor protocols toward the detection of specific microbes has been elaborated in detail. It also includes strategies and challenges for the implementation of a portable platform toward rapid foodborne sensing systems.
Collapse
|
12
|
Vittal R, Haudenshield JS, Hartman GL. A multiplexed immunofluorescence method identifies Phakopsora pachyrhizi Urediniospores and determines their viability. PHYTOPATHOLOGY 2012; 102:1143-1152. [PMID: 22894915 DOI: 10.1094/phyto-02-12-0040-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Soybean rust, caused by Phakopsora pachyrhizi, occurs concomitantly wherever soybean is grown in the tropical and subtropical regions of the world. After reports of its first occurrence in Brazil in 2001 and the continental United States in 2004, research on the disease and its pathogen has greatly increased. One area of research has focused on capturing urediniospores, primarily by rain collection or wind traps, and detecting them either by microscopic observations or by immunological or molecular techniques. This system of detection has been touted for use as a potential warning system to recommend early applications of fungicides. One shortcoming of the method has been an inability to determine whether the spores are viable. Our study developed a method to detect viable P. pachyrhizi urediniospores using an immunofluorescence assay combined with propidium iodide (PI) staining. Antibodies reacted to P. pachyrhizi and other Phakopsora spp. but did not react with other common soybean pathogens or most other rust fungi tested, based on an indirect immunofluorescence assay using fluorescein isothiocyanate-labeled secondary antibodies. Two vital staining techniques were used to assess viability of P. pachyrhizi urediniospores: one combined carboxy fluorescein diacetate (CFDA) and PI, and the other utilized (2-chloro-4-[2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene]-1-phenylquinolinium iodide] (FUN 1). Using the CFDA-PI method, viable spores stained green with CFDA and nonviable spores counterstained red with PI. Using the FUN 1 method, cylindrical intravacuolar structures were induced to form within metabolically active urediniospores, causing them to fluoresce bright red to reddish-orange, whereas dead spores, with no metabolic activity, had an extremely diffused, faint fluorescence. An immunofluorescence technique in combination with PI counterstaining was developed to specifically detect viable P. pachyrhizi urediniospores. The method is rapid and reliable, with a potential for application in forecasting soybean rust based on the detection of viable urediniospores.
Collapse
Affiliation(s)
- R Vittal
- Department of Crop Sciences, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
13
|
|
14
|
Marusov G, Sweatt A, Pietrosimone K, Benson D, Geary SJ, Silbart LK, Challa S, Lagoy J, Lawrence DA, Lynes MA. A microarray biosensor for multiplexed detection of microbes using grating-coupled surface plasmon resonance imaging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:348-59. [PMID: 22029256 PMCID: PMC3312245 DOI: 10.1021/es201239f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Grating-coupled surface plasmon resonance imaging (GCSPRI) utilizes an optical diffraction grating embossed on a gold-coated sensor chip to couple collimated incident light into surface plasmons. The angle at which this coupling occurs is sensitive to the capture of analyte at the chip surface. This approach permits the use of disposable biosensor chips that can be mass-produced at low cost and spotted in microarray format to greatly increase multiplexing capabilities. The current GCSPRI instrument has the capacity to simultaneously measure binding at over 1000 unique, discrete regions of interest (ROIs) by utilizing a compact microarray of antibodies or other specific capture molecules immobilized on the sensor chip. In this report, we describe the use of GCSPRI to directly detect multiple analytes over a large dynamic range, including soluble protein toxins, bacterial cells, and viruses, in near real-time. GCSPRI was used to detect a variety of agents that would be useful for diagnostic and environmental sensing purposes, including macromolecular antigens, a nontoxic form of Pseudomonas aeruginosa exotoxin A (ntPE), Bacillus globigii, Mycoplasma hyopneumoniae, Listeria monocytogenes, Escherichia coli, and M13 bacteriophage. These studies indicate that GCSPRI can be used to simultaneously assess the presence of toxins and pathogens, as well as quantify specific antibodies to environmental agents, in a rapid, label-free, and highly multiplexed assay requiring nanoliter amounts of capture reagents.
Collapse
Affiliation(s)
- Gregory Marusov
- Department of Molecular and Cell Biology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - Andrew Sweatt
- Department of Molecular and Cell Biology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - Kathryn Pietrosimone
- Department of Molecular and Cell Biology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - David Benson
- Department of Molecular and Cell Biology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - Steven J. Geary
- Department of Pathobiology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
- The Center of Excellence For Vaccine Research, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - Lawrence K. Silbart
- Department of Allied Health Sciences, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
- The Center of Excellence For Vaccine Research, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - Sreerupa Challa
- Department of Allied Health Sciences, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
- The Center of Excellence For Vaccine Research, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - Jacqueline Lagoy
- Department of Molecular and Cell Biology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | | | - Michael A. Lynes
- Department of Molecular and Cell Biology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
- The Center of Excellence For Vaccine Research, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| |
Collapse
|
15
|
Zijlstra C, Lund I, Justesen AF, Nicolaisen M, Jensen PK, Bianciotto V, Posta K, Balestrini R, Przetakiewicz A, Czembor E, van de Zande J. Combining novel monitoring tools and precision application technologies for integrated high-tech crop protection in the future (a discussion document). PEST MANAGEMENT SCIENCE 2011; 67:616-625. [PMID: 21445942 DOI: 10.1002/ps.2134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 05/30/2023]
Abstract
The possibility of combining novel monitoring techniques and precision spraying for crop protection in the future is discussed. A generic model for an innovative crop protection system has been used as a framework. This system will be able to monitor the entire cropping system and identify the presence of relevant pests, diseases and weeds online, and will be location specific. The system will offer prevention, monitoring, interpretation and action which will be performed in a continuous way. The monitoring is divided into several parts. Planting material, seeds and soil should be monitored for prevention purposes before the growing period to avoid, for example, the introduction of disease into the field and to ensure optimal growth conditions. Data from previous growing seasons, such as the location of weeds and previous diseases, should also be included. During the growing season, the crop will be monitored at a macroscale level until a location that needs special attention is identified. If relevant, this area will be monitored more intensively at a microscale level. A decision engine will analyse the data and offer advice on how to control the detected diseases, pests and weeds, using precision spray techniques or alternative measures. The goal is to provide tools that are able to produce high-quality products with the minimal use of conventional plant protection products. This review describes the technologies that can be used or that need further development in order to achieve this goal.
Collapse
Affiliation(s)
- Carolien Zijlstra
- Wageningen UR, Plant Research International, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Skottrup PD, Leonard P, Kaczmarek JZ, Veillard F, Enghild JJ, O'Kennedy R, Sroka A, Clausen RP, Potempa J, Riise E. Diagnostic evaluation of a nanobody with picomolar affinity toward the protease RgpB from Porphyromonas gingivalis. Anal Biochem 2011; 415:158-67. [PMID: 21569755 DOI: 10.1016/j.ab.2011.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/05/2011] [Accepted: 04/11/2011] [Indexed: 12/23/2022]
Abstract
Porphyromonas gingivalis is one of the major periodontitis-causing pathogens. P. gingivalis secretes a group of proteases termed gingipains, and in this study we have used the RgpB gingipain as a biomarker for P. gingivalis. We constructed a naive camel nanobody library and used phage display to select one nanobody toward RgpB with picomolar affinity. The nanobody was used in an inhibition assay for detection of RgpB in buffer as well as in saliva. The nanobody was highly specific for RgpB given that it did not bind to the homologous gingipain HRgpA. This indicated the presence of a binding epitope within the immunoglobulin-like domain of RgpB. A subtractive inhibition assay was used to demonstrate that the nanobody could bind native RgpB in the context of intact cells. The nanobody bound exclusively to the P. gingivalis membrane-bound RgpB isoform (mt-RgpB) and to secreted soluble RgpB. Further cross-reactivity studies with P. gingivalis gingipain deletion mutants showed that the nanobody could discriminate between native RgpB and native Kgp and RgpA in complex bacterial samples. This study demonstrates that RgpB can be used as a specific biomarker for P. gingivalis detection and that the presented nanobody-based assay could supplement existing methods for P. gingivalis detection.
Collapse
Affiliation(s)
- Peter Durand Skottrup
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang Y, Ye Z, Si C, Ying Y. Subtractive inhibition assay for the detection of E. coli O157:H7 using surface plasmon resonance. SENSORS (BASEL, SWITZERLAND) 2011; 11:2728-39. [PMID: 22163763 PMCID: PMC3231628 DOI: 10.3390/s110302728] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 01/29/2011] [Accepted: 02/21/2011] [Indexed: 11/30/2022]
Abstract
A surface plasmon resonance (SPR) immunosensor was developed for the detection of E. coli O157:H7 by means of a new subtractive inhibition assay. In the subtractive inhibition assay, E. coli O157:H7 cells and goat polyclonal antibodies for E. coli O157:H7 were incubated for a short of time, and then the E. coli O157:H7 cells which bound antibodies were removed by a stepwise centrifugation process. The remaining free unbound antibodies were detected through interaction with rabbit anti-goat IgG polyclonal antibodies immobilized on the sensor chip using a BIAcore 3000 biosensor. The results showed that the signal was inversely correlated with the concentration of E. coli O157:H7 cells in a range from 3.0 × 10(4) to 3.0 × 10(8) cfu/mL with a detection limit of 3.0 × 10(4) cfu/mL. Compared with direct SPR by immobilizing antibodies on the chip surface to capture the bacterial cells and ELISA for E. coli O157:H7 (detection limit: both 3.0 × 10(5) cfu/mL in this paper), the detection limit of subtractive inhibition assay method was reduced by one order of magnitude. The method simplifies bacterial cell detection to protein-protein interaction, which has the potential for providing a practical alternative for the monitoring of E. coli O157:H7 and other pathogens.
Collapse
Affiliation(s)
- Yixian Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, Zhejiang, China; E-Mails: (Y.W.); (C.S.); (Y.Y.)
| | - Zunzhong Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, Zhejiang, China; E-Mails: (Y.W.); (C.S.); (Y.Y.)
| | - Chengyan Si
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, Zhejiang, China; E-Mails: (Y.W.); (C.S.); (Y.Y.)
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, Zhejiang, China; E-Mails: (Y.W.); (C.S.); (Y.Y.)
| |
Collapse
|
18
|
Abstract
A biosensor is a sensing device that incorporates a biological sensing element and a transducer to produce electrochemical, optical, mass, or other signals in proportion to quantitative information about the analytes in the given samples. The microfluidic chip is an attractive miniaturized platform with valuable advantages, e.g., low cost analysis requiring low reagent consumption, reduced sample volume, and shortened processing time. Combination of biosensors and microfluidic chips enhances analytical capability so as to widen the scope of possible applications. This review provides an overview of recent research activities in the field of biosensors integrated on microfluidic chips, focusing on the working principles, characteristics, and applicability of the biosensors. Theoretical background and applications in chemical, biological, and clinical analysis are summarized and discussed.
Collapse
|
19
|
Llorente B, Bravo-Almonacid F, Cvitanich C, Orlowska E, Torres HN, Flawiá MM, Alonso GD. A quantitative real-time PCR method for in planta monitoring of Phytophthora infestans growth. Lett Appl Microbiol 2010; 51:603-10. [PMID: 21039667 DOI: 10.1111/j.1472-765x.2010.02942.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To establish a reliable and rapid protocol to simultaneously obtain high quality DNA from an infected host plant and the infecting pathogen. To develop an accurate and sensitive low-cost assay for the quantification and in planta monitoring of Phytophthora infestans growth. METHODS AND RESULTS In this study, we describe a SYBR Green-based quantitative real-time PCR (qPCR) method for the quantification of P. infestans. The method is based on a simultaneous plant-pathogen DNA purification followed by a qPCR in which the relative quantification of pathogen and plant DNA is performed. Besides assuring an accurate quantification, the use of a plant gene provides a reliable indicator of sample quality, allowing the exclusion of inappropriate samples. By applying this methodology, we were able to detect P. infestans in potato leaf and tuber tissue before the first symptoms of the disease were observed and to monitor the in planta growth of the pathogen for 6 days. CONCLUSIONS This is a reliable low-cost assay that provides rapid, accurate and sensitive quantification of the late blight pathogen, allowing the in planta monitoring of P. infestans growth. SIGNIFICANCE AND IMPACT OF THE STUDY The quantitative nature of the assay described in this study may be useful in plant breeding programmes and basic research. The method is appropriate for the comparison of cultivars with different, and even subtle, degrees of pathogen resistance and in the screening of new anti-oomycete compounds. The method can be easily adapted to tomato and the model plant Nicotiana benthamiana.
Collapse
Affiliation(s)
- B Llorente
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
20
|
Skottrup PD. Small biomolecular scaffolds for improved biosensor performance. Anal Biochem 2010; 406:1-7. [PMID: 20599637 DOI: 10.1016/j.ab.2010.06.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/18/2010] [Accepted: 06/26/2010] [Indexed: 12/18/2022]
|
21
|
Dudak FC, Boyaci IH. Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors. Biotechnol J 2009; 4:1003-11. [PMID: 19288516 DOI: 10.1002/biot.200800316] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Surface Plasmon Resonance (SPR) biosensor technology has been successfully used for the detection of various analytes such as proteins, drugs, DNA, and microorganisms. SPR-based immunosensors that coupled with a specific antigen-antibody reaction, have become a promising tool for the quantification of bacteria as it offers sensitive, specific, rapid, and label-free detection. In this paper, we review the important issues in the development of SPR-based immunoassays for bacteria detection, concentrating on instrumentation, surface functionalization, liquid handling, and surface regeneration. In addition, this review touches on the recent advances in SPR biosensing for sensitivity enhancement.
Collapse
Affiliation(s)
- Fahriye Ceyda Dudak
- Department of Food Engineering, Hacettepe University, Beytepe, Ankara, Turkey
| | | |
Collapse
|
22
|
Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. SENSORS 2009; 9:4407-45. [PMID: 22408533 PMCID: PMC3291918 DOI: 10.3390/s90604407] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/26/2009] [Accepted: 05/26/2009] [Indexed: 01/30/2023]
Abstract
Antibody-based sensors permit the rapid and sensitive analysis of a range of pathogens and associated toxins. A critical assessment of the implementation of such formats is provided, with reference to their principles, problems and potential for 'on-site' analysis. Particular emphasis is placed on the detection of foodborne bacterial pathogens, such as Escherichia coli and Listeria monocytogenes, and additional examples relating to the monitoring of fungal pathogens, viruses, mycotoxins, marine toxins and parasites are also provided.
Collapse
|
23
|
Wang DB, Bi LJ, Zhang ZP, Chen YY, Yang RF, Wei HP, Zhou YF, Zhang XE. Label-free detection of B. anthracis spores using a surface plasmon resonance biosensor. Analyst 2009; 134:738-42. [DOI: 10.1039/b813038h] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Skottrup PD, Nicolaisen M, Justesen AF. Towards on-site pathogen detection using antibody-based sensors. Biosens Bioelectron 2008; 24:339-48. [PMID: 18675543 DOI: 10.1016/j.bios.2008.06.045] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/12/2008] [Accepted: 06/26/2008] [Indexed: 11/26/2022]
Abstract
In this paper, the recent progress within biosensors for plant pathogen detection will be reviewed. Bio-recognition layers on sensors can be designed in various ways, however the most popular approach is to immobilise antibodies for specific capture of analytes. Focus will be put on antibody surface-immobilisation strategies as well as the use of antibodies in the widely used sensors, quartz crystal microbalance, surface plasmon resonance and cantilevers. We will describe the available data on antibody-based plant pathogen detection and furthermore use examples from detection of the pathogens Salmonella, Listeria monocytogenes, Streptococcus mutans, Bacillus cereus, Bacillus anthracis, Campylobacter and Escherichia coli. We will touch upon optimal assay design and further discuss the strengths and limitations of current sensor technologies for detection of viruses, bacteria and fungi.
Collapse
Affiliation(s)
- Peter Durand Skottrup
- Department of Micro and Nanotechnology, DTU Nanotech, Technical University of Denmark, Ørsteds Plads, Kgs Lyngby, Denmark.
| | | | | |
Collapse
|