1
|
Shao YF, Tang BB, Ding YH, Fang CY, Hong L, Shao CX, Yang ZX, Qiu YP, Wang JC, Yang B, Weng QJ, Wang JJ, He QJ. Kaempferide ameliorates cisplatin-induced nephrotoxicity via inhibiting oxidative stress and inducing autophagy. Acta Pharmacol Sin 2023; 44:1442-1454. [PMID: 36658427 PMCID: PMC10310756 DOI: 10.1038/s41401-023-01051-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Acute kidney injury (AKI) caused by anti-tumor drugs, such as cisplatin, is a severe complication with no effective treatment currently, leading to the reduction or discontinuation of chemotherapy. Natural products or herbal medicines are gradually considered as promising agents against cisplatin-induced AKI with the advantages of multi-targeting, multi-effects, and less resistance. In this study, we investigated the effects of kaempferide, a natural flavonoid extracted from the rhizome of Kaempferia galanga, in experimental AKI models in vitro and in vivo. We first conducted pharmacokinetic study in mice and found a relative stable state of kaempferide with a small amount of conversion into kaempferol. We showed that both kaempferide (10 μM) and kaempferol (10 μM) significantly inhibited cisplatin-caused injuries in immortalized proximal tubule epithelial cell line HK-2. In AKI mice induced by injection of a single dose of cisplatin (15 mg/kg), oral administration of kaempferide (50 mg/kg) either before or after cisplatin injection markedly improved renal function, and ameliorated renal tissue damage. We demonstrated that kaempferide inhibited oxidative stress and induced autophagy in cisplatin-treated mice and HK-2 cells, thus increasing tubular cell viability and decreasing immune responses to attenuate the disease progression. In addition, treatment with kaempferide significantly ameliorated ischemia-reperfusion-induced renal injury in vitro and in vivo. We conclude that kaempferide is a promising natural product for treating various AKI. This study has great implications for promotion of its use in healthcare products, and help to break through the limited use of cisplatin in the clinic.
Collapse
Affiliation(s)
- Yan-Fei Shao
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Bing-Bing Tang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Hui Ding
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yan Fang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ling Hong
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Chun-Xiao Shao
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhao-Xu Yang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yue-Ping Qiu
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Cheng Wang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qin-Jie Weng
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Jia Wang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiao-Jun He
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Guo Y, Chen X, Gong P, Wang R, Qi Z, Deng Z, Han A, Long H, Wang J, Yao W, Yang W, Wang J, Li N. Advances in Postharvest Storage and Preservation Strategies for Pleurotus eryngii. Foods 2023; 12:foods12051046. [PMID: 36900561 PMCID: PMC10000407 DOI: 10.3390/foods12051046] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The king oyster mushroom (Pleurotus eryngii) is a delicious edible mushroom that is highly prized for its unique flavor and excellent medicinal properties. Its enzymes, phenolic compounds and reactive oxygen species are the keys to its browning and aging and result in its loss of nutrition and flavor. However, there is a lack of reviews on the preservation of Pl. eryngii to summarize and compare different storage and preservation methods. This paper reviews postharvest preservation techniques, including physical and chemical methods, to better understand the mechanisms of browning and the storage effects of different preservation methods, extend the storage life of mushrooms and present future perspectives on technical aspects in the storage and preservation of Pl. eryngii. This will provide important research directions for the processing and product development of this mushroom.
Collapse
Affiliation(s)
| | | | - Pin Gong
- Correspondence: ; Tel.: +86-13772196479
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Prasad R, Prasad SB. Modulatory Effect of Rutin on the Antitumor Activity and Genotoxicity of Cisplatin in Tumor-Bearing Mice. Adv Pharm Bull 2021; 11:746-754. [PMID: 34888222 PMCID: PMC8642793 DOI: 10.34172/apb.2021.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/29/2020] [Accepted: 08/05/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose: Cisplatin is a cancer chemotherapeutic drug that has been extensively used in the treatment of a variety of cancers. However, the full usage of cisplatin is limited due to its treatment associated development of multiple side effects in the host. In the present study, the modulatory effect of rutin, a type of flavonoid, on the cisplatin mediated antitumor activity and allied genotoxicity in ascites Dalton’s lymphoma (DL)-bearing mice were investigated. Methods: The antitumor activity was determined by calculating the percent increase in the life span of mice, cell viability and scanning electron microscopy (SEM) of DL cells. Further, the modulatory effect of rutin on the cisplatin-induced genotoxic effects in the same DL-bearing mice was assessed by the analysis of micronuclei, chromosomal aberration and sperm abnormality. Results: The combination treatment of mice with rutin and cisplatin showed a considerable increase in the life span of the DL-bearing mice depicting better antitumor efficacy. SEM of these DL cells showed severe membrane deformities in DL cells such as fusion of cell membrane, membrane blebbing, cell shrinkage, membrane folding and loss in microvilli from the tumor cell surface which may lead to cell death. Cisplatin alone treatment caused an increase in the frequency of chromosomal aberrations, micronuclei and sperms abnormality. However, the combination treatment of DL-bearing mice with rutin and cisplatin comparatively reduced these genotoxic effects. Conclusion: The overall findings suggest that rutin enhances the cisplatin-mediated antitumor activity and cytotoxicity against DL cells and at the same time diminishes the genotoxic effects induced by cisplatin in the DL-bearing mice.
Collapse
Affiliation(s)
- Rajesh Prasad
- Cell and Tumor Biology Laboratory, Department of Zoology, School of Life Sciences, North-Eastern Hill University, Umshing-Mawkynroh, Shillong, Meghalaya, India
| | - Surya Bali Prasad
- Cell and Tumor Biology Laboratory, Department of Zoology, School of Life Sciences, North-Eastern Hill University, Umshing-Mawkynroh, Shillong, Meghalaya, India
| |
Collapse
|
4
|
Rawat K, Syeda S, Shrivastava A. Hyperactive neutrophils infiltrate vital organs of tumor bearing host and contribute to gradual systemic deterioration via upregulated NE, MPO and MMP-9 activity. Immunol Lett 2021; 241:35-48. [PMID: 34890699 DOI: 10.1016/j.imlet.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Cancer is known to have systemic impact by targeting various organs that ultimately compromises the overall physiology of the host. Several reports have demonstrated the role of neutrophils in cancer wherein the focus has been drawn on the elevated neutrophil count in blood or at tumor loci. However, their role in mediating systemic effects during cancer progression has not been deciphered so far. Therefore, it is worthwhile to explore whether and how neutrophils contribute to systemic deterioration in cancer. To discern their systemic role, we evaluated neutrophil count and function at different stages of tumor growth in Dalton's Lymphoma mice model. Notably, our results displayed a gradual increase in Ly6G+ neutrophils in peripheral blood and their infiltration in vital organs including liver, lungs, spleen, kidney, lymph nodes and peritoneum of tumor bearing host. We showed remarkable alterations in histoarchitecture and serum enzyme levels that aggravated with tumor progression. We next examined neutrophil function by assessing its granular cargoes including neutrophil elastase (NE), myeloperoxidase (MPO), and matrix metalloproteinases (MMP-8 and MMP-9). Interestingly, blood neutrophils of tumor bearing mice exhibited a marked change in morphology with gradual increase in NE and MPO expression with tumor growth. In addition, we observed upregulated expression of NE, MPO, MMP-8 and MMP-9 in the vital organs of tumor bearing host. Taken together, our results demonstrate heightened infiltration and function of neutrophils in vital organs of tumor bearing host which possibly account for gradual systemic deterioration during cancer progression. Our findings thus implicate neutrophils as a potential therapeutic target that may help to reduce the overall fatality rate of cancer.
Collapse
Affiliation(s)
- Kavita Rawat
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Saima Syeda
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
5
|
Natural products: potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol Sin 2021; 42:1951-1969. [PMID: 33750909 PMCID: PMC8633358 DOI: 10.1038/s41401-021-00620-9] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is a clinically advanced and highly effective anticancer drug used in the treatment of a wide variety of malignancies, such as head and neck, lung, testis, ovary, breast cancer, etc. However, it has only a limited use in clinical practice due to its severe adverse effects, particularly nephrotoxicity; 20%–35% of patients develop acute kidney injury (AKI) after cisplatin administration. The nephrotoxic effect of cisplatin is cumulative and dose dependent and often necessitates dose reduction or withdrawal. Recurrent episodes of AKI result in impaired renal tubular function and acute renal failure, chronic kidney disease, uremia, and hypertensive nephropathy. The pathophysiology of cisplatin-induced AKI involves proximal tubular injury, apoptosis, oxidative stress, inflammation, and vascular injury in the kidneys. At present, there are no effective drugs or methods for cisplatin-induced kidney injury. Recent in vitro and in vivo studies show that numerous natural products (flavonoids, saponins, alkaloids, polysaccharide, phenylpropanoids, etc.) have specific antioxidant, anti-inflammatory, and anti-apoptotic properties that regulate the pathways associated with cisplatin-induced kidney damage. In this review we describe the molecular mechanisms of cisplatin-induced nephrotoxicity and summarize recent findings in the field of natural products that undermine these mechanisms to protect against cisplatin-induced kidney damage and provide potential strategies for AKI treatment.
Collapse
|
6
|
Peng Y, Li T, Jiang H, Gu Y, Chen Q, Yang C, Qi WL, Liu SQ, Zhang X. Postharvest biochemical characteristics and ultrastructure of Coprinus comatus. PeerJ 2020; 8:e8508. [PMID: 32071815 PMCID: PMC7007737 DOI: 10.7717/peerj.8508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/03/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Coprinus comatus is a novel cultivated edible fungus, hailed as a new preeminent breed of mushroom. However, C. comatus is difficult to keep fresh at room temperature after harvest due to high respiration, browning, self-dissolve and lack of physical protection. METHODS In order to extend the shelf life of C. comatus and reduce its loss in storage, changes in quality, biochemical content, cell wall metabolism and ultrastructure of C. comatus (C.c77) under 4 °C and 90% RH storage regimes were investigated in this study. RESULTS The results showed that: (1) After 10 days of storage, mushrooms appeared acutely browning, cap opening and flowing black juice, rendering the mushrooms commercially unacceptable. (2) The activity of SOD, CAT, POD gradually increased, peaked at the day 10, up to 31.62 U g-1 FW, 16.51 U g-1 FW, 0.33 U g-1 FW, respectively. High SOD, CAT, POD activity could be beneficial in protecting cells from ROS-induced injuries, alleviating lipid peroxidation and stabilizing membrane integrity. (3) The activities of chitinase, β-1,3-glucanase were significantly increased. Higher degrees of cell wall degradation observed during storage might be due to those enzymes' high activities. (4) The fresh C. comatus had dense tissue and every single cell had the number of intracellular organelles which structure can be observed clearly. After 10 d storage, the number of intracellular organelles was declined and the structure was fuzzy, the nucleus disappeared. After 20 d storage, C. comatus's organization was completely lost, many cells were stacked together and the cell wall was badly damaged.
Collapse
Affiliation(s)
- Yi Peng
- College of Resources, Sichuan Agricultural Uniersity, Chengdu, Sichuan, China
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, Sichuan, China
| | - Tongling Li
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, Sichuan, China
| | - Huaming Jiang
- Sichuan Vocational and Technical College, Suining, Sichuan, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural Uniersity, Chengdu, Sichuan, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural Uniersity, Chengdu, Sichuan, China
| | - Cairong Yang
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, Sichuan, China
- Institute of Microbiology, Chengdu Normal University, Chengdu, Sichuan, China
| | - Wei liang Qi
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, Sichuan, China
| | - Song-qing Liu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, Sichuan, China
- Institute of Microbiology, Chengdu Normal University, Chengdu, Sichuan, China
| | - Xiaoping Zhang
- College of Resources, Sichuan Agricultural Uniersity, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Kursunluoglu G, Taskiran D, Kayali HA. The Investigation of the Antitumor Agent Toxicity and Capsaicin Effect on the Electron Transport Chain Enzymes, Catalase Activities and Lipid Peroxidation Levels in Lung, Heart and Brain Tissues of Rats. Molecules 2018; 23:E3267. [PMID: 30544766 PMCID: PMC6320812 DOI: 10.3390/molecules23123267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Cisplatin is one of the most active cytotoxic agents in cancer treatment. To clarify the interaction with mitochondria, we hypothesize that the activities of mitochondrial electron transport chain (ETC) enzymes succinate dehydrogenase (SDH) and cytochrome c oxidase (COX), nucleotide levels, as well as levels of catalase (CAT) enzyme and membrane lipid peroxidation (LPO) can be affected by cisplatin. There was a significant decrease of both SDH and COX activities in the lung, heart, and brain tissues at the 1st day after cisplatin exposure, and the observed decreased levels of adenosine triphosphate (ATP) and adenosine diphosphate (ADP) in comparison with the control could be because of cisplatin-induced mitochondrial dysfunction. The investigations suggested that cisplatin inhibits SDH, COX, and ATP synthase. The higher LPO level in the studied tissues after 1 and 4 days post-exposure to cisplatin compared to control can be inferred to be a result of elevated electron leakage from the ETC, and reactive oxygen species (ROS) can lead to wide-ranging tissue damage such as membrane lipid damage. Consequently, it was observed that capsaicin may have a possible protective effect on ETC impairment caused by cisplatin. The activities of SDH and COX were higher in heart and brain exposed to cisplatin + capsaicin compared to cisplatin groups, while LPO levels were lower. The investigated results in the cisplatin + capsaicin groups suggested that the antioxidant capacity of capsaicin scavenges ROS and prevents membrane destruction.
Collapse
Affiliation(s)
- Gizem Kursunluoglu
- Izmir Biomedicine and Genome Center (IBG), İzmir 35340, Turkey.
- Department of Chemistry, The Graduate School of Natural and Applied Sciences, Dokuz Eylul University, İzmir 35160, Turkey.
| | - Dilek Taskiran
- Department of Physiology, Ege University School of Medicine, İzmir 35100, Turkey.
| | - Hulya Ayar Kayali
- Izmir Biomedicine and Genome Center (IBG), İzmir 35340, Turkey.
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Dokuz Eylul University, İzmir 35160, Turkey.
| |
Collapse
|
8
|
Rubila S, Ranganathan TV, Sakthivel KM. Protective Effect of Zingiber officinale Against Dalton's Lymphoma Ascites Tumour by Regulating Inflammatory Mediator and Cytokines. Appl Biochem Biotechnol 2016; 180:1482-1496. [PMID: 27435276 DOI: 10.1007/s12010-016-2181-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
Abstract
The aim of the present investigation was to evaluate Zingiber officinale paste against Dalton's lymphoma ascites (DLA)-induced tumours in Swiss albino mice. Experimental animals received Z. officinale paste (low dose 100 mg/kg bw and high dose 500 mg/kg bw) orally for eight alternative days. Treatment with Z. officinale paste showed significant increase in haemoglobin level and decrease in aspartate amino transferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and gamma glutamyl transferase (γ-GT) level. Z. officinale paste reduced the inflammatory mediators and cytokine levels, such as inducible nitric oxide (iNOS), tumour necrosis factor level (TNF-α) and interleukin-1β (IL-1β). Treatment with Z. officinale paste also significantly increased the antioxidant enzyme level, such as superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and glutathione transferase (GST), and decreased the lipid peroxidation. Treatment also increased the vitamin C and E levels in treated animals compared with the DLA-bearing host. Histopathological studies also confirmed the protective influence of Z. officinale paste against DLA. The present study suggested that Z. officinale paste could be used as natural spice and a potent antitumour agent.
Collapse
Affiliation(s)
- Sundararaj Rubila
- Department of Food Processing and Engineering, School of Biotechnology and Health Sciences, Karunya University, Coimbatore, Tamilnadu, 641114, India
| | - Thottiam Vasudevan Ranganathan
- Department of Food Processing and Engineering, School of Biotechnology and Health Sciences, Karunya University, Coimbatore, Tamilnadu, 641114, India.
| | - Kunnathur Murugesan Sakthivel
- Department of Biotechnology, School of Biotechnology and Health Sciences, Karunya University, Coimbatore, Tamilnadu, 641114, India
| |
Collapse
|
9
|
Barrera G, Gentile F, Pizzimenti S, Canuto RA, Daga M, Arcaro A, Cetrangolo GP, Lepore A, Ferretti C, Dianzani C, Muzio G. Mitochondrial Dysfunction in Cancer and Neurodegenerative Diseases: Spotlight on Fatty Acid Oxidation and Lipoperoxidation Products. Antioxidants (Basel) 2016; 5:antiox5010007. [PMID: 26907355 PMCID: PMC4808756 DOI: 10.3390/antiox5010007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/22/2016] [Accepted: 02/05/2016] [Indexed: 12/21/2022] Open
Abstract
In several human diseases, such as cancer and neurodegenerative diseases, the levels of reactive oxygen species (ROS), produced mainly by mitochondrial oxidative phosphorylation, is increased. In cancer cells, the increase of ROS production has been associated with mtDNA mutations that, in turn, seem to be functional in the alterations of the bioenergetics and the biosynthetic state of cancer cells. Moreover, ROS overproduction can enhance the peroxidation of fatty acids in mitochondrial membranes. In particular, the peroxidation of mitochondrial phospholipid cardiolipin leads to the formation of reactive aldehydes, such as 4-hydroxynonenal (HNE) and malondialdehyde (MDA), which are able to react with proteins and DNA. Covalent modifications of mitochondrial proteins by the products of lipid peroxidation (LPO) in the course of oxidative cell stress are involved in the mitochondrial dysfunctions observed in cancer and neurodegenerative diseases. Such modifications appear to affect negatively mitochondrial integrity and function, in particular energy metabolism, adenosine triphosphate (ATP) production, antioxidant defenses and stress responses. In neurodegenerative diseases, indirect confirmation for the pathogenetic relevance of LPO-dependent modifications of mitochondrial proteins comes from the disease phenotypes associated with their genetic alterations.
Collapse
Affiliation(s)
- Giuseppina Barrera
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino 10125, Italy.
| | - Fabrizio Gentile
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università del Molise, Campobasso 86100, Italy.
| | - Stefania Pizzimenti
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino 10125, Italy.
| | - Rosa Angela Canuto
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino 10125, Italy.
| | - Martina Daga
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino 10125, Italy.
| | - Alessia Arcaro
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università del Molise, Campobasso 86100, Italy.
| | - Giovanni Paolo Cetrangolo
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università del Molise, Campobasso 86100, Italy.
| | - Alessio Lepore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli 80131, Italy.
| | - Carlo Ferretti
- Dipartimento di Scienze e Tecnologia del Farmaco, Università di Torino, Torino 10125, Italy.
| | - Chiara Dianzani
- Dipartimento di Scienze e Tecnologia del Farmaco, Università di Torino, Torino 10125, Italy.
| | - Giuliana Muzio
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino 10125, Italy.
| |
Collapse
|
10
|
The Effect of Cisplatin Toxicity and Capsaicin on Electron Transport Chain in Liver and Kidney of Sprague Dawley Rats. Cell Biochem Biophys 2014; 69:707-16. [DOI: 10.1007/s12013-014-9857-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Prasad SB, Verma AK. Cantharidin-mediated ultrastructural and biochemical changes in mitochondria lead to apoptosis and necrosis in murine Dalton's lymphoma. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:1377-1394. [PMID: 24029497 DOI: 10.1017/s143192761301324x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cantharidin, a type of terpenoid, is the blistering agent of blister beetles frequently used in traditional medicine. The isolation and anticancer activity of cantharidin from blister beetles, Mylabris cichorii has been recently reported by us. This study deals with changes in mitochondrial structure and function and understanding their significance in the underlying mechanism(s) in cantharidin-mediated antitumor effects in Dalton's lymphoma (DL) bearing mice. Cantharidin treatment caused the appearance of abnormal mitochondrial features which included roundish mitochondria with thickened membranes, irregularity in cristae, and appearance of small and large size vacuoles in mitochondria of DL cells. Cantharidin treatment resulted in a decrease in mitochondrial reduced glutathione, succinate dehydrogenase activity, mitochondrial membrane potential, and induced apoptosis and necrosis in DL cells. The decrease/release of mitochondrial cytochrome c were also observed after cantharidin treatment. Flow cytometry-based cell cycle analysis showed a time-dependent accumulation of the sub-G0 population of DL cells, thus, confirming the involvement of apoptosis in tumor cells in cantharidin-mediated antitumor activity. These finding signify that the apoptosis induced by cantharidin in DL cells should involve mitochondrial-dependent pathways. It is suggested that these cantharidin-mediated changes in mitochondria may play a crucial role in its antitumor activity.
Collapse
Affiliation(s)
- Surya B Prasad
- Department of Zoology, Cell and Tumor Biology Laboratory, North-Eastern Hill University, Shillong-793 022, India
| | | |
Collapse
|
12
|
Martha KRM, Rosangkima G, Amenla L, Rongpi T, Prasad SB. Cisplatin- and dietary ascorbic acid-mediated changes in the mitochondria of Dalton's lymphoma-bearing mice. Fundam Clin Pharmacol 2011; 27:329-38. [PMID: 22211279 DOI: 10.1111/j.1472-8206.2011.01019.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cisplatin treatment caused a significant increase in the life span of ascites Dalton's lymphoma (DL) Tumor-bearing (TB) mice. However, as compared to cisplatin (CP) alone, combination treatment with ascorbic acid plus CP resulted in better therapeutic efficacy against murine DL. Cisplatin treatment of TB mice resulted in the appearance of thickened and irregular arrangement of mitochondrial cristae in the liver, kidney and DL tumor cells. Combination treatment of the hosts with ascorbic acid and CP lessened deformities in the mitochondria of liver and kidney, while in tumor cells, this increased the formation of vacuoles and disruption in mitochondrial cristae. Cisplatin treatment decreased the succinate dehydrogenase (SDH) activity in the mitochondria of kidney and DL cells and combination treatment caused further decrease in SDH activity in kidney and DL cells during 24-48 h of treatment. After CP treatment, the protein content in the mitochondria of these tissues decreased, and during combination treatment, it showed significant improvement. Mitochondrial lipid peroxidation (LPO) increased in these tissues after CP treatment. However, combination treatment significantly decreased mitochondrial LPO in liver and kidney but increased in DL cells. This increase in mitochondrial LPO in DL cells and decrease in liver and kidney could play an important role in the antitumor activity of combination treatment and at the same time reduce CP-induced toxicity in the host. However, further study may be desirable to explore some aspects of the mechanism(s) involved in these changes in mitochondria.
Collapse
Affiliation(s)
- Kham R M Martha
- Cell & Tumor Biology Lab., Department of Zoology, North-Eastern Hill University, Shillong-973022, India
| | | | | | | | | |
Collapse
|
13
|
Yousef MM, Helal OK, Adly N. Effect of silymarin on cisplatin-induced renal tubular injuries in adult male rabbits. ACTA ACUST UNITED AC 2011. [DOI: 10.1097/01.ehx.0000407698.55603.e7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Rjiba-Touati K, Ayed-Boussema I, Belarbia A, Azzebi A, Achour A, Bacha H. Protective effect of recombinant human erythropoeitin against cisplatin cytotoxicity and genotoxicity in cultured Vero cells. ACTA ACUST UNITED AC 2011; 65:181-7. [PMID: 21924599 DOI: 10.1016/j.etp.2011.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 07/24/2011] [Accepted: 08/18/2011] [Indexed: 12/12/2022]
Abstract
Cisplatin is an effective agent against various solid tumors. Despite its effectiveness, the dose of cisplatin that can be administered is limited by its nephrotoxicity. Therefore, strategies for minimising the toxicity of cisplatin are of a clinical interest. The aim of this study was to investigate the protective effect of recombinant human erythropoietin (rhEPO) against the cytotoxicity and apoptosis induced by cisplatin in cultured Vero cells. Three types of treatments were performed: (i) cells were treated with rhEPO 24 h before exposure to cisplatin (pre-treatment), (ii) cells were treated with rhEPO and cisplatin simultaneously (co-treatment), (iii) cells were treated with rhEPO 24 h after exposure to cisplatin (post-treatment). Our results showed that rhEPO reduced cisplatin-induced cell mortality. Besides, rhEPO administration prevented cisplatin-induced DNA damage. Furthermore, rhEPO decreased the caspase-3 activity and pro-apoptotic factors levels (p53 and Bax) induced by cisplatin. It increased also the expression of the anti-apoptotic factor Bcl2 in Vero cells. Altogether, our results suggest a protective action of rhEPO against cisplatin cytotoxicity and genotoxicity via an anti-apoptotic process. The most protective effect was observed with rhEPO when it was administrated 24 h before cisplatin treatment.
Collapse
Affiliation(s)
- Karima Rjiba-Touati
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir University, Monastir, Tunisia
| | | | | | | | | | | |
Collapse
|
15
|
Wang Y, Wei L, Zhao M, Mei S, Zheng M, Yang Y, Wang H, Chen G, Peng S. Development of highly effective three-component cytoprotective adjuncts for cisplatin cancer treatment: synthesis and in vivo evaluation in S180-bearing mice. Metallomics 2011; 3:1212-7. [DOI: 10.1039/c1mt00013f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|