1
|
Darling A, Davis B, Byrne T, Deck M, Rivera GM, Price S, Amaral-Torres A, Markham C, Gonzalez R, Vikesland P, Krometis LA, Pruden A, Cohen A. Subsewershed analyses of the impacts of inflow and infiltration on viral pathogens and antibiotic resistance markers across a rural sewer system. WATER RESEARCH 2025; 276:123230. [PMID: 39933295 DOI: 10.1016/j.watres.2025.123230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
As wastewater-based surveillance (WBS) is increasingly used to track community-level disease trends, it is important to understand how pathogen signals can be altered by phenomena that occur within sewersheds such as inflow and infiltration (I&I). Our objectives were to characterize I&I across a rural sewershed and assess potential impacts on viral (rotavirus, norovirus GII, and SARS-CoV-2), fecal indicator (HF183, the hCYTB484 gene specific to the human mitochondrial genome, and crAssphage), and antimicrobial resistance (intI1, blaCTX-M-1) targets. In a small town in Virginia (USA), we collected 107 wastewater samples at monthly intervals over a 12-month period (2022-2023) at the wastewater treatment plant (WWTP) influent and 11 up-sewer sites. Viral, fecal indicator, and antimicrobial resistance targets were enumerated using ddPCR. Physicochemical proxies for organics and nutrient levels in sewage (chemical oxygen demand (COD), total suspended solids (TSS), and NH3(aq)) and genetic markers of anthropogenic impact were used to characterize I&I across the sewershed. Overall, precipitation was negatively associated (Spearman test; ρ < 0; p < 0.01) with physicochemical markers (TSS, COD, K, PO43--P, NH3(aq)) in the WWTP influent. We observed the highest concentrations of human fecal markers and a measure anthropogenic pollution and antibiotic resistance (intI1) in up-sewer sites with limited I&I. However, median viral gene copy concentrations were highest at the WWTP, compared to 100 % (n = 11), 90 % (n = 10), and 55 % (n = 6) of up-sewer sites for rotavirus, norovirus GII, and SARS-CoV-2, respectively. After adjusting for covariates (Ba, COD, dissolved oxygen, groundwater depth, precipitation, sampling date) using generalized linear models, moderate to high I&I was associated with statistically significant reductions in log10-transformed rotavirus and norovirus GII concentrations across the sewershed (coefficients = -0.7 and -0.9, p < 0.001, n = 95), though not for SARS-CoV-2 (coefficient = -0.2, p = 0.181, n = 95). Overall, we found that while I&I can diminish biomarker signals throughout a sewershed, including at the WWTP influent, I&I impacts vary depending on the target, and pathogen biomarker signals were, on average, higher and less variable over time at the WWTP compared to most up-sewer sites. As far as we are aware, this is the first study to assess in situ I&I impacts on multiple WBS targets. Taken together, our findings highlight challenges and tradeoffs associated with different sampling strategies for different WBS targets in heavily I&I impacted systems.
Collapse
Affiliation(s)
- Amanda Darling
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States; Department of Population Health Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Benjamin Davis
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States; Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, United States
| | - Thomas Byrne
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Madeline Deck
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Gabriel Maldonado Rivera
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Sarah Price
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Amber Amaral-Torres
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Clayton Markham
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Raul Gonzalez
- Hampton Roads Sanitation District, Virginia Beach, VA 23455, United States
| | - Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Leigh-Anne Krometis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Alasdair Cohen
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States; Department of Population Health Sciences, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
2
|
Gyimah R, Lebu S, Owusu-Frimpong I, Semiyaga S, Salzberg A, Manga M. Effluents from septic systems and impact on groundwater contamination: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62655-62675. [PMID: 39480579 DOI: 10.1007/s11356-024-35385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
Globally, 2.2 billion people rely on groundwater for their water supply, and 2.8 billion use onsite sanitation systems for their sanitation needs. Groundwater contamination from septic systems is a critical public health concern, linked with diseases related to water sanitation and hygiene. Despite the severe impacts of septic systems on groundwater quality, comprehensive global studies remain limited. This study conducted a systematic review of articles published between 2012 and 2023 on topics related to septic systems and groundwater contamination, and 82 peer-reviewed articles met the inclusion criteria. The review identified key contaminants, including E.coli, nitrate, Enterococcus spp., total coliform, ammonium, phosphate, chlorides, and pharmaceuticals. Research on microbial indicators is more prevalent in Africa, while research on nutrients is common in North America. Research on organic contaminants including polyfluoroalkyl substances (PFAS), pharmaceuticals, and personal care products (PCPPs) is limited, particularly in low-and middle-income countries. Critical factors contributing to groundwater contamination include soil, hydrogeological conditions, climate, septic system maintenance and functioning, and septic density. The goal of this study was to comprehensively assess the extent of groundwater contamination resulting from septic system effluents by identifying the major contaminants typically found in affected groundwater sources and exploring the factors contributing to contamination. Identifying the major contaminants and factors related to groundwater contamination from septic systems is crucial for developing effective management strategies to protect groundwater sources.
Collapse
Affiliation(s)
- Rita Gyimah
- The Water Institute at UNC, Department of Environmental Sciences and Engineering, The Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 4114 McGavran Hall, Campus Box # 7431, Chapel Hill, NC, NC 27599, USA
| | - Sarah Lebu
- The Water Institute at UNC, Department of Environmental Sciences and Engineering, The Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 4114 McGavran Hall, Campus Box # 7431, Chapel Hill, NC, NC 27599, USA
| | - Isaac Owusu-Frimpong
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Swaib Semiyaga
- Department of Civil and Environmental Engineering, CEDAT, Makerere University, Kampala, Uganda
| | - Aaron Salzberg
- The Water Institute at UNC, Department of Environmental Sciences and Engineering, The Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 4114 McGavran Hall, Campus Box # 7431, Chapel Hill, NC, NC 27599, USA
| | - Musa Manga
- The Water Institute at UNC, Department of Environmental Sciences and Engineering, The Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 4114 McGavran Hall, Campus Box # 7431, Chapel Hill, NC, NC 27599, USA.
- Department of Construction Economics and Management, CEDAT, Makerere University, Kampala, Uganda.
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| |
Collapse
|
3
|
Jansen L, Birn R, Koirala S, Oppegard S, Loeck B, Hamik J, Wyckoff E, Spindola D, Dempsey S, Bartling A, Roundtree A, Kahler A, Lane C, Hogan N, Strockbine N, McKeel H, Yoder J, Mattioli M, Donahue M, Buss B. Campylobacteriosis Outbreak Linked to Municipal Water, Nebraska, USA, 2021 1. Emerg Infect Dis 2024; 30:1998-2005. [PMID: 39320141 PMCID: PMC11431921 DOI: 10.3201/eid3010.231509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
In September 2021, eight campylobacteriosis cases were identified in a town in Nebraska, USA. We assessed potential exposures for a case-control analysis. We conducted whole-genome sequencing on Campylobacter isolates from patients' stool specimens. We collected large-volume dead-end ultrafiltration water samples for Campylobacter and microbial source tracking testing at the Centers for Disease Control and Prevention. We identified 64 cases in 2 waves of illnesses. Untreated municipal tap water consumption was strongly associated with illness (wave 1 odds ratio 15.36; wave 2 odds ratio 16.11). Whole-genome sequencing of 12 isolates identified 2 distinct Campylobacter jejuni subtypes (1 subtype/wave). The town began water chlorination, after which water testing detected coliforms. One dead-end ultrafiltration sample yielded nonculturable Campylobacter and avian-specific fecal rRNA genomic material. Our investigation implicated contaminated, untreated, municipal water as the source. Results of microbial source tracking supported mitigation with continued water chlorination. No further campylobacteriosis cases attributable to water were reported.
Collapse
|
4
|
Kahler AM, Hofstetter J, Arrowood M, Peterson A, Jacobson D, Barratt J, da Silva ALBR, Rodrigues C, Mattioli MC. Sources and Prevalence of Cyclospora cayetanensis in Southeastern U.S. Growing Environments. J Food Prot 2024; 87:100309. [PMID: 38815808 DOI: 10.1016/j.jfp.2024.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Recent cyclosporiasis outbreaks associated with fresh produce grown in the United States highlight the need to better understand Cyclospora cayetanensis prevalence in U.S. agricultural environments. In this study, C. cayetanensis occurrence was assessed in municipal wastewater sludge, on-farm portable toilets, irrigation pond water, and spent packing house dump tank water in a Southeastern Georgia growing region over two years. Detection of the C. cayetanensis 18S rRNA qPCR gene target in pond samples was 0%, 28%, and 42% (N = 217) depending on the detection definition used, and ≤1% in dump tank samples (N = 46). However, no qPCR detections were confirmed by sequencing, suggesting false detection occurred due to cross-reactions. C. cayetanensis qPCR detections were confirmed in 9% of wastewater sludge samples (N = 76). The human-specific fecal markers HF183 and crAssphage were detected in 33% and 6% of pond samples, respectively, and 4% and 0% of dump tank samples, respectively. Despite community Cyclospora shedding and evidence of human fecal contamination in irrigation water, there was no correlation between C. cayetanensis and HF183 qPCR detections, further supporting that 18S gene target qPCR amplifications were due to cross-reactions. When evaluating C. cayetanensis qPCR environmental detection data, the impact of assay specificity and detection criteria should be considered. Moreover, additional sequence-based testing may be needed to appropriately interpret Cyclospora qPCR environmental data.
Collapse
Affiliation(s)
- Amy M Kahler
- Centers for Disease Control and Prevention (CDC), Division of Foodborne, Waterborne, and Environmental Diseases, Atlanta, GA 30329, USA
| | - Jessica Hofstetter
- Chenega Enterprise Systems & Solutions, LLC, Chesapeake, VA 23320, USA; Auburn University, Department of Horticulture, Auburn, AL 36849, USA
| | - Michael Arrowood
- Centers for Disease Control and Prevention (CDC), Division of Foodborne, Waterborne, and Environmental Diseases, Atlanta, GA 30329, USA
| | - Anna Peterson
- Centers for Disease Control and Prevention (CDC), Division of Parasitic Diseases and Malaria, Atlanta, GA 30329, USA
| | - David Jacobson
- Centers for Disease Control and Prevention (CDC), Division of Parasitic Diseases and Malaria, Atlanta, GA 30329, USA
| | - Joel Barratt
- Centers for Disease Control and Prevention (CDC), Division of Parasitic Diseases and Malaria, Atlanta, GA 30329, USA
| | | | - Camila Rodrigues
- Auburn University, Department of Horticulture, Auburn, AL 36849, USA
| | - Mia C Mattioli
- Centers for Disease Control and Prevention (CDC), Division of Foodborne, Waterborne, and Environmental Diseases, Atlanta, GA 30329, USA.
| |
Collapse
|
5
|
Pasha ABT, Kotlarz N, Holcomb D, Reckling S, Kays J, Bailey E, Guidry V, Christensen A, Berkowitz S, Engel LS, de Los Reyes F, Harris A. Monitoring SARS-CoV-2 RNA in wastewater from a shared septic system and sub-sewershed sites to expand COVID-19 disease surveillance. JOURNAL OF WATER AND HEALTH 2024; 22:978-992. [PMID: 38935450 DOI: 10.2166/wh.2024.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/21/2024] [Indexed: 06/29/2024]
Abstract
Wastewater-based epidemiology has expanded as a tool for collecting COVID-19 surveillance data, but there is limited information on the feasibility of this form of surveillance within decentralized wastewater systems (e.g., septic systems). This study assessed SARS-CoV-2 RNA concentrations in wastewater samples from a septic system servicing a mobile home park (66 households) and from two pumping stations serving a similarly sized (71 households) and a larger (1,000 households) neighborhood within a nearby sewershed over 35 weeks in 2020. Also, raw wastewater from a hospital in the same sewershed was sampled. The mobile home park samples had the highest detection frequency (39/39 days) and mean concentration of SARS-CoV-2 RNA (2.7 × 107 gene copies/person/day for the N1) among the four sampling sites. N1 gene and N2 gene copies were highly correlated across mobile home park samples (Pearson's r = 0.93, p < 0.0001). In the larger neighborhood, new COVID-19 cases were reported every week during the sampling period; however, we detected SARS-CoV-2 RNA in 12% of the corresponding wastewater samples. The results of this study suggest that sampling from decentralized wastewater infrastructure can be used for continuous monitoring of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- A B Tanvir Pasha
- Department of Civil, Construction and Environmental Engineering, North Carolina State University (NC State), 915 Partners Way, Raleigh, NC 27606, USA
| | - Nadine Kotlarz
- Center for Human Health and the Environment, NC State, Raleigh, NC, USA
| | - David Holcomb
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Stacie Reckling
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Judith Kays
- Department of Civil, Construction and Environmental Engineering, North Carolina State University (NC State), 915 Partners Way, Raleigh, NC 27606, USA
| | | | - Virginia Guidry
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Ariel Christensen
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Steven Berkowitz
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Francis de Los Reyes
- Department of Civil, Construction and Environmental Engineering, North Carolina State University (NC State), 915 Partners Way, Raleigh, NC 27606, USA
| | - Angela Harris
- Department of Civil, Construction and Environmental Engineering, North Carolina State University (NC State), 915 Partners Way, Raleigh, NC 27606, USA E-mail:
| |
Collapse
|
6
|
Díaz SM, Barrios ME, Galli L, Cammarata RV, Torres C, Fortunato MS, García López G, Costa M, Sanguino Jorquera DG, Oderiz S, Rogé A, Gentiluomo J, Carbonari C, Rajal VB, Korol SE, Gallego A, Blanco Fernández MD, Mbayed VA. Microbiological hazard identification in river waters used for recreational activities. ENVIRONMENTAL RESEARCH 2024; 247:118161. [PMID: 38220078 DOI: 10.1016/j.envres.2024.118161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Pathogenic bacteria, viruses, and parasites can cause waterborne disease outbreaks. The study of coastal water quality contributes to identifying potential risks to human health and to improving water management practices. The Río de la Plata River, a wide estuary in South America, is used for recreational activities, as a water source for consumption and as a site for sewage discharges. In the present study, as the first step of a quantitative microbial risk assessment of the coastal water quality of this river, a descriptive study was performed to identify the microbial pathogens prevalent in its waters and in the sewage discharged into the river. Two sites, representing two different potential risk scenarios, were chosen: a heavily polluted beach and an apparently safe beach. Conductivity and fecal contamination indicators including enterococci, Escherichia coli, F + RNA bacteriophages, and human polyomaviruses showed high levels. Regarding enterococci, differences between sites were significant (p-values <0.001). 93.3% and 56.5% of the apparently safe beach exceeded the recreational water limits for E. coli and enterococci. Regarding pathogens, diarrheagenic E. coli, Salmonella, and noroviruses were detected with different frequencies between sites. The parasites Cryptosporidium spp. and Giardia duodenalis were frequently detected in both sites. The results regarding viral, bacterial, and parasitic pathogens, even without correlation with conventional indicators, showed the importance of monitoring a variety of microorganisms to determine water quality more reliably and accurately, and to facilitate further studies of health risk assessment. The taxonomic description of microbial pathogens in river waters allow identifying the microorganisms that infect the population living on its shores but also pathogens not previously reported by the clinical surveillance system.
Collapse
Affiliation(s)
- Sofía Micaela Díaz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Melina Elizabeth Barrios
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía Galli
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina. Av. 60 y 118 (B1900), La Plata, Argentina
| | - Robertina Viviana Cammarata
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina Torres
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Susana Fortunato
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental, Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
| | - Guadalupe García López
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental, Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
| | - Magdalena Costa
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina. Av. 60 y 118 (B1900), La Plata, Argentina
| | - Diego Gastón Sanguino Jorquera
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150 (A4408FVY), Salta, Argentina
| | - Sebastian Oderiz
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563 (C1282AFF), Buenos Aires, Argentina
| | - Ariel Rogé
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563 (C1282AFF), Buenos Aires, Argentina
| | - Jimena Gentiluomo
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563 (C1282AFF), Buenos Aires, Argentina
| | - Carolina Carbonari
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563 (C1282AFF), Buenos Aires, Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150 (A4408FVY), Salta, Argentina; Facultad de Ingeniería. UNSa, Av. Bolivia 5150 (A4408FVY), Salta, Argentina
| | - Sonia Edith Korol
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental, Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alfredo Gallego
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental, Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Dolores Blanco Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Viviana Andrea Mbayed
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
7
|
Hamlet A, Begley K, Miko S, Stewart L, Tellier W, Gonzalez-De Leon J, Booth H, Lippman S, Kahler A, Roundtree A, Hatada A, Lindquist S, Melius B, Goldoft M, Mattioli M, Holshue M. Notes from the Field: Gastrointestinal Illness Among Hikers on the Pacific Crest Trail - Washington, August-October 2022. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2023; 72:997-998. [PMID: 37676842 PMCID: PMC10495182 DOI: 10.15585/mmwr.mm7236a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
|
8
|
VanMensel D, Chaganti SR, Droppo IG, Weisener CG. Microbe-sediment interactions in Great Lakes recreational waters: Implications for human health risk. Environ Microbiol 2023; 25:1605-1623. [PMID: 36998158 DOI: 10.1111/1462-2920.16378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/19/2023] [Indexed: 04/01/2023]
Abstract
Microbial assessments of recreational water have traditionally focused on culturing or DNA-based approaches of the planktonic water column, omitting influence from microbe-sediment relationships. Sediment (bed and suspended) has been shown to often harbour levels of bacteria higher than the planktonic phase. The fate of suspended sediment (SS) bacteria is extensively related to transport dynamics (e.g., deposition) of the associated sediment/floc. When hydraulic energy allows, SS will settle, introducing new (potentially pathogenic) organisms to the bed. With turbulence, including waves, currents and swimmers, the risk of human ingestion is elevated due to resuspension of bed sediment and associated microbes. This research used multiplex nanofluidic reverse transcriptase quantitative PCR on RNA of bacteria associated with bed and SS to explore the active bacteria in freshwater shorelines. Bacterial genes of human health concern regarding recreational water use were targeted, such as faecal indicator bacteria (FIB), microbial source tracking genes and virulence factors from waterborne pathogens. Results indicate avian sources (i.e., gulls, geese) to be the largest nonpoint source of FIB associated with sediment in Great Lakes shorelines. This research introduces a novel approach to microbial water quality assessments and enhances our understanding of microbe-sediment dynamics and the quality of freshwater beaches.
Collapse
Affiliation(s)
- Danielle VanMensel
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, N9B 3P4, Windsor, Ontario, Canada
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research, University of Michigan, 4840 South State Street, Ann Arbor, Michigan, 48108, USA
| | - Ian G Droppo
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, N9B 3P4, Windsor, Ontario, Canada
| | - Christopher G Weisener
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, N9B 3P4, Windsor, Ontario, Canada
| |
Collapse
|
9
|
Sidhu AS, Mikolajczyk FN, Fisher JC. Antimicrobial Resistance Linked to Septic System Contamination in the Indiana Lake Michigan Watershed. Antibiotics (Basel) 2023; 12:antibiotics12030569. [PMID: 36978436 PMCID: PMC10044017 DOI: 10.3390/antibiotics12030569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Extended-spectrum β-lactamases confer resistance to a variety of β-lactam antimicrobials, and the genes for these enzymes are often found on plasmids that include additional antimicrobial resistance genes (ARG). We surveyed aquatic environments in the Indiana Lake Michigan watershed in proximity to areas with high densities of residential septic systems to determine if human fecal contamination from septic effluent correlated with the presence of antimicrobial resistance genes and phenotypically resistant bacteria. Of the 269 E. coli isolated from environmental samples and one septic source, 97 isolates were resistant to cefotaxime, a third-generation cephalosporin. A subset of those isolates showed phenotypic resistance to other β-lactams, fluoroquinolones, sulfonamides, and tetracyclines. Quantitative PCR was used to quantify human-associated Bacteroides dorei gene copies (Human Bacteroides) from water samples and to identify the presence of ARG harbored on plasmids from E. coli isolates or in environmental DNA. We found a strong correlation between the presence of ARG and human fecal concentrations, which supports our hypothesis that septic effluent is a source of ARG and resistant organisms. The observed plasmid-based resistance adds an additional level of risk, as human-associated bacteria from septic systems may expand the environmental resistome by acting as a reservoir of transmissible resistance genes.
Collapse
|
10
|
Sivaganesan M, Willis JR, Karim M, Babatola A, Catoe D, Boehm AB, Wilder M, Green H, Lobos A, Harwood VJ, Hertel S, Klepikow R, Howard MF, Laksanalamai P, Roundtree A, Mattioli M, Eytcheson S, Molina M, Lane M, Rediske R, Ronan A, D'Souza N, Rose JB, Shrestha A, Hoar C, Silverman AI, Faulkner W, Wickman K, Kralj JG, Servetas SL, Hunter ME, Jackson SA, Shanks OC. Interlaboratory performance and quantitative PCR data acceptance metrics for NIST SRM® 2917. WATER RESEARCH 2022; 225:119162. [PMID: 36191524 PMCID: PMC9932931 DOI: 10.1016/j.watres.2022.119162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Surface water quality quantitative polymerase chain reaction (qPCR) technologies are expanding from a subject of research to routine environmental and public health laboratory testing. Readily available, reliable reference material is needed to interpret qPCR measurements, particularly across laboratories. Standard Reference Material® 2917 (NIST SRM® 2917) is a DNA plasmid construct that functions with multiple water quality qPCR assays allowing for estimation of total fecal pollution and identification of key fecal sources. This study investigates SRM 2917 interlaboratory performance based on repeated measures of 12 qPCR assays by 14 laboratories (n = 1008 instrument runs). Using a Bayesian approach, single-instrument run data are combined to generate assay-specific global calibration models allowing for characterization of within- and between-lab variability. Comparable data sets generated by two additional laboratories are used to assess new SRM 2917 data acceptance metrics. SRM 2917 allows for reproducible single-instrument run calibration models across laboratories, regardless of qPCR assay. In addition, global models offer multiple data acceptance metric options that future users can employ to minimize variability, improve comparability of data across laboratories, and increase confidence in qPCR measurements.
Collapse
Affiliation(s)
- Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Jessica R Willis
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Mohammad Karim
- Environmental Services Laboratory, City of Santa Cruz, Santa Cruz, CA, USA
| | - Akin Babatola
- Environmental Services Laboratory, City of Santa Cruz, Santa Cruz, CA, USA
| | - David Catoe
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Maxwell Wilder
- Department of Environmental Biology, SUNY-ESF, Syracuse, NY, USA
| | - Hyatt Green
- Department of Environmental Biology, SUNY-ESF, Syracuse, NY, USA
| | - Aldo Lobos
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Stephanie Hertel
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Regina Klepikow
- U.S. Environmental Protection Agency, Region 7 Laboratory, Kansas City, KS, USA
| | | | | | - Alexis Roundtree
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mia Mattioli
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephanie Eytcheson
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Marirosa Molina
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Molly Lane
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI, USA
| | - Richard Rediske
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI, USA
| | - Amanda Ronan
- U.S. Environmental Protection Agency, Region 2 Laboratory, Edison, NJ, USA
| | - Nishita D'Souza
- Department of Fisheries and Wildlife, Michigan State University, E. Lansing, MI, USA
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, E. Lansing, MI, USA
| | - Abhilasha Shrestha
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Catherine Hoar
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
| | - Andrea I Silverman
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
| | | | | | - Jason G Kralj
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Stephanie L Servetas
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Monique E Hunter
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Scott A Jackson
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Detangling Seasonal Relationships of Fecal Contamination Sources and Correlates with Indicators in Michigan Watersheds. Microbiol Spectr 2022; 10:e0041522. [PMID: 35730960 PMCID: PMC9431008 DOI: 10.1128/spectrum.00415-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the widely acknowledged public health impacts of surface water fecal contamination, there is limited understanding of seasonal effects on (i) fate and transport processes and (ii) the mechanisms by which they contribute to water quality impairment. Quantifying relationships between land use, chemical parameters, and fecal bacterial concentrations in watersheds can help guide the monitoring and control of microbial water quality and explain seasonal differences. The goals of this study were to (i) identify seasonal differences in Escherichia coli and Bacteroides thetaiotaomicron concentrations, (ii) evaluate environmental drivers influencing microbial contamination during baseflow, snowmelt, and summer rain seasons, and (iii) relate seasonal changes in B. thetaiotaomicron to anticipated gastrointestinal infection risks. Water chemistry data collected during three hydroclimatic seasons from 64 Michigan watersheds were analyzed using seasonal linear regression models with candidate variables including crop and land use proportions, prior precipitation, chemical parameters, and variables related to both wastewater treatment and septic usage. Adaptive least absolute shrinkage and selection operator (LASSO) linear regression with bootstrapping was used to select explanatory variables and estimate coefficients. Regardless of season, wastewater treatment plant and septic system usage were consistently selected in all primary models for B. thetaiotaomicron and E. coli. Chemistry and precipitation-related variable selection depended upon season and organism. These results suggest a link between human pollution (e.g., septic systems) and microbial water quality that is dependent on flow regime. IMPORTANCE In this study, a data set of 64 Michigan watersheds was utilized to gain insights into fecal contamination sources, drivers, and chemical correlates across seasons for general E. coli and human-specific fecal indicators. Results reaffirmed a link between human-specific sources (e.g., septic systems) and microbial water quality. While the importance of human sources of fecal contamination and fate and transport variables (e.g., precipitation) remain important across seasons, this study provides evidence that fate and transport mechanisms vary with seasonal hydrologic condition and microorganism source. This study contributes to a body of research that informs prioritization of fecal contamination source control and surveillance strategy development to reduce the public health burden of surface water fecal contamination.
Collapse
|
12
|
An Overview of Microbial Source Tracking Using Host-Specific Genetic Markers to Identify Origins of Fecal Contamination in Different Water Environments. WATER 2022. [DOI: 10.3390/w14111809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fecal contamination of water constitutes a serious health risk to humans and environmental ecosystems. This is mainly due to the fact that fecal material carries a variety of enteropathogens, which can enter and circulate in water bodies through fecal pollution. In this respect, the prompt identification of the polluting source(s) is pivotal to guiding appropriate target-specific remediation actions. Notably, microbial source tracking (MST) is widely applied to determine the host origin(s) contributing to fecal water pollution through the identification of zoogenic and/or anthropogenic sources of fecal environmental DNA (eDNA). A wide array of host-associated molecular markers have been developed and exploited for polluting source attribution in various aquatic ecosystems. This review is intended to provide the most up-to-date overview of genetic marker-based MST studies carried out in different water types, such as freshwaters (including surface and groundwaters) and seawaters (from coasts, beaches, lagoons, and estuaries), as well as drinking water systems. Focusing on the latest scientific progress/achievements, this work aims to gain updated knowledge on the applicability and robustness of using MST for water quality surveillance. Moreover, it also provides a future perspective on advancing MST applications for environmental research.
Collapse
|
13
|
Willis JR, Sivaganesan M, Haugland RA, Kralj J, Servetas S, Hunter ME, Jackson SA, Shanks OC. Performance of NIST SRM® 2917 with 13 recreational water quality monitoring qPCR assays. WATER RESEARCH 2022; 212:118114. [PMID: 35091220 PMCID: PMC10786215 DOI: 10.1016/j.watres.2022.118114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Fecal pollution remains a significant challenge for recreational water quality management worldwide. In response, there is a growing interest in the use of real-time quantitative PCR (qPCR) methods to achieve same-day notification of recreational water quality and associated public health risk as well as to characterize fecal pollution sources for targeted mitigation. However, successful widespread implementation of these technologies requires the development of and access to a high-quality standard control material. Here, we report a single laboratory qPCR performance assessment of the National Institute of Standards and Technology Standard Reference Material 2917 (NIST SRM® 2917), a linearized plasmid DNA construct that functions with 13 recreational water quality qPCR assays. Performance experiments indicate the generation of standard curves with amplification efficiencies ranging from 0.95 ± 0.006 to 0.99 ± 0.008 and coefficient of determination values (R2) ≥ 0.980. Regardless of qPCR assay, variability in repeated measurements at each dilution level were very low (quantification threshold standard deviations ≤ 0.657) and exhibited a heteroscedastic trend characteristic of qPCR standard curves. The influence of a yeast carrier tRNA added to the standard control material buffer was also investigated. Findings demonstrated that NIST SRM® 2917 functions with all qPCR methods and suggests that the future use of this control material by scientists and water quality managers should help reduce variability in concentration estimates and make results more consistent between laboratories.
Collapse
Affiliation(s)
- Jessica R Willis
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Richard A Haugland
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Jason Kralj
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Stephanie Servetas
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Monique E Hunter
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Scott A Jackson
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Monitoring coliphages to reduce waterborne infectious disease transmission in the One Water framework. Int J Hyg Environ Health 2022; 240:113921. [DOI: 10.1016/j.ijheh.2022.113921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
|
15
|
Sojobi AO, Zayed T. Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. ENVIRONMENTAL RESEARCH 2022; 203:111609. [PMID: 34216613 DOI: 10.1016/j.envres.2021.111609] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 05/09/2023]
Abstract
Sewer overflow (SO), which has attracted global attention, poses serious threat to public health and ecosystem. SO impacts public health via consumption of contaminated drinking water, aerosolization of pathogens, food-chain transmission, and direct contact with fecally-polluted rivers and beach sediments during recreation. However, no study has attempted to map the linkage between SO and public health including Covid-19 using scientometric analysis and systematic review of literature. Results showed that only few countries were actively involved in SO research in relation to public health. Furthermore, there are renewed calls to scale up environmental surveillance to safeguard public health. To safeguard public health, it is important for public health authorities to optimize water and wastewater treatment plants and improve building ventilation and plumbing systems to minimize pathogen transmission within buildings and transportation systems. In addition, health authorities should formulate appropriate policies that can enhance environmental surveillance and facilitate real-time monitoring of sewer overflow. Increased public awareness on strict personal hygiene and point-of-use-water-treatment such as boiling drinking water will go a long way to safeguard public health. Ecotoxicological studies and health risk assessment of exposure to pathogens via different transmission routes is also required to appropriately inform the use of lockdowns, minimize their socio-economic impact and guide evidence-based welfare/social policy interventions. Soft infrastructures, optimized sewer maintenance and prescreening of sewer overflow are recommended to reduce stormwater burden on wastewater treatment plant, curtail pathogen transmission and marine plastic pollution. Comprehensive, integrated surveillance and global collaborative efforts are important to curtail on-going Covid-19 pandemic and improve resilience against future pandemics.
Collapse
Affiliation(s)
| | - Tarek Zayed
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
16
|
Carol M, Guadalupe-Fernández V, Rius C, Soldevila N, Razquin E, Guix S, Dominguez A. A Waterborne Gastroenteritis Outbreak Caused by a GII Norovirus in a Holiday Camp in Catalonia (Spain), 2017. Viruses 2021; 13:v13091792. [PMID: 34578373 PMCID: PMC8473012 DOI: 10.3390/v13091792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/26/2023] Open
Abstract
On 2 February 2017, Epidemiological Surveillance Services were notified of an outbreak of acute gastroenteritis (AGE) among schoolchildren who had taken part of a school trip from 30 January to 3 February 2017 at a holiday camp in Catalonia. A retrospective cohort study was performed to identify the causative agent, estimate the magnitude of the outbreak and identify its source, as well as to determine the route of transmission. Data collected by standardised questionnaires identified 41 episodes of AGE among 174 individuals who attended the camp. Cases had mainly symptoms of abdominal pain (73.8%), nausea (64.3%), vomiting (54.8%), diarrhoea (45.2%) and headache (42.9%). Consumption of water was associated with gastroenteritis (crude RR: 1.72, 95%CI: 1.01–2.92; adjusted RR: 1.88, 95%CI 1.03–3.56). NoV GII was detected in faeces (5 out of 13) and water samples. Additionally, faecal indicator bacteria and protozoa were detected in water samples. The outbreak showed a high attack rate and was caused by a natural water fountain not properly treated and not monitored for safety quality. There could have been a discharge of wastewater at a point close to the fountain; however, the source of contamination of the water could not be identified. Health education may be useful to eliminate risks associated with the consumption of untreated water from natural fountains.
Collapse
Affiliation(s)
- Mònica Carol
- Sub-Directorate General of Surveillance and Response to Public Health Emergencies, Public Health Agency of Catalonia, Generalitat of Catalonia, 08005 Barcelona, Spain;
| | - Víctor Guadalupe-Fernández
- Sub-Directorate General of Surveillance and Response to Public Health Emergencies, Public Health Agency of Catalonia, Generalitat of Catalonia, 08005 Barcelona, Spain;
- Correspondence:
| | - Cristina Rius
- Epidemiological Service of Public Health Agency of Barcelona (ASPB), 08023 Barcelona, Spain;
- CIBER Epidemiologia y Salud Pública (CIBERESP), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Nuria Soldevila
- CIBER Epidemiologia y Salud Pública (CIBERESP), Instituto Salud Carlos III, 28029 Madrid, Spain
- Medicine Department, University of Barcelona (UB), 08036 Barcelona, Spain; (N.S.); (A.D.)
| | - Efrén Razquin
- Laboratory of Barcelona Public Health Agency (ASPB), 08001 Barcelona, Spain;
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, Institute of Nutrition and Food Safety (INSA), School of Biology, University of Barcelona (UB), 08028 Barcelona, Spain;
| | - Angela Dominguez
- CIBER Epidemiologia y Salud Pública (CIBERESP), Instituto Salud Carlos III, 28029 Madrid, Spain
- Medicine Department, University of Barcelona (UB), 08036 Barcelona, Spain; (N.S.); (A.D.)
| | | |
Collapse
|
17
|
Microbial source tracking using metagenomics and other new technologies. J Microbiol 2021; 59:259-269. [DOI: 10.1007/s12275-021-0668-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
|