1
|
Alegbeleye O, Sant'Ana AS. Impact of temperature, soil type and compost amendment on the survival, growth and persistence of Listeria monocytogenes of non-environmental (food-source associated) origin in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157033. [PMID: 35777564 DOI: 10.1016/j.scitotenv.2022.157033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Listeria monocytogenes of varied sources including food-related sources may reach the soil. Associated food safety and environmental health risks of such contamination depend significantly on the capacity of L. monocytogenes to survive in the soil. This study assessed the survival of 13 L. monocytogenes strains isolated from food and food processing environments and a cocktail of three of the strains in two types of soils (loam and sandy) under controlled temperature conditions: 5, 10, 20, 25, 30℃ and 'uncontrolled' ambient temperature conditions in a tropical region. The impact of compost amendment on the survival of L. monocytogenes in the two different types of soils was also assessed. Soil type, temperature and compost amendment significantly (P <0.001) impacted the survival of L. monocytogenes in soil. Temperature variations affected the survival of L. monocytogenes in soil, where some strains such as strain 732, a L. monocytogenes 1/2a strain survived better at lower temperature (5°C), for which counts of up to 10.47 ± 0.005 log CFU/g were recovered in compost-amended sandy soil, 60 days post-inoculation. Some other strains such as strain 441, a L. monocytogenes 1/2a survived best at intermediate temperature (25 and 30 °C), while others such as 2739 (L. monocytogenes 1/2b) thrived at higher temperature (between 30 °C - 37 °C). There were significant correlations between the influence of temperature and soil type, where lower temperature conditions (5°C - 20°C) were generally more suitable for survival in sandy soil compared to higher temperature conditions. For some of the strains that thrived better in sandy soil at lower temperature, Pearson correlation analysis found significant correlations between temperature and soil type. Steady, controlled temperature generally favored the survival of the strains compared to uncontrolled ambient temperature conditions, except for the cocktail. The cocktail persisted until the last day of post-inoculation storage (60th day) in all test soils and under all incubation temperature conditions. Loam soil was more favorable for the survival of L. monocytogenes and compost amendment improved the survival of the strains, especially in compost-amended sandy soil. Listeria monocytogenes may exhibit variable survival capacity in soil, depending on conditions such as soil type, compost amendment and temperature.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Listeria monocytogenes in Irrigation Water: An Assessment of Outbreaks, Sources, Prevalence, and Persistence. Microorganisms 2022; 10:microorganisms10071319. [PMID: 35889038 PMCID: PMC9323950 DOI: 10.3390/microorganisms10071319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
As more fresh fruits and vegetables are needed to meet the demands of a growing population, growers may need to start depending on more varied sources of water, including environmental, recycled, and reclaimed waters. Some of these sources might be susceptible to contamination with microbial pathogens, such as Listeria monocytogenes. Surveys have found this pathogen in water, soil, vegetation, and farm animal feces around the world. The frequency at which this pathogen is present in water sources is dependent on multiple factors, including the season, surrounding land use, presence of animals, and physicochemical water parameters. Understanding the survival duration of L. monocytogenes in specific water sources is important, but studies are limited concerning this environment and the impact of these highly variable factors. Understanding the pathogen’s ability to remain infectious is key to understanding how L. monocytogenes impacts produce outbreaks and, ultimately, consumers’ health.
Collapse
|
3
|
Lourenco A, Linke K, Wagner M, Stessl B. The Saprophytic Lifestyle of Listeria monocytogenes and Entry Into the Food-Processing Environment. Front Microbiol 2022; 13:789801. [PMID: 35350628 PMCID: PMC8957868 DOI: 10.3389/fmicb.2022.789801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is an environmentally adapted saprophyte that can change into a human and animal bacterial pathogen with zoonotic potential through several regulatory systems. In this review, the focus is on the occurrence of Listeria sensu stricto and sensu lato in different ecological niches, the detection methods, and their analytical limitations. It also highlights the occurrence of L. monocytogenes genotypes in the environment (soil, water, and wildlife), reflects on the molecular determinants of L. monocytogenes for the saprophytic lifestyle and the potential for antibiotic resistance. In particular, the strain-specific properties with which some genotypes circulate in wastewater, surface water, soil, wildlife, and agricultural environments are of particular interest for the continuously updating risk analysis.
Collapse
Affiliation(s)
- Antonio Lourenco
- Department of Food Biosciences, Teagasc Food Research Centre, Co. Cork, Ireland
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Kristina Linke
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Martin Wagner
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Beatrix Stessl
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
4
|
Denis M, Ziebal C, Boscher E, Picard S, Perrot M, Nova MV, Roussel S, Diara A, Pourcher AM. Occurrence and Diversity of Listeria monocytogenes Isolated from Two Pig Manure Treatment Plants in France. Microbes Environ 2022; 37:ME22019. [PMID: 36372433 PMCID: PMC9763045 DOI: 10.1264/jsme2.me22019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The presence of Listeria monocytogenes in piggery effluents intended for irrigation crops may be a source of bacterial dissemination in agriculture. The occurrence and diversity of L. monocytogenes in the farm environment were examined in two pig manure treatment systems (S1 and S2). Samples collected over the course of one year consisted of manure, the liquid fraction of treated manure (lagoon effluent), and soil surrounding the lagoon. L. monocytogenes was enumerated using the Most Probable Number (MPN) method, serotyped by PCR, genotyped by pulsed-field gel electrophoresis (PFGE), and sequenced for multilocus sequence typing (MLST). L. monocytogenes was detected in 92% of manure samples and in approximately 50% of lagoon effluent and soil samples. Concentrations ranged between 5 and 103 MPN 100 mL-1. Serogroups IIa, IIb, and IVb were identified. Diversity was high with 44 PFGE profiles (252 isolates) and 17 clonal complexes (CCs) (96 isolates) with higher diversity in manure at site S1 supplied by four farms. Some PFGE profiles and CCs identified in manure or in pig feces from a previous study were also detected in lagoons and/or soil, reflecting pig L. monocytogenes circulation throughout the manure treatment and in the vicinity of the sampling sites. However, some PFGE profiles and CCs were only found in the lagoon and/or in soil, suggesting an origin other than pigs. The present study highlights the limited ability of biological treatments to eliminate L. monocytogenes from pig manure. The persistence of some PFGE profiles and CCs throughout the year in the lagoon and soil shows the ability of L. monocytogenes to survive in this type of environment.
Collapse
Affiliation(s)
- Martine Denis
- ANSES, Unit of Hygiene and Quality of Poultry and Pork Products, Ploufragan, France, Corresponding author. E-mail: ; Tel: +33–296016231; Fax: +33–296018538
| | - Christine Ziebal
- INRAE, UR OPAALE, 17 Avenue de Cucillé-CS 64427, F-35044 Rennes, France
| | - Evelyne Boscher
- ANSES, Unit of Hygiene and Quality of Poultry and Pork Products, Ploufragan, France
| | - Sylvie Picard
- INRAE, UR OPAALE, 17 Avenue de Cucillé-CS 64427, F-35044 Rennes, France
| | - Morgane Perrot
- ANSES, Unit of Hygiene and Quality of Poultry and Pork Products, Ploufragan, France,INRAE, UR OPAALE, 17 Avenue de Cucillé-CS 64427, F-35044 Rennes, France
| | - Meryl Vila Nova
- ANSES, Unit Salmonella and Listeria, 14 Rue Pierre et Marie Curie, F-94700 Maisons-Alfort, France
| | - Sophie Roussel
- ANSES, Unit Salmonella and Listeria, 14 Rue Pierre et Marie Curie, F-94700 Maisons-Alfort, France
| | - Arnaud Diara
- INRAE, UR OPAALE, 17 Avenue de Cucillé-CS 64427, F-35044 Rennes, France
| | | |
Collapse
|
5
|
|
6
|
Rodriguez C, Taminiau B, García-Fuentes E, Daube G, Korsak N. Listeria monocytogenes dissemination in farming and primary production: Sources, shedding and control measures. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Filipello V, Mughini-Gras L, Gallina S, Vitale N, Mannelli A, Pontello M, Decastelli L, Allard MW, Brown EW, Lomonaco S. Attribution of Listeria monocytogenes human infections to food and animal sources in Northern Italy. Food Microbiol 2020; 89:103433. [PMID: 32138991 DOI: 10.1016/j.fm.2020.103433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/16/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
Listeriosis is a foodborne illness characterized by a relatively low morbidity, but a large disease burden due to the severity of clinical manifestations and the high case fatality rate. Increased listeriosis notifications have been observed in Europe since the 2000s. However, the reasons for this increase are largely unknown, with the sources of sporadic human listerioris often remaining elusive. Here we inferred the relative contributions of several putative sources of Listeria monocytogenes strains from listerioris patients in Northern Italy (Piedmont and Lombardy regions), using two established source attribution models (i.e. 'Dutch' and 'STRUCTURE') in comparative fashion. We compared the Multi-Locus Sequence Typing and Multi-Virulence-Locus Sequence Typing profiles of strains collected from beef, dairy, fish, game, mixed foods, mixed meat, pork, and poultry. Overall, 634 L. monocytogenes isolates were collected from 2005 to 2016. In total, 40 clonal complexes and 51 virulence types were identified, with 36% of the isolates belonging to possible epidemic clones (i.e. genetically related strains from unrelated outbreaks). Source attribution analysis showed that 50% of human listerioris cases (95% Confidence Interval 44-55%) could be attributed to dairy products, followed by poultry and pork (15% each), and mixed foods (15%). Since the contamination of dairy, poultry and pork products are closely linked to primary production, expanding actions currently limited to ready-to-eat products to the reservoir level may help reducing the risk of cross-contamination at the consumer level.
Collapse
Affiliation(s)
- Virginia Filipello
- University of Turin. Largo P, Braccini, 2, 10095, Grugliasco, Italy; Isituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia Romagna, Via A. Bianchi, 9, 25124, Brescia, Italy.
| | - Lapo Mughini-Gras
- National Institute for Public Health and the Environment (RIVM), Center for Infectious Disease Control, Antonie van Leeuwenhoeklaan, 9, 3721 MA, Bilthoven, Netherlands; Utrecht University, Institute for Risk Assessment Sciences (IRAS), Yalelaan 2, 3584, CM, Utrecht, the Netherlands.
| | - Silvia Gallina
- Istituto Zooprofilattico Sperimentale Del Piemonte, Liguria e Valle D'Aosta, Via Bologna, 148, 10154, Torino, Italy.
| | - Nicoletta Vitale
- Istituto Zooprofilattico Sperimentale Del Piemonte, Liguria e Valle D'Aosta, Via Bologna, 148, 10154, Torino, Italy.
| | | | | | - Lucia Decastelli
- Istituto Zooprofilattico Sperimentale Del Piemonte, Liguria e Valle D'Aosta, Via Bologna, 148, 10154, Torino, Italy.
| | - Marc W Allard
- US Food & Drug Administration. 5001 Campus Drive, 20740, College Park, MD, USA.
| | - Eric W Brown
- US Food & Drug Administration. 5001 Campus Drive, 20740, College Park, MD, USA.
| | - Sara Lomonaco
- University of Turin. Largo P, Braccini, 2, 10095, Grugliasco, Italy; US Food & Drug Administration. 5001 Campus Drive, 20740, College Park, MD, USA.
| |
Collapse
|
8
|
Smith A, Moorhouse E, Monaghan J, Taylor C, Singleton I. Sources and survival of Listeria monocytogenes on fresh, leafy produce. J Appl Microbiol 2018; 125:930-942. [PMID: 30039586 DOI: 10.1111/jam.14025] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/26/2022]
Abstract
Listeria monocytogenes is an intracellular human pathogen which enters the body through contaminated food stuffs and is known to contaminate fresh leafy produce such as spinach, lettuce and rocket. Routinely, fresh leafy produce is grown and processed on a large scale before reaching the consumer through various products such as sandwiches and prepared salads. From farm to fork, the fresh leafy produce supply chain (FLPSC) is complex and contains a diverse range of environments where L. monocytogenes is sporadically detected during routine sampling of produce and processing areas. This review describes sources of the bacteria in the FLPSC and outlines the physiological and molecular mechanisms behind its survival in the different environments associated with growing and processing fresh produce. Finally, current methods of source tracking the bacteria in the context of the food supply chain are discussed with emphasis on how these methods can provide additional, valuable information on the risk that L. monocytogenes isolates pose to the consumer.
Collapse
Affiliation(s)
- A Smith
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | | | - J Monaghan
- Crop and Environment Sciences, Harper Adams University, Newport, UK
| | - C Taylor
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - I Singleton
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| |
Collapse
|
9
|
Falardeau J, Walji K, Haure M, Fong K, Taylor G, Ma Y, Smukler S, Wang S. Native bacterial communities and Listeria monocytogenes survival in soils collected from the Lower Mainland of British Columbia, Canada. Can J Microbiol 2018; 64:695-705. [PMID: 29775543 DOI: 10.1139/cjm-2018-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Soil is an important reservoir for Listeria monocytogenes, a foodborne pathogen implicated in numerous produce-related outbreaks. Our objectives were to (i) compare the survival of L. monocytogenes among three soils, (ii) compare the native bacterial communities across these soils, and (iii) investigate relationships between L. monocytogenes survival, native bacterial communities, and soil properties. Listeria spp. populations were monitored on PALCAM agar in three soils inoculated with L. monocytogenes (∼5 × 106 CFU/g): conventionally farmed (CS), grassland transitioning to conventionally farmed (TS), and uncultivated grassland (GS). Bacterial diversity of the soils was analyzed using 16S rRNA targeted amplicon sequencing. A 2 log reduction of Listeria spp. was observed in all soils within 10 days, but at a significantly lower rate in GS (Fisher's least significant difference test; p < 0.05). Survival correlated with increased moisture and a neutral pH. GS showed the highest microbial diversity. Acidobacteria was the dominant phylum differentiating CS and TS from GS, and was negatively correlated with pH, carbon, nitrogen, and moisture. High moisture content and neutral pH are likely to increase the ability of L. monocytogenes to persist in soil. This study confirmed that native bacterial communities and short-term survival of L. monocytogenes varies across soils.
Collapse
Affiliation(s)
- Justin Falardeau
- a Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Khalil Walji
- b Applied Biology and Soil Science, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Maxime Haure
- c Agri-food engineering, Agrosup Dijon, 21000 Dijon, France
| | - Karen Fong
- a Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Greg Taylor
- d British Columbia Genome Sciences Centre, Vancouver, BC V5Z 4S6, Canada
| | - Yussanne Ma
- d British Columbia Genome Sciences Centre, Vancouver, BC V5Z 4S6, Canada
| | - Sean Smukler
- b Applied Biology and Soil Science, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Siyun Wang
- a Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
10
|
Vivant AL, Desneux J, Pourcher AM, Piveteau P. Transcriptomic Analysis of the Adaptation of Listeria monocytogenes to Lagoon and Soil Matrices Associated with a Piggery Environment: Comparison of Expression Profiles. Front Microbiol 2017; 8:1811. [PMID: 29018416 PMCID: PMC5623016 DOI: 10.3389/fmicb.2017.01811] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
Understanding how Listeria monocytogenes, the causative agent of listeriosis, adapts to the environment is crucial. Adaptation to new matrices requires regulation of gene expression. To determine how the pathogen adapts to lagoon effluent and soil, two matrices where L. monocytogenes has been isolated, we compared the transcriptomes of L. monocytogenes CIP 110868 20 min and 24 h after its transfer to effluent and soil extract. Results showed major variations in the transcriptome of L. monocytogenes in the lagoon effluent but only minor modifications in the soil. In both the lagoon effluent and in the soil, genes involved in mobility and chemotaxis and in the transport of carbohydrates were the most frequently represented in the set of genes with higher transcript levels, and genes with phage-related functions were the most represented in the set of genes with lower transcript levels. A modification of the cell envelop was only found in the lagoon environment. Finally, the differential analysis included a large proportion of regulators, regulons, and ncRNAs.
Collapse
Affiliation(s)
- Anne-Laure Vivant
- UR OPAALE, IRSTEA, Rennes, France
- Université Bretagne Loire, Rennes, France
| | - Jeremy Desneux
- UR OPAALE, IRSTEA, Rennes, France
- Université Bretagne Loire, Rennes, France
| | | | - Pascal Piveteau
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
11
|
Barbier E, Rochelet M, Gal L, Boschiroli ML, Hartmann A. Impact of temperature and soil type on Mycobacterium bovis survival in the environment. PLoS One 2017; 12:e0176315. [PMID: 28448585 PMCID: PMC5407823 DOI: 10.1371/journal.pone.0176315] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/07/2017] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium bovis, the causative agent of the bovine tuberculosis (bTB), mainly affects cattle, its natural reservoir, but also a wide range of domestic and wild mammals. Besides direct transmission via contaminated aerosols, indirect transmission of the M. bovis between wildlife and livestock might occur by inhalation or ingestion of environmental substrates contaminated through infected animal shedding. We monitored the survival of M. bovis in two soil samples chosen for their contrasted physical and-chemical properties (i.e. pH, clay content). The population of M. bovis spiked in sterile soils was enumerated by a culture-based method after 14, 30, 60, 90, 120 and 150 days of incubation at 4°C and 22°C. A qPCR based assay targeting the IS1561' locus was also performed to monitor M. bovis in both sterile and biotic spiked soils. The analysis of survival profiles using culture-based method showed that M. bovis survived longer at lower temperature (4°C versus 22°C) whereas the impact of soil characteristics on M. bovis persistence was not obvious. Furthermore, qPCR-based assay detected M. bovis for a longer period of time than the culture based method with higher gene copy numbers observed in sterile soils than in biotic ones. Impact of soil type on M. bovis persistence need to be deepened in order to fill the gap of knowledge concerning indirect transmission of the disease.
Collapse
Affiliation(s)
- Elodie Barbier
- Agroécologie, AgroSup Dijon, INRA, Université de Bourgogne Franche Comté, Dijon Cedex, France
| | - Murielle Rochelet
- Agroécologie, AgroSup Dijon, INRA, Université de Bourgogne Franche Comté, Dijon Cedex, France
| | - Laurent Gal
- Agroécologie, AgroSup Dijon, INRA, Université de Bourgogne Franche Comté, Dijon Cedex, France
| | - Maria Laura Boschiroli
- Université Paris-Est, Laboratoire National de Référence de la Tuberculose, Unité de Zoonoses Bactériennes, Laboratoire de Santé Animale, ANSES, Maisons-Alfort Cedex, France
| | - Alain Hartmann
- Agroécologie, AgroSup Dijon, INRA, Université de Bourgogne Franche Comté, Dijon Cedex, France
| |
Collapse
|
12
|
Oh H, Kim S, Lee S, Lee H, Ha J, Lee J, Choi Y, Choi KH, Yoon Y. Prevalence and Genetic Characteristics of Meatborne Listeria monocytogenes Isolates from Livestock Farms in Korea. Korean J Food Sci Anim Resour 2016; 36:779-786. [PMID: 28115889 PMCID: PMC5243962 DOI: 10.5851/kosfa.2016.36.6.779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/24/2016] [Indexed: 12/26/2022] Open
Abstract
This study aimed to evaluate the prevalence of Listeria monocytogenes on livestock farms in Korea and determine their serotypes and genetic correlations. Twenty-five livestock farms in Korea (central: 15, south west: 7, south east: 3) were visited 2-3 times, and 2,018 samples (feces: 677, soil: 680, silage: 647, sludge: 14) were collected. Samples were enriched in LEB (Listeria enrichment broth) and Fraser broth media, and then plated on Palcam agar. The isolates were identified by PCR and 16S rRNA gene sequencing. Then, the serotypes, presence of virulence genes (actA, inlA, inlB, plcB, and hlyA), and antibiotic resistance were determined. Genetic correlations among the isolates were evaluated by analyzing the restriction digest pattern with AscI. Of the 2,018 samples, only 3 (0.15%) soil samples (FI-1-FI-3) from 1 farm in the south east region were positive for L. monocytogenes. Based on biochemical tests and multiplex PCR, the serotype of the isolates were 4ab (FI-1 and FI-3) and 3a (FI-2), which are not common in foodborne L. monocytogenes. The 3a serotype isolate was positive for all tested virulence genes, whereas the 4ab serotype isolates were only positive for hlyA, actA, and inlA. The isolates were resistant to all 12 tested antibiotics, especially FI-3. The genetic correlations among the isolates were 100% for those of the same serotype and 26.3% for those of different serotypes. These results indicate that the prevalence of L. monocytogenes on livestock farms in Korea is low; however, the isolates are pathogenic and antibiotic resistant.
Collapse
Affiliation(s)
- Hyemin Oh
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea; Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - Sejeong Kim
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea; Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - Soomin Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea; Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - Heeyoung Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea; Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - Jimyeong Ha
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea; Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - Jeeyeon Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea; Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - Yukyung Choi
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea; Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - Kyoung-Hee Choi
- Department of Oral Microbiology, College of Dentistry, Wonkwang University, Iksan 54538, Korea
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea; Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
13
|
Lang-Halter E, Schober S, Scherer S. Permanent colonization of creek sediments, creek water and limnic water plants by four Listeria species in low population densities. Z NATURFORSCH C 2016; 71:335-345. [PMID: 27583467 DOI: 10.1515/znc-2016-0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/28/2016] [Indexed: 11/15/2022]
Abstract
During a 1-year longitudinal study, water, sediment and water plants from two creeks and one pond were sampled monthly and analyzed for the presence of Listeria species. A total of 90 % of 30 sediment samples, 84 % of 31 water plant samples and 67 % of 36 water samples were tested positive. Generally, most probable number counts ranged between 1 and 40 g-1, only occasionally >110 cfu g-1 were detected. Species differentiation based on FT-IR spectroscopy and multiplex PCR of a total of 1220 isolates revealed L. innocua (46 %), L. seeligeri (27 %), L. monocytogenes (25 %) and L. ivanovii (2 %). Titers and species compositions were similar during all seasons. While the species distributions in sediments and associated Ranunculus fluitans plants appeared to be similar in both creeks, RAPD typing did not provide conclusive evidence that the populations of these environments were connected. It is concluded that (i) the fresh-water sediments and water plants are year-round populated by Listeria, (ii) no clear preference for growth in habitats as different as sediments and water plants was found and (iii) the RAPD-based intraspecific biodiversity is high compared to the low population density.
Collapse
|
14
|
Barbier E, Boschiroli ML, Gueneau E, Rochelet M, Payne A, de Cruz K, Blieux AL, Fossot C, Hartmann A. First molecular detection of Mycobacterium bovis in environmental samples from a French region with endemic bovine tuberculosis. J Appl Microbiol 2016; 120:1193-207. [PMID: 26855378 DOI: 10.1111/jam.13090] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/11/2016] [Accepted: 02/03/2016] [Indexed: 11/24/2022]
Abstract
AIMS The aim of the study was to determine the prevalence of Mycobacterium bovis (the causative agent of bovine tuberculosis, bTB) in environmental matrices within a French region (Côte d'Or) affected by this zoonotic disease. METHODS AND RESULTS We report here the development and the use of molecular detection assays based on qPCR (double fluorescent dye-labelled probe) to monitor the occurrence of Mycobacterium tuberculosis complex (MTBC) or Myco. bovis in environmental samples collected in pastures where infected cattle and wildlife had been reported. Three qPCR assays targeting members of the MTBC (IS1561' and Rv3866 loci) or Myco. bovis (RD4 locus) were developed or refined from existing assays. These tools were validated using Myco. bovis spiked soil, water and faeces samples. Environmental samples were detected positive for the presence of MTBC strains and Myco. bovis in the environment of bTB-infected farms in the Côte d'Or region. CONCLUSIONS The development of molecular assays permitted testing of several types of environmental samples including spring water, sediment samples and soils from badger setts entrance located in the vicinity of these farms, which were repeatedly contaminated with Myco. bovis (up to 8·7 × 10(3) gene copies per gram of badger sett soil). For the first time, direct spoligotyping of soil DNA enabled identification of Myco. bovis genotypes from environmental matrices. SIGNIFICANCE AND IMPACT OF THE STUDY All together, these results suggest that Myco. bovis occurs at low levels in environmental matrices in Côte d'Or within the bTB-infected area. Drinking contaminated water or inhaling contaminated bioaerosols might explain cattle infection in some cases.
Collapse
Affiliation(s)
- E Barbier
- UMR 1347 Agroécologie, INRA, Dijon Cedex, France.,UMR 1347 Agroécologie, Université de Bourgogne Franche Comté, Dijon Cedex, France
| | - M L Boschiroli
- Unité de Zoonoses Bactériennes, Laboratoire National de Référence de la Tuberculose, Laboratoire de Santé Animale, ANSES, Université Paris-Est, Maisons-Alfort Cedex, France
| | - E Gueneau
- Laboratoire Départemental de la Côte d'Or, Dijon Cedex, France
| | - M Rochelet
- UMR 1347 Agroécologie, Université de Bourgogne Franche Comté, Dijon Cedex, France
| | - A Payne
- UMR 1347 Agroécologie, INRA, Dijon Cedex, France
| | - K de Cruz
- Unité de Zoonoses Bactériennes, Laboratoire National de Référence de la Tuberculose, Laboratoire de Santé Animale, ANSES, Université Paris-Est, Maisons-Alfort Cedex, France
| | - A L Blieux
- Welience, AgrOnov, SATT Grand-Est, Bretenière Cedex, France
| | - C Fossot
- Phytocontrol Paris, Rungis Cedex, France
| | - A Hartmann
- UMR 1347 Agroécologie, INRA, Dijon Cedex, France
| |
Collapse
|
15
|
Vivant AL, Garmyn D, Gal L, Hartmann A, Piveteau P. Survival of Listeria monocytogenes in Soil Requires AgrA-Mediated Regulation. Appl Environ Microbiol 2015; 81:5073-84. [PMID: 26002901 PMCID: PMC4495223 DOI: 10.1128/aem.04134-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/12/2015] [Indexed: 11/20/2022] Open
Abstract
In a recent paper, we demonstrated that inactivation of the Agr system affects the patterns of survival of Listeria monocytogenes (A.-L. Vivant, D. Garmyn, L. Gal, and P. Piveteau, Front Cell Infect Microbiol 4:160, http://dx.doi.org/10.3389/fcimb.2014.00160). In this study, we investigated whether the Agr-mediated response is triggered during adaptation in soil, and we compared survival patterns in a set of 10 soils. The fate of the parental strain L. monocytogenes L9 (a rifampin-resistant mutant of L. monocytogenes EGD-e) and that of a ΔagrA deletion mutant were compared in a collection of 10 soil microcosms. The ΔagrA mutant displayed significantly reduced survival in these biotic soil microcosms, and differential transcriptome analyses showed large alterations of the transcriptome when AgrA was not functional, while the variations in the transcriptomes between the wild type and the ΔagrA deletion mutant were modest under abiotic conditions. Indeed, in biotic soil environments, 578 protein-coding genes and an extensive repertoire of noncoding RNAs (ncRNAs) were differentially transcribed. The transcription of genes coding for proteins involved in cell envelope and cellular processes, including the phosphotransferase system and ABC transporters, and proteins involved in resistance to antimicrobial peptides was affected. Under sterilized soil conditions, the differences were limited to 86 genes and 29 ncRNAs. These results suggest that the response regulator AgrA of the Agr communication system plays important roles during the saprophytic life of L. monocytogenes in soil.
Collapse
Affiliation(s)
- Anne-Laure Vivant
- Université de Bourgogne, UMR1347 Agroécologie, Dijon, France INRA, UMR1347 Agroécologie, Dijon, France
| | - Dominique Garmyn
- Université de Bourgogne, UMR1347 Agroécologie, Dijon, France INRA, UMR1347 Agroécologie, Dijon, France
| | - Laurent Gal
- INRA, UMR1347 Agroécologie, Dijon, France AgroSup Dijon, UMR1347 Agroécologie, Dijon, France
| | - Alain Hartmann
- Université de Bourgogne, UMR1347 Agroécologie, Dijon, France INRA, UMR1347 Agroécologie, Dijon, France
| | - Pascal Piveteau
- Université de Bourgogne, UMR1347 Agroécologie, Dijon, France INRA, UMR1347 Agroécologie, Dijon, France
| |
Collapse
|
16
|
Vivant AL, Garmyn D, Gal L, Piveteau P. The Agr communication system provides a benefit to the populations of Listeria monocytogenes in soil. Front Cell Infect Microbiol 2014; 4:160. [PMID: 25414837 PMCID: PMC4222237 DOI: 10.3389/fcimb.2014.00160] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/17/2014] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated whether the Agr communication system of the pathogenic bacterium Listeria monocytogenes was involved in adaptation and competitiveness in soil. Alteration of the ability to communicate, either by deletion of the gene coding the response regulator AgrA (response-negative mutant) or the signal pro-peptide AgrD (signal-negative mutant), did not affect population dynamics in soil that had been sterilized but survival was altered in biotic soil suggesting that the Agr system of L. monocytogenes was involved to face the complex soil biotic environment. This was confirmed by a set of co-incubation experiments. The fitness of the response-negative mutant was lower either in the presence or absence of the parental strain but the fitness of the signal-negative mutant depended on the strain with which it was co-incubated. The survival of the signal-negative mutant was higher when co-cultured with the parental strain than when co-cultured with the response-negative mutant. These results showed that the ability to respond to Agr communication provided a benefit to listerial cells to compete. These results might also indicate that in soil, the Agr system controls private goods rather than public goods.
Collapse
Affiliation(s)
- Anne-Laure Vivant
- Unités Mixtes de Recherche1347 Agroécologie, Université de BourgogneDijon, France
- Institut National de la Recherche Agronomique, Unités Mixtes de Recherche1347 AgroécologieDijon, France
| | - Dominique Garmyn
- Unités Mixtes de Recherche1347 Agroécologie, Université de BourgogneDijon, France
- Institut National de la Recherche Agronomique, Unités Mixtes de Recherche1347 AgroécologieDijon, France
| | - Laurent Gal
- Institut National de la Recherche Agronomique, Unités Mixtes de Recherche1347 AgroécologieDijon, France
- AgroSup Dijon, Unités Mixtes de Recherche1347 AgroécologieDijon, France
| | - Pascal Piveteau
- Unités Mixtes de Recherche1347 Agroécologie, Université de BourgogneDijon, France
- Institut National de la Recherche Agronomique, Unités Mixtes de Recherche1347 AgroécologieDijon, France
| |
Collapse
|
17
|
Linke K, Rückerl I, Brugger K, Karpiskova R, Walland J, Muri-Klinger S, Tichy A, Wagner M, Stessl B. Reservoirs of listeria species in three environmental ecosystems. Appl Environ Microbiol 2014; 80:5583-92. [PMID: 25002422 PMCID: PMC4178586 DOI: 10.1128/aem.01018-14] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/25/2014] [Indexed: 11/20/2022] Open
Abstract
Soil and water are suggested to represent pivotal niches for the transmission of Listeria monocytogenes to plant material, animals, and the food chain. In the present study, 467 soil and 68 water samples were collected in 12 distinct geological and ecological sites in Austria from 2007 to 2009. Listeria was present in 30% and 26% of the investigated soil and water samples, respectively. Generally, the most dominant species in soil and water samples were Listeria seeligeri, L. innocua, and L. ivanovii. The human- and animal-pathogenic L. monocytogenes was isolated exclusively from 6% soil samples in regions A (mountainous region) and B (meadow). Distinct ecological preferences were observed for L. seeligeri and L. ivanovii, which were more often isolated from wildlife reserve region C (Lake Neusiedl) and from sites in proximity to wild and domestic ruminants (region A). The higher L. monocytogenes detection and antibiotic resistance rates in regions A and B could be explained by the proximity to agricultural land and urban environment. L. monocytogenes multilocus sequence typing corroborated this evidence since sequence type 37 (ST37), ST91, ST101, and ST517 were repeatedly isolated from regions A and B over several months. A higher L. monocytogenes detection and strain variability was observed during flooding of the river Schwarza (region A) and Danube (region B) in September 2007, indicating dispersion via watercourses.
Collapse
Affiliation(s)
- Kristina Linke
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Irene Rückerl
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Katharina Brugger
- Institute for Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | | | - Julia Walland
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sonja Muri-Klinger
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Alexander Tichy
- Platform Bioinformatics and Biostatistics, University of Veterinary Medicine, Vienna, Austria
| | - Martin Wagner
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria Christian Doppler Laboratory for Molecular Food Analytics, University of Veterinary Medicine, Vienna, Austria
| | - Beatrix Stessl
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
18
|
Paspaliari DK, Mollerup MS, Kallipolitis BH, Ingmer H, Larsen MH. Chitinase expression in Listeria monocytogenes is positively regulated by the Agr system. PLoS One 2014; 9:e95385. [PMID: 24752234 PMCID: PMC3994053 DOI: 10.1371/journal.pone.0095385] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/25/2014] [Indexed: 11/23/2022] Open
Abstract
The food-borne pathogen Listeria monocytogenes encodes two chitinases, ChiA and ChiB, which allow the bacterium to hydrolyze chitin, the second most abundant polysaccharide in nature. Intriguingly, despite the absence of chitin in human and mammalian hosts, both of the chitinases have been deemed important for infection, through a mechanism that, at least in the case of ChiA, involves modulation of host immune responses. In this study, we show that the expression of the two chitinases is subject to regulation by the listerial agr system, a homologue of the agr quorum-sensing system of Staphylococcus aureus, that has so far been implicated in virulence and biofilm formation. We demonstrate that in addition to these roles, the listerial agr system is required for efficient chitin hydrolysis, as deletion of agrD, encoding the putative precursor of the agr autoinducer, dramatically decreased chitinolytic activity on agar plates. Agr was specifically induced in response to chitin addition in stationary phase and agrD was found to regulate the amount of chiA, but not chiB, transcripts. Although the transcript levels of chiB did not depend on agrD, the extracellular protein levels of both chitinases were reduced in the ΔagrD mutant. The regulatory effect of agr on chiA is potentially mediated through the small RNA LhrA, which we show here to be negatively regulated by agr. LhrA is in turn known to repress chiA translation by binding to the chiA transcript and interfering with ribosome recruitment. Our results highlight a previously unrecognized role of the agr system and suggest that autoinducer-based regulation of chitinolytic systems may be more commonplace than previously thought.
Collapse
Affiliation(s)
- Dafni Katerina Paspaliari
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Maria Storm Mollerup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte H. Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Marianne Halberg Larsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail:
| |
Collapse
|
19
|
Dalmasso M, Bolocan AS, Hernandez M, Kapetanakou AE, Kuchta T, Manios SG, Melero B, Minarovičová J, Muhterem M, Nicolau AI, Rovira J, Skandamis PN, Stessl B, Wagner M, Jordan K, Rodríguez-Lázaro D. Comparison of polymerase chain reaction methods and plating for analysis of enriched cultures of Listeria monocytogenes when using the ISO11290-1 method. J Microbiol Methods 2013; 98:8-14. [PMID: 24384162 DOI: 10.1016/j.mimet.2013.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
Abstract
Analysis for Listeria monocytogenes by ISO11290-1 is time-consuming, entailing two enrichment steps and subsequent plating on agar plates, taking five days without isolate confirmation. The aim of this study was to determine if a polymerase chain reaction (PCR) assay could be used for analysis of the first and second enrichment broths, saving four or two days, respectively. In a comprehensive approach involving six European laboratories, PCR and traditional plating of both enrichment broths from the ISO11290-1 method were compared for the detection of L. monocytogenes in 872 food, raw material and processing environment samples from 13 different dairy and meat food chains. After the first and second enrichments, total DNA was extracted from the enriched cultures and analysed for the presence of L. monocytogenes DNA by PCR. DNA extraction by chaotropic solid-phase extraction (spin column-based silica) combined with real-time PCR (RTi-PCR) was required as it was shown that crude DNA extraction applying sonication lysis and boiling followed by traditional gel-based PCR resulted in fewer positive results than plating. The RTi-PCR results were compared to plating, as defined by the ISO11290-1 method. For first and second enrichments, 90% of the samples gave the same results by RTi-PCR and plating, whatever the RTi-PCR method used. For the samples that gave different results, plating was significantly more accurate for detection of positive samples than RTi-PCR from the first enrichment, but RTi-PCR detected a greater number of positive samples than plating from the second enrichment, regardless of the RTi-PCR method used. RTi-PCR was more accurate for non-food contact surface and food contact surface samples than for food and raw material samples especially from the first enrichment, probably because of sample matrix interference. Even though RTi-PCR analysis of the first enrichment showed less positive results than plating, in outbreak scenarios where a rapid result is required, RTi-PCR could be an efficient way to get a preliminary result to be then confirmed by plating. Using DNA extraction from the second enrichment broth followed by RTi-PCR was reliable and a confirmed result could be obtained in three days, as against seven days by ISO11290-1.
Collapse
Affiliation(s)
- Marion Dalmasso
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Andrei Sorin Bolocan
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Romania
| | | | | | - Tomáš Kuchta
- Food Research Institute, Priemyselná 4, 824 75 Bratislava, Slovakia
| | - Stavros G Manios
- Agricultural University of Athens, Iera odos 75, 118 55 Athens, Greece
| | | | | | - Meryem Muhterem
- Institute for Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Romania
| | | | | | - Beatrix Stessl
- Institute for Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Martin Wagner
- Institute for Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Kieran Jordan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| | | |
Collapse
|
20
|
Vivant AL, Garmyn D, Piveteau P. Listeria monocytogenes, a down-to-earth pathogen. Front Cell Infect Microbiol 2013; 3:87. [PMID: 24350062 PMCID: PMC3842520 DOI: 10.3389/fcimb.2013.00087] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/08/2013] [Indexed: 11/23/2022] Open
Abstract
Listeria monocytogenes is the causative agent of the food-borne life threatening disease listeriosis. This pathogenic bacterium received much attention in the endeavor of deciphering the cellular mechanisms that underlie the onset of infection and its ability to adapt to the food processing environment. Although information is available on the presence of L. monocytogenes in many environmental niches including soil, water, plants, foodstuff and animals, understanding the ecology of L. monocytogenes in outdoor environments has received less attention. Soil is an environmental niche of pivotal importance in the transmission of this bacterium to plants and animals. Soil composition, microbial communities and macrofauna are extrinsic edaphic factors that direct the fate of L. monocytogenes in the soil environment. Moreover, farming practices may further affect its incidence. The genome of L. monocytogenes presents an extensive repertoire of genes encoding transport proteins and regulators, a characteristic of the genome of ubiquitous bacteria. Postgenomic analyses bring new insights in the process of soil adaptation. In the present paper focussing on soil, we review these extrinsic and intrinsic factors that drive environmental adaptation of L. monocytogenes.
Collapse
Affiliation(s)
- Anne-Laure Vivant
- UMR1347 Agroécologie, Université de BourgogneDijon, France
- UMR1347 Agroécologie, INRADijon, France
| | - Dominique Garmyn
- UMR1347 Agroécologie, Université de BourgogneDijon, France
- UMR1347 Agroécologie, INRADijon, France
| | - Pascal Piveteau
- UMR1347 Agroécologie, Université de BourgogneDijon, France
- UMR1347 Agroécologie, INRADijon, France
| |
Collapse
|