1
|
Marsaux B, Moens F, Vandevijver G, Marzorati M, van de Wiele T. Candida species-specific colonization in the healthy and impaired human gastrointestinal tract as simulated using the Mucosal Ileum-SHIME® model. FEMS Microbiol Ecol 2024; 100:fiae113. [PMID: 39169462 DOI: 10.1093/femsec/fiae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024] Open
Abstract
Candida species primarily exist as harmless commensals in the gastrointestinal tract of warm-blooded animals. However, they can also cause life-threatening infections, which are often associated with gut microbial dysbiosis. Identifying the microbial actors that restrict Candida to commensalism remains a significant challenge. In vitro models could enable a mechanistic study of the interactions between Candida and simulated colon microbiomes. Therefore, this study aimed to elucidate the spatial and temporal colonization kinetics of specific Candida, including C. albicans, C. tropicalis, and C. parapsilosis, and their relative Nakaseomyces glabratus, by using an adapted SHIME® model, simulating the ileum, and proximal and distal colons. We monitored fungal and bacterial colonization kinetics under conditions of eubiosis (commensal lifestyle) and antibiotic-induced dysbiosis (pathogenic lifestyle). Our findings highlighted the variability in the colonization potential of Candida species across different intestinal regions. The ileum compartment proved to be the most favourable environment for C. albicans and C. parapsilosis under conditions of eubiosis. Antibiotic-induced dysbiosis resulted in resurgence of opportunistic Candida species, especially C. tropicalis and C. albicans. Future research should focus on identifying specific bacterial species influencing Candida colonization resistance and explore the long-term effects of antibiotics on the mycobiome and bacteriome.
Collapse
Affiliation(s)
- Benoît Marsaux
- ProDigest B.V., 9052 Ghent, Belgium
- CMET, Ghent University, 9000 Ghent, Belgium
| | | | | | - Massimo Marzorati
- ProDigest B.V., 9052 Ghent, Belgium
- CMET, Ghent University, 9000 Ghent, Belgium
| | - Tom van de Wiele
- ProDigest B.V., 9052 Ghent, Belgium
- CMET, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Berlinches de Gea A, Geisen S, Grootjans F, Wilschut RA, Schwelm A. Species-specific predation determines the feeding impacts of six soil protist species on bacterial and eukaryotic prey. Eur J Protistol 2024; 94:126090. [PMID: 38795654 DOI: 10.1016/j.ejop.2024.126090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
Predatory protists play a central role in nutrient cycling and are involved in other ecosystem functions by predating the microbiome. While most soil predatory protist species arguably are bacterivorous, some protist species can prey on eukaryotes. However, studies about soil protist feeding mainly focused on bacteria as prey and rarely tested both bacteria and eukaryotes as potential prey. In this study, we aimed to decipher soil predator-prey interactions of three amoebozoan and three heterolobosean soil protists and potential bacterial (Escherichia coli; 0.5-1.5 µm), fungal (Saccharomyces cerevisiae; 5-7 µm) and protist (Plasmodiophora brassicae; 3-5 µm) prey, either as individual prey or in all their combinations. We related protist performance (relative abundance) and prey consumption (qPCR) to the protist phylogenetic group and volume. We showed that for the six soil protist predators, the most suitable prey was E. coli, but some species also grew on P. brassicae or S. cerevisiae. While protist relative abundances and growth rates depended on prey type in a protist species-specific manner, phylogenetic groups and volume affected prey consumption. Yet we conclude that protist feeding patterns are mainly species-specific and that some known bacterivores might be more generalist than expected, even preying on eukaryotic plant pathogens such as P. brassicae.
Collapse
Affiliation(s)
- Alejandro Berlinches de Gea
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands.
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Franka Grootjans
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Rutger A Wilschut
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Arne Schwelm
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands; TEAGASC - The Agriculture and Food Development Authority Department of Crops, Environment & Land Use, Wexford, Ireland.
| |
Collapse
|
3
|
Mitchell SB, Thorn TL, Lee MT, Kim Y, Comrie JMC, Bai ZS, Johnson EL, Aydemir TB. Metal transporter SLC39A14/ZIP14 modulates regulation between the gut microbiome and host metabolism. Am J Physiol Gastrointest Liver Physiol 2023; 325:G593-G607. [PMID: 37873588 PMCID: PMC10887856 DOI: 10.1152/ajpgi.00091.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Metal transporter SLC39A14/ZIP14 is localized on the basolateral side of the intestine, functioning to transport metals from blood to intestine epithelial cells. Deletion of Slc39a14/Zip14 causes spontaneous intestinal permeability with low-grade chronic inflammation, mild hyperinsulinemia, and greater body fat with insulin resistance in adipose. Importantly, antibiotic treatment reverses the adipocyte phenotype of Slc39a14/Zip14 knockout (KO), suggesting a potential gut microbial role in the metabolic alterations in the Slc39a14/Zip14 KO mice. Here, we investigated the hypothesis that increased intestinal permeability and subsequent metabolic alterations in the absence of Zip14 could be in part due to alterations in gut microbial composition. Dietary metals have been shown to be involved in the regulation of gut microbial diversity and composition. However, studies linking the action of intestinal metal transporters to gut microbial regulation are lacking. We showed the influence of deletion of metal transporter Slc39a14/Zip14 on gut microbiome composition and how ZIP14-linked changes to gut microbiome community composition are correlated with changes in host metabolism. Deletion of Slc39a14/Zip14 generated Zn-deficient epithelial cells and luminal content in the entire intestinal tract, a shift in gut microbial composition that partially overlapped with changes previously associated with obesity and inflammatory bowel disease (IBD), increased the fungi/bacteria ratio in the gut microbiome, altered the host metabolome, and shifted host energy metabolism toward glucose utilization. Collectively, our data suggest a potential predisease microbial susceptibility state dependent on host gene Slc39a14/Zip14 that contributes to intestinal permeability, a common trait of IBD, and metabolic disorders such as obesity and type 2 diabetes.NEW & NOTEWORTHY Metal dyshomeostasis, intestinal permeability, and gut dysbiosis are emerging signatures of chronic disorders, including inflammatory bowel diseases, type-2 diabetes, and obesity. Studies in reciprocal regulations between host intestinal metal transporters genes and gut microbiome are scarce. Our research revealed a potential predisease microbial susceptibility state dependent on the host metal transporter gene, Slc39a14/Zip14, that contributes to intestinal permeability providing new insight into understanding host metal transporter gene-microbiome interactions in developing chronic disease.
Collapse
Affiliation(s)
- Samuel B Mitchell
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| | - Trista L Thorn
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| | - Min-Ting Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| | - Yongeun Kim
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| | - Janine M C Comrie
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| | - Zi Shang Bai
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| | - Elizabeth L Johnson
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| | - Tolunay B Aydemir
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| |
Collapse
|
4
|
Rostoll Cangiano L, Villot C, Amorin-Hegedus R, Malmuthuge N, Gruninger R, Guan LL, Steele M. Saccharomyces cerevisiae boulardii accelerates intestinal microbiota maturation and is correlated with increased secretory IgA production in neonatal dairy calves. Front Microbiol 2023; 14:1129250. [PMID: 37795296 PMCID: PMC10546063 DOI: 10.3389/fmicb.2023.1129250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Neonatal calves have a limited capacity to initiate immune responses due to a relatively immature adaptive immune system, which renders them susceptible to many on-farm diseases. At birth, the mucosal surfaces of the intestine are rapidly colonized by microbes in a process that promotes mucosal immunity and primes the development of the adaptive immune system. In a companion study, our group demonstrated that supplementation of a live yeast probiotic, Saccharomyces cerevisiae boulardii (SCB) CNCM I-1079, to calves from birth to 1 week of age stimulates secretory IgA (sIgA) production in the intestine. The objective of the study was to evaluate how SCB supplementation impacts the intestinal microbiota of one-week-old male calves, and how changes in the bacterial community in the intestine relate to the increase in secretory IgA. A total of 20 calves were randomly allocated to one of two treatments at birth: Control (CON, n = 10) fed at 5 g/d of carrier with no live yeast; and SCB (n = 10) fed at 5 g of live SCB per day (10 × 109 CFU/d). Our study revealed that supplementing calves with SCB from birth to 1 week of age had its most marked effects in the ileum, increasing species richness and phylogenetic diversity in addition to expediting the transition to a more interconnected bacterial community. Furthermore, LEfSe analysis revealed that there were several differentially abundant taxa between treatments and that SCB increased the relative abundance the family Eubacteriaceae, Corynebacteriaceae, Eggerthellaceae, Bacillaceae, and Ruminococcaceae. Furthermore, network analysis suggests that SCB promoted a more stable bacterial community and appears to reduce colonization with Shigella. Lastly, we observed that the probiotic-driven increase in microbial diversity was highly correlated with the enhanced secretory IgA capacity of the ileum, suggesting that the calf's gut mucosal immune system relies on the development of a stable and highly diverse microbial community to provide the necessary cues to train and promote its proper function. In summary, this data shows that supplementation of SCB promoted establishment of a diverse and interconnected microbiota, prevented colonization of Escherichia Shigella and indicates a possible role in stimulating humoral mucosal immunity.
Collapse
Affiliation(s)
| | - Clothilde Villot
- Lallemand Animal Nutrition, Blagnac, France
- Lallemand Animal Nutrition, Milwaukee, WI, United States
| | | | - Nilusha Malmuthuge
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Robert Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Michael Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
5
|
Genome-edited Saccharomyces cerevisiae strains for improving quality, safety, and flavor of fermented foods. Food Microbiol 2022; 104:103971. [DOI: 10.1016/j.fm.2021.103971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
|
6
|
Saccharomyces Cerevisiae Var Boulardii CNCM I-1079 Reduces Expression of Genes Involved in Inflammatory Response in Porcine Cells Challenged by Enterotoxigenic E. Coli and Influences Bacterial Communities in an In Vitro Model of the Weaning Piglet Colon. Antibiotics (Basel) 2021; 10:antibiotics10091101. [PMID: 34572682 PMCID: PMC8467900 DOI: 10.3390/antibiotics10091101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the main infectious agent responsible for piglet post-weaning diarrhea with high mortality rates. Antimicrobials represent the current principal strategy for treating ETEC infections in pig farms, but the occurrence of multi-resistant bacterial strains has considerably increased in the last decades. Thus, finding non-antibiotic alternatives becomes a real emergency. In this context, we investigated the effect of a live yeast strain, Saccharomyces cerevisiae var boulardii CNCM I-1079 (SB) in an in vitro model of the weaning piglet colon implemented with a mucus phase (MPigut-IVM) inoculated with ETEC and coupled with an intestinal porcine cell line IPI-2I. We showed that SB was able to modulate the in vitro microbiota through an increase in Bacteroidiaceae and a decrease in Prevotellaceae families. Effluents collected from the SB treated bioreactors were able to mitigate the expression level of genes encoding non-gel forming mucins, tight junction proteins, innate immune pathway, and pro-inflammatory response in IPI-2I cells. Furthermore, SB exerted a significant protective effect against ETEC adhesion on porcine IPEC-J2 intestinal cells in a dose-dependent manner and showed a positive effect on ETEC-challenged IPEC-J2 by lowering expression of genes involved in pro-inflammatory immune responses. Our results showed that the strain SB CNCM I-1079 could prevent microbiota dysbiosis associated with weaning and protect porcine enterocytes from ETEC infections by reducing bacterial adhesion and modulating the inflammatory response.
Collapse
|
7
|
Fungal Dysbiosis Correlates with the Development of Tumor-Induced Cachexia in Mice. J Fungi (Basel) 2020; 6:jof6040364. [PMID: 33322197 PMCID: PMC7770573 DOI: 10.3390/jof6040364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Cachexia (CC) is a devastating metabolic syndrome associated with a series of underlying diseases that greatly affects life quality and expectancy among cancer patients. Studies involving mouse models, in which CC was induced through inoculation with tumor cells, originally suggested the existence of a direct correlation between the development of this syndrome and changes in the relative proportions of several bacterial groups present in the digestive tract. However, these analyses have focus solely on the characterization of bacterial dysbiosis, ignoring the possible existence of changes in the relative populations of fungi, during the development of CC. Thus, the present study sought to expand such analyses, by characterizing changes that occur in the gut fungal population (mycobiota) of mice, during the development of cancer-induced cachexia. Our results confirm that cachectic animals, submitted to Lewis lung carcinoma (LLC) transplantation, display significant differences in their gut mycobiota, when compared to healthy controls. Moreover, identification of dysbiotic fungi showed remarkable consistency across successive levels of taxonomic hierarchy. Many of these fungi have also been associated with dysbioses observed in a series of gut inflammatory diseases, such as obesity, colorectal cancer (CRC), myalgic encephalomyelitis (ME) and inflammatory bowel disease (IBD). Nonetheless, the dysbiosis verified in the LLC model of cancer cachexia seems to be unique, presenting features observed in both obesity (reduced proportion of Mucoromycota) and CRC/ME/IBD (increased proportions of Sordariomycetes, Saccharomycetaceae and Malassezia). One species of Mucoromycota (Rhyzopus oryzae) stands out as a promising probiotic candidate in adjuvant therapies, aimed at treating and/or preventing the development of CC.
Collapse
|
8
|
Rinttilä T, Ülle K, Apajalahti J, Timmons R, Moran CA. Design and validation of a real-time PCR technique for assessing the level of inclusion of fungus- and yeast-based additives in feeds. J Microbiol Methods 2020; 171:105867. [PMID: 32061906 DOI: 10.1016/j.mimet.2020.105867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 11/30/2022]
Abstract
A reliable method for quantification of non-viable microbe-based nutritional and zootechnical additives introduced into feed is essential in order to ensure regulatory compliance, feed safety and product authenticity in industrial applications. In the present work, we developed a novel real-time quantitative polymerase chain reaction (qPCR) -based analysis protocol for monitoring two microbial additives in feed matrices. To evaluate the applicability of the method, pelleted wheat- and maize-based broiler chicken diets containing a non-viable phytase-producing strain of Aspergillus niger produced in solid state fermentation (150 or 300 g/t) and a non-viable selenium-enriched Saccharomyces cerevisiae (100 or 200 g/t) as model feed ingredients, were manufactured and subjected to analysis. Power analysis of the qPCR results indicated that 2 to 6 replicate feed samples were required to distinguish the product doses applied, which confirms that the microbial DNA was efficiently recovered and that potential PCR inhibitors present in the feed material were successfully removed in DNA extraction. The analysis concept described here was shown to be an accurate and sensitive tool for monitoring the inclusion levels of non-viable, unculturable microbial supplements in animal diets.
Collapse
Affiliation(s)
- Teemu Rinttilä
- Alimetrics Research Ltd., Koskelontie 19B, FI-02920 Espoo, Finland.
| | - Kir Ülle
- Alimetrics Research Ltd., Koskelontie 19B, FI-02920 Espoo, Finland
| | - Juha Apajalahti
- Alimetrics Research Ltd., Koskelontie 19B, FI-02920 Espoo, Finland
| | - Rebecca Timmons
- Alltech Inc., 3031 Catnip Hill Road, Nicholasville, KY 40356, USA
| | - Colm A Moran
- Alltech SARL, Rue Charles Amand, 14500 Vire, France
| |
Collapse
|
9
|
Wang H, Xu Y. Microbial succession and metabolite changes during the fermentation of Chinese light aroma-style liquor. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Haiyan Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Synergetic Innovation Centre of Food Safety and Nutrition, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Synergetic Innovation Centre of Food Safety and Nutrition, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| |
Collapse
|
10
|
Nadai C, Bovo B, Giacomini A, Corich V. New rapid
PCR
protocol based on high‐resolution melting analysis to identify
Saccharomyces cerevisiae
and other species within its genus. J Appl Microbiol 2018; 124:1232-1242. [DOI: 10.1111/jam.13709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/16/2022]
Affiliation(s)
- C. Nadai
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE) University of Padova Legnaro PD Italy
| | - B. Bovo
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE) University of Padova Legnaro PD Italy
| | - A. Giacomini
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE) University of Padova Legnaro PD Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE) University of Padova Conegliano TV Italy
| | - V. Corich
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE) University of Padova Legnaro PD Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE) University of Padova Conegliano TV Italy
| |
Collapse
|
11
|
Lam V, Su J, Hsu A, Gross GJ, Salzman NH, Baker JE. Intestinal Microbial Metabolites Are Linked to Severity of Myocardial Infarction in Rats. PLoS One 2016; 11:e0160840. [PMID: 27505423 PMCID: PMC4978455 DOI: 10.1371/journal.pone.0160840] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/26/2016] [Indexed: 12/13/2022] Open
Abstract
Intestinal microbiota determine severity of myocardial infarction in rats. We determined whether low molecular weight metabolites derived from intestinal microbiota and transported to the systemic circulation are linked to severity of myocardial infarction. Plasma from rats treated for seven days with the non-absorbed antibiotic vancomycin or a mixture of streptomycin, neomycin, polymyxin B and bacitracin was analyzed using mass spectrometry-based metabolite profiling platforms. Antibiotic-induced changes in the abundance of individual groups of intestinal microbiota dramatically altered the host’s metabolism. Hierarchical clustering of dissimilarities separated the levels of 284 identified metabolites from treated vs. untreated rats; 193 were altered by the antibiotic treatments with a tendency towards decreased metabolite levels. Catabolism of the aromatic amino acids phenylalanine, tryptophan and tyrosine was the most affected pathway comprising 33 affected metabolites. Both antibiotic treatments decreased the severity of an induced myocardial infarction in vivo by 27% and 29%, respectively. We then determined whether microbial metabolites of the amino acids phenylalanine, tryptophan and tyrosine were linked to decreased severity of myocardial infarction. Vancomycin-treated rats were administered amino acid metabolites prior to ischemia/reperfusion studies. Oral or intravenous pretreatment of rats with these amino acid metabolites abolished the decrease in infarct size conferred by vancomycin. Inhibition of JAK-2 (AG-490, 10 μM), Src kinase (PP1, 20 μM), Akt/PI3 kinase (Wortmannin, 100 nM), p44/42 MAPK (PD98059, 10 μM), p38 MAPK (SB203580, 10 μM), or KATP channels (glibenclamide, 3 μM) abolished cardioprotection by vancomycin, indicating microbial metabolites are interacting with cell surface receptors to transduce their signals through Src kinase, cell survival pathways and KATP channels. These inhibitors have no effect on myocardial infarct size in untreated rats. This study links gut microbiota metabolites to severity of myocardial infarction and may provide future opportunities for novel diagnostic tests and interventions for the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Vy Lam
- Division of Cardiothoracic Surgery, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Jidong Su
- Division of Cardiothoracic Surgery, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Anna Hsu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Garrett J Gross
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Nita H Salzman
- Division of Pediatric Gastroenterology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - John E Baker
- Division of Cardiothoracic Surgery, Medical College of Wisconsin, Milwaukee, WI, United States of America.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States of America.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States of America.,The Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
12
|
Ishizaka S, Matsuda A, Amagai Y, Oida K, Jang H, Ueda Y, Takai M, Tanaka A, Matsuda H. Oral administration of fermented probiotics improves the condition of feces in adult horses. J Equine Sci 2014; 25:65-72. [PMID: 25558179 PMCID: PMC4266753 DOI: 10.1294/jes.25.65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/25/2014] [Indexed: 11/06/2022] Open
Abstract
The effects of probiotics on horses are still controversial. The present study was a randomized, double-blinded,
placebo-controlled crossover study designed to evaluate the ability of probiotics to improve intestinal conditions in adult
horses. Fermented probiotics were administered to 10 healthy adult geldings for 28 days. The clinical condition of the horses was
monitored daily, and the blood and feces were biochemically analyzed every 14 days. In the probiotic-treated group, the
concentration of carboxylic acids in the feces was increased at days 14 and 28. In contrast to the fecal pH in the control group,
which increased at days 14 and 28, the fecal pH in the probiotic-treated group did not increase. Additionally, the relative
amounts of enteropathogenic bacterial DNA were diminished in the probiotic-treated group. These results suggest that probiotic
bacteria proliferated in the equine intestine. No instances of abnormal clinical conditions or abnormal values in blood tests were
observed throughout the study. Oral administration of fermented probiotics may have the ability to improve the intestinal
environment biochemically and microbiologically without the risk of adverse effects.
Collapse
Affiliation(s)
- Saori Ishizaka
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Akira Matsuda
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Yosuke Amagai
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kumiko Oida
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Hyosun Jang
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Yuko Ueda
- Miura Co., Ltd., Ehime 799-2696, Japan
| | | | - Akane Tanaka
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan ; Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Hiroshi Matsuda
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan ; Laboratory of Veterinary Molecular Pathology and Therapeutics, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
13
|
Hohnadel M, Felden L, Fijuljanin D, Jouette S, Chollet R. A new ultrasonic high-throughput instrument for rapid DNA release from microorganisms. J Microbiol Methods 2014; 99:71-80. [DOI: 10.1016/j.mimet.2014.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 11/25/2022]
|
14
|
Mackenthun E, Coenen M, Vervuert I. Effects of Saccharomyces cerevisiae
supplementation on apparent total tract digestibility of nutrients and fermentation profile in healthy horses. J Anim Physiol Anim Nutr (Berl) 2013; 97 Suppl 1:115-20. [DOI: 10.1111/jpn.12043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 12/15/2012] [Indexed: 12/18/2022]
Affiliation(s)
- E. Mackenthun
- Faculty of Veterinary Medicine; Institute of Animal Nutrition, Nutrition Diseases and Dietetics; University of Leipzig; Leipzig Germany
| | - M. Coenen
- Faculty of Veterinary Medicine; Institute of Animal Nutrition, Nutrition Diseases and Dietetics; University of Leipzig; Leipzig Germany
| | - I. Vervuert
- Faculty of Veterinary Medicine; Institute of Animal Nutrition, Nutrition Diseases and Dietetics; University of Leipzig; Leipzig Germany
| |
Collapse
|
15
|
Almeida LA, Araujo R. Highlights on molecular identification of closely related species. INFECTION GENETICS AND EVOLUTION 2012; 13:67-75. [PMID: 22982158 DOI: 10.1016/j.meegid.2012.08.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/06/2012] [Accepted: 08/08/2012] [Indexed: 10/27/2022]
Abstract
The term "complex" emerged in the literature at the beginning of the genomic era associated to taxonomy and grouping organisms that belong to different species but exhibited similar patterns according to their morphological, physiological and/or other phenotypic features. DNA-DNA hybridization values ~70% and high identity on 16S rRNA gene sequences were recommended for species delineation. Electrophoretic methods showed in some cases to be useful for species identification and population structure but the reproducibility was questionable. Later, the implementation of polyphasic approaches involving phenotypic and molecular methods brought new insights into the analysis of population structure and phylogeny of several "species complexes", allowing the identification of new closely related species. Likewise, the introduction of multilocus sequence typing and sequencing analysis of several genes offered an evolutionary perspective to the term "species complex". Several centres worldwide have recently released increasing genetic information on distinct microbial species. A brief review will be presented to highlight the definition of "species complex" for selected microorganisms, mainly the prokaryotic Acinetobacter calcoaceticus -Acinetobacter baumannii, Borrelia burgdorferi sensu lato, Burkholderia cepacia, Mycobacterium tuberculosis and Nocardia asteroides complexes, and the eukaryotic Aspergillus fumigatus, Leishmania donovani and Saccharomyces sensu stricto complexes. The members of these complexes may show distinct epidemiology, pathogenicity and susceptibility, turning critical their correct identification. Dynamics of prokaryotic and eukaryotic genomes can be very distinct and the term "species complex" should be carefully extended.
Collapse
Affiliation(s)
- Lígia A Almeida
- IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | | |
Collapse
|
16
|
Lam V, Su J, Koprowski S, Hsu A, Tweddell JS, Rafiee P, Gross GJ, Salzman NH, Baker JE. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 2012; 26:1727-35. [PMID: 22247331 DOI: 10.1096/fj.11-197921] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Signals from the intestinal microbiota are important for normal host physiology; alteration of the microbiota (dysbiosis) is associated with multiple disease states. We determined the effect of antibiotic-induced intestinal dysbiosis on circulating cytokine levels and severity of ischemia/reperfusion injury in the heart. Treatment of Dahl S rats with a minimally absorbed antibiotic vancomycin, in the drinking water, decreased circulating leptin levels by 38%, resulted in smaller myocardial infarcts (27% reduction), and improved recovery of postischemic mechanical function (35%) as compared with untreated controls. Vancomycin altered the abundance of intestinal bacteria and fungi, measured by 16S and 18S ribosomal DNA quantity. Pretreatment with leptin (0.12 μg/kg i.v.) 24 h before ischemia/reperfusion abolished cardioprotection produced by vancomycin treatment. Dahl S rats fed the commercially available probiotic product Goodbelly, which contains the leptin-suppressing bacteria Lactobacillus plantarum 299v, also resulted in decreased circulating leptin levels by 41%, smaller myocardial infarcts (29% reduction), and greater recovery of postischemic mechanical function (23%). Pretreatment with leptin (0.12 μg/kg i.v.) abolished cardioprotection produced by Goodbelly. This proof-of-concept study is the first to identify a mechanistic link between changes in intestinal microbiota and myocardial infarction and demonstrates that a probiotic supplement can reduce myocardial infarct size.
Collapse
Affiliation(s)
- Vy Lam
- Division of Cardiothoracic Surgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Guo R, Chen Z, Chen N, Chen Y. Quantitative Real-Time PCR Analysis of Intestinal Regular Fungal Species in Fecal Samples From Patients With Chronic Hepatitis B Virus Infection. Lab Med 2010. [DOI: 10.1309/lmmc0wvzxd13pujg] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
18
|
The β-tubulin gene as a molecular phylogenetic marker for classification and discrimination of the Saccharomyces sensu stricto complex. Antonie van Leeuwenhoek 2008; 95:135-42. [DOI: 10.1007/s10482-008-9296-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/02/2008] [Indexed: 11/26/2022]
|
19
|
Huang CH, Lee FL, Tai CJ. A novel specific DNA marker in Saccharomyces bayanus for species identification of the Saccharomyces sensu stricto complex. J Microbiol Methods 2008; 75:531-4. [PMID: 18786577 DOI: 10.1016/j.mimet.2008.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 11/15/2022]
Abstract
This study was based on RAPD fingerprinting for species identification of the Saccharomyces sensu stricto complex. 40 random primers were used for RAPD analysis. The results showed that one of these primers, OPT-18, produced a 974 bp species-specific band, which was only found in the tested S. bayanus. Afterward this specific fragment was isolated from agarose gel and ligated into vector for DNA sequencing. A pair of primer SpeOPT18Sbay-F2 and SpeOPT18Sbay-R2 were designed according to the cloned species-specific sequence, which was employed for PCR with the template DNA of the S. sensu stricto strains, single 779 bp species-specific band was only found in S. bayanus. Therefore, we conclude that our novel species DNA marker could be used to rapidly and accurately identify the species of S. bayanus from S. sensu stricto complex by direct PCR.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | | | | |
Collapse
|
20
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|