1
|
Chauhan A, Dubey S, Jain S. Association Between Type 2 Diabetes Mellitus and Alzheimer's Disease: Common Molecular Mechanism and Therapeutic Targets. Cell Biochem Funct 2024; 42:e4111. [PMID: 39228117 DOI: 10.1002/cbf.4111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
Diabetes mellitus (DM) and Alzheimer's disease (AD) rates are rising, mirroring the global trend of an aging population. Numerous epidemiological studies have shown that those with Type 2 diabetes (T2DM) have an increased risk of developing dementia. These degenerative and progressive diseases share some risk factors. To a large extent, the amyloid cascade is responsible for AD development. Neurofibrillary tangles induce neurodegeneration and brain atrophy; this chain reaction begins with hyperphosphorylation of tau proteins caused by progressive amyloid beta (Aβ) accumulation. In addition to these processes, it seems that alterations in brain glucose metabolism and insulin signalling lead to cell death and reduced synaptic plasticity in AD, before the onset of symptoms, which may be years away. Due to the substantial evidence linking insulin resistance in the brain with AD, researchers have coined the name "Type 3 diabetes" to characterize the condition. We still know little about the processes involved, even though current animal models have helped illuminate the links between T2DM and AD. This brief overview discusses insulin and IGF-1 signalling disorders and the primary molecular pathways that may connect them. The presence of GSK-3β in AD is intriguing. These proteins' association with T2DM and pancreatic β-cell failure suggests they might be therapeutic targets for both disorders.
Collapse
Affiliation(s)
- Aparna Chauhan
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Rajasthan, India
| | - Sachin Dubey
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Rajasthan, India
| |
Collapse
|
2
|
Morimoto Y, Gamage USK, Yamochi T, Saeki N, Morimoto N, Yamanaka M, Koike A, Miyamoto Y, Tanaka K, Fukuda A, Hashimoto S, Yanagimachi R. Mitochondrial Transfer into Human Oocytes Improved Embryo Quality and Clinical Outcomes in Recurrent Pregnancy Failure Cases. Int J Mol Sci 2023; 24:2738. [PMID: 36769061 PMCID: PMC9917531 DOI: 10.3390/ijms24032738] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
One of the most critical issues to be solved in reproductive medicine is the treatment of patients with multiple failures of assisted reproductive treatment caused by low-quality embryos. This study investigated whether mitochondrial transfer to human oocytes improves embryo quality and provides subsequent acceptable clinical results and normality to children born due to the use of this technology. We transferred autologous mitochondria extracted from oogonia stem cells to mature oocytes with sperm at the time of intracytoplasmic sperm injection in 52 patients with recurrent failures (average 5.3 times). We assessed embryo quality using the following three methods: good-quality embryo rates, transferable embryo rates, and a novel embryo-scoring system (embryo quality score; EQS) in 33 patients who meet the preset inclusion criteria for analysis. We also evaluated the clinical outcomes of the in vitro fertilization and development of children born using this technology and compared the mtDNA sequences of the children and their mothers. The good-quality embryo rates, transferable embryo rates, and EQS significantly increased after mitochondrial transfer and resulted in 13 babies born in normal conditions. The mtDNA sequences were almost identical to the respective maternal sequences at the 83 major sites examined. Mitochondrial transfer into human oocytes is an effective clinical option to enhance embryo quality in recurrent in vitro fertilization-failure cases.
Collapse
Affiliation(s)
- Yoshiharu Morimoto
- Department of Obstetrics and Gynecology, HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan
| | | | - Takayuki Yamochi
- Reproductive Science Institute, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Noriatsu Saeki
- Department of Obstetrics and Gynecology, Nippon Life Hospital, Osaka 550-0006, Japan
| | - Naoharu Morimoto
- Department of Obstetrics and Gynecology, IVF Namba Clinic, Osaka 550-0015, Japan
| | - Masaya Yamanaka
- Department of Research, IVF Namba Clinic, Osaka 550-0015, Japan
| | - Akiko Koike
- Department of Reproductive Technology, HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan
| | - Yuki Miyamoto
- Department of Reproductive Technology, HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan
| | - Kumiko Tanaka
- Department of Integrated Medicine, HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan
| | - Aisaku Fukuda
- Department of Obstetrics and Gynecology, IVF Osaka Clinic, Osaka 577-0012, Japan
| | - Shu Hashimoto
- Reproductive Science Institute, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Ryuzo Yanagimachi
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA
| |
Collapse
|
3
|
Burgstaller JP, Chiaratti MR. Mitochondrial Inheritance Following Nuclear Transfer: From Cloned Animals to Patients with Mitochondrial Disease. Methods Mol Biol 2023; 2647:83-104. [PMID: 37041330 DOI: 10.1007/978-1-0716-3064-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Mitochondria are indispensable power plants of eukaryotic cells that also act as a major biochemical hub. As such, mitochondrial dysfunction, which can originate from mutations in the mitochondrial genome (mtDNA), may impair organism fitness and lead to severe diseases in humans. MtDNA is a multi-copy, highly polymorphic genome that is uniparentally transmitted through the maternal line. Several mechanisms act in the germline to counteract heteroplasmy (i.e., coexistence of two or more mtDNA variants) and prevent expansion of mtDNA mutations. However, reproductive biotechnologies such as cloning by nuclear transfer can disrupt mtDNA inheritance, resulting in new genetic combinations that may be unstable and have physiological consequences. Here, we review the current understanding of mitochondrial inheritance, with emphasis on its pattern in animals and human embryos generated by nuclear transfer.
Collapse
Affiliation(s)
- Jörg P Burgstaller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Marcos R Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil.
| |
Collapse
|
4
|
Wen M, Zhang Y, Wang S, Li Q, Peng L, Li Q, Hu X, Zhao Y, Qin Q, Tao M, Zhang C, Luo K, Zhao R, Wang S, Hu F, Liu Q, Wang Y, Tang C, Liu S. Exogenous paternal mitochondria rescue hybrid incompatibility and the destiny of exogenous mitochondria. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Fan X, Yan T, Hou T, Xiong X, Feng L, Li S, Wang Z. Mitochondrial changes in fish cells in vitro in response to serum deprivation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:869-881. [PMID: 35652993 DOI: 10.1007/s10695-022-01088-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are critical to cellular activity that implicated in expansive networks to maintain organismal homeostasis under external stimuli of nutrient variability, a common and severe stress to fish performance during the intensive culture conditions. In the present study, zebrafish embryonic fibroblast cells were used to investigate the fish mitochondrial changes upon serum deprivation. Results showed that mitochondrial content and membrane potential were significantly reduced with increased intracellular ROS level in the serum deprivation treated fish cells. And the impaired mitochondria were characterized by rough and fracted outer membrane, and more fused mitochondria were frequently observed with the upregulated mRNA expressions of mitochondrial fusion genes (mfn1b, mfn2, and opa1). Besides, the mitochondrial DNA (mtDNA) copy numbers of mtatp6, mtcox1, mtcytb, mtnd4, and mtnd6 were overall showing the highly significant reduction, together with the mRNA expressions of these genes significantly increased, exhibiting the compensatory effects in mitochondria. Furthermore, the methyl-cytosine of whole mtDNA was compared and the methyl-reads numbers were distinctly increased in the treatment group, reflecting the instability of fish mtDNA with mitochondrial dysfunction under nutrient fluctuations. Collectively, current findings could facilitate the integrated research between fish mitochondrial response and external variables that indicates the potentially profound and durative deficits in fish health during the aquaculture processes.
Collapse
Affiliation(s)
- Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Tao Yan
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Tingting Hou
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xiaofan Xiong
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Leilei Feng
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Shiyi Li
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Yin T, Wang J, Xiang H, Pinkert CA, Li Q, Zhao X. Dynamic characteristics of the mitochondrial genome in SCNT pigs. Biol Chem 2019; 400:613-623. [PMID: 30367779 DOI: 10.1515/hsz-2018-0273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022]
Abstract
Most animals generated by somatic cell nuclear transfer (SCNT) are heteroplasmic; inheriting mitochondrial genetics from both donor cells and recipient oocytes. However, the mitochondrial genome and functional mitochondrial gene expression in SCNT animals are rarely studied. Here, we report the production of SCNT pigs to study introduction, segregation, persistence and heritability of mitochondrial DNA transfer during the SCNT process. Porcine embryonic fibroblast cells from male and female Xiang pigs were transferred into enucleated oocytes from Yorkshire or Landrace pigs. Ear biopsies and blood samples from SCNT-derived pigs were analyzed to characterize the mitochondrial genome haplotypes and the degree of mtDNA heteroplasmy. Presence of nuclear donor mtDNA was less than 5% or undetectable in ear biopsies and blood samples in the majority of SCNT-derived pigs. Yet, nuclear donor mtDNA abundance in 14 tissues in F0 boars was as high as 95%. Additionally, mtDNA haplotypes influenced mitochondrial respiration capacity in F0 fibroblast cells. Our results indicate that the haplotypes of recipient oocyte mtDNA can influence mitochondrial function. This leads us to hypothesize that subtle developmental influences from SCNT-derived heteroplasmy can be targeted when using donor and recipient mitochondrial populations from breeds of swine with limited evolutionary divergence.
Collapse
Affiliation(s)
- Tao Yin
- College of Animal Science and Technology, China Agricultural University, 100193 Beijing, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, 610041 Chengdu, China
| | - Hai Xiang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Carl A Pinkert
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Qiuyan Li
- State Key Laboratory for Agribiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Xingbo Zhao
- College of Animal Science and Technology, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
7
|
Mobarak H, Heidarpour M, Tsai PSJ, Rezabakhsh A, Rahbarghazi R, Nouri M, Mahdipour M. Autologous mitochondrial microinjection; a strategy to improve the oocyte quality and subsequent reproductive outcome during aging. Cell Biosci 2019; 9:95. [PMID: 31798829 PMCID: PMC6884882 DOI: 10.1186/s13578-019-0360-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/21/2019] [Indexed: 01/13/2023] Open
Abstract
Along with the decline in oocyte quality, numerous defects such as mitochondrial insufficiency and the increase of mutation and deletion have been reported in oocyte mitochondrial DNA (mtDNA) following aging. Any impairments in oocyte mitochondrial function have negative effects on the reproduction and pregnancy outcome. It has been stated that infertility problems caused by poor quality oocytes in women with in vitro fertilization (IVF) and repeated pregnancy failures are associated with aging and could be overcome by transferring large amounts of healthy mitochondria. Hence, researches on biology, disease, and the therapeutic use of mitochondria continue to introduce some clinical approaches such as autologous mitochondrial transfer techniques. Following mitochondrial transfer, the amount of ATP required for aged-oocyte during fertilization, blastocyst formation, and subsequent embryonic development could be an alternative modality. These modulations improve the pregnancy outcome in women of high reproductive aging as well. In addition to overview the clinical studies using mitochondrial microinjection, this study provides a framework for future approaches to develop effective treatments and preventions of congenital transmission of mitochondrial DNA mutations/diseases to offspring. Mitochondrial transfer from ovarian cells and healthy oocytes could lead to improved fertility outcome in low-quality oocytes. The modulation of mitochondrial bioactivity seems to regulate basal metabolism inside target oocytes and thereby potentiate physiological activity of these cells while overcoming age-related infertility in female germ cells.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Women’s Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Heidarpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Pei-Shiue Jason Tsai
- Center for Developmental Biology and Regenerative Medicine Research, National Taiwan University/NTU, Taipei, Taiwan
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University/NTU, Taipei, Taiwan
| | - Aysa Rezabakhsh
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Takeda K. Functional consequences of mitochondrial mismatch in reconstituted embryos and offspring. J Reprod Dev 2019; 65:485-489. [PMID: 31462597 PMCID: PMC6923153 DOI: 10.1262/jrd.2019-089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Animal cloning technology has been developed to produce progenies genetically identical to a given donor cell. However, in nuclear transfer protocols, the recipient oocytes contribute a heritable mitochondrial genomic (mtDNA) background to the progeny. Additionally, a small amount of donor cell-derived mitochondria accompanies the transferred nucleus in the process; hence, the mtDNAs of two origins are mixed in the cytoplasm (heteroplasmy) of the reconstituted oocyte. Herein, I would like to introduce some of our previous results concerning five key considerations associated with animal cloning, including: mtDNA heteroplasmy in somatic cell nuclear transferred (SCNT) animals, the variation in the transmission of mtDNA heteroplasmy to subsequent generations SCNT cows and pigs, the influence of mtDNA sequence differences on mitochondrial proteins in SCNT cows and pigs, the effects of the introduction of mitochondria derived from somatic cells into recipient oocytes on embryonic development, and alterations of mtDNA heteroplasmy in inter/intraspecies nuclear transfer embryos.
Collapse
Affiliation(s)
- Kumiko Takeda
- Institute of Livestock and Grassland Science, NARO, Tsukuba 305-0901, Japan
| |
Collapse
|
9
|
Srirattana K, St John JC. Transmission of Dysfunctional Mitochondrial DNA and Its Implications for Mammalian Reproduction. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2019; 231:75-103. [PMID: 30617719 DOI: 10.1007/102_2018_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial DNA (mtDNA) encodes proteins for the electron transport chain which produces the vast majority of cellular energy. MtDNA has its own replication and transcription machinery that relies on nuclear-encoded transcription and replication factors. MtDNA is inherited in a non-Mendelian fashion as maternal-only mtDNA is passed onto the next generation. Mutation to mtDNA can cause mitochondrial dysfunction, which affects energy production and tissue and organ function. In somatic cell nuclear transfer (SCNT), there is an issue with the mixing of two populations of mtDNA, namely from the donor cell and recipient oocyte. This review focuses on the transmission of mtDNA in SCNT embryos and offspring. The transmission of donor cell mtDNA can be prevented by depleting the donor cell of its mtDNA using mtDNA depletion agents prior to SCNT. As a result, SCNT embryos harbour oocyte-only mtDNA. Moreover, culturing SCNT embryos derived from mtDNA depleted cells in media supplemented with a nuclear reprograming agent can increase the levels of expression of genes related to embryo development when compared with non-depleted cell-derived embryos. Furthermore, we have reviewed how mitochondrial supplementation in oocytes can have beneficial effects for SCNT embryos by increasing mtDNA copy number and the levels of expression of genes involved in energy production and decreasing the levels of expression of genes involved in embryonic cell death. Notably, there are beneficial effects of mtDNA supplementation over the use of nuclear reprograming agents in terms of regulating gene expression in embryos. Taken together, manipulating mtDNA in donor cells and/or oocytes prior to SCNT could enhance embryo production efficiency.
Collapse
Affiliation(s)
- Kanokwan Srirattana
- Mitochondrial Genetics Group, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Justin C St John
- Mitochondrial Genetics Group, Hudson Institute of Medical Research, Clayton, VIC, Australia. .,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
10
|
Srirattana K, St John JC. Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer. Sci Rep 2018; 8:7246. [PMID: 29740154 PMCID: PMC5940817 DOI: 10.1038/s41598-018-25516-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 04/24/2018] [Indexed: 01/13/2023] Open
Abstract
We generated cattle embryos using mitochondrial supplementation and somatic cell nuclear transfer (SCNT), named miNT, to determine how additional mitochondrial DNA (mtDNA) modulates the nuclear genome. To eliminate any confounding effects from somatic cell mtDNA in intraspecies SCNT, donor cell mtDNA was depleted prior to embryo production. Additional oocyte mtDNA did not affect embryo development rates but increased mtDNA copy number in blastocyst stage embryos. Moreover, miNT-derived blastocysts had different gene expression profiles when compared with SCNT-derived blastocysts. Additional mtDNA increased expression levels of genes involved in oxidative phosphorylation, cell cycle and DNA repair. Supplementing the embryo culture media with a histone deacetylase inhibitor, Trichostatin A (TSA), had no beneficial effects on the development of miNT-derived embryos, unlike SCNT-derived embryos. When compared with SCNT-derived blastocysts cultured in the presence of TSA, additional mtDNA alone had beneficial effects as the activity of glycolysis may increase and embryonic cell death may decrease. However, these beneficial effects were not found with additional mtDNA and TSA together, suggesting that additional mtDNA alone enhances reprogramming. In conclusion, additional mtDNA increased mtDNA copy number and expression levels of genes involved in energy production and embryo development in blastocyst stage embryos emphasising the importance of nuclear-mitochondrial interactions.
Collapse
Affiliation(s)
- Kanokwan Srirattana
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Justin C St John
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
11
|
Chiaratti MR, Garcia BM, Carvalho KF, Machado TS, Ribeiro FKDS, Macabelli CH. The role of mitochondria in the female germline: Implications to fertility and inheritance of mitochondrial diseases. Cell Biol Int 2018; 42:711-724. [PMID: 29418047 DOI: 10.1002/cbin.10947] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/03/2018] [Indexed: 12/21/2022]
Abstract
Mitochondria play a fundamental role during development of the female germline. They are fragmented, round, and small. Despite these characteristics suggesting that they are inactive, there is accumulating evidence that mitochondrial dysfunctions are a major cause of infertility and generation of aneuploidies in humans. In addition, mitochondria and their own genomes (mitochondrial DNA-mtDNA) may become damaged with time, which might be one reason why aging leads to infertility. As a result, mitochondria have been proposed as an important target for evaluating oocyte and embryo quality, and developing treatments for female infertility. On the other hand, mutations in mtDNA may cause mitochondrial dysfunctions, leading to severe diseases that affect 1 in 4,300 people. Moreover, very low levels of mutated mtDNA seem to be present in every person worldwide. These may increase with time and associate with late-onset degenerative diseases such as Parkinson disease, Alzheimer disease, and common cancers. Mutations in mtDNA are transmitted down the maternal lineage, following a poorly understood pattern of inheritance. Recent findings have indicated existence in the female germline of a purifying filter against deleterious mtDNA variants. Although the underlying mechanism of this filter is largely unknown, it has been suggested to rely on autophagic degradation of dysfunctional mitochondria or selective replication/transmission of non-deleterious variants. Thus, understanding the mechanisms regulating mitochondrial inheritance is important both to improve diagnosis and develop therapeutic tools for preventing transmission of mtDNA-encoded diseases.
Collapse
Affiliation(s)
- Marcos Roberto Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil.,Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, 05508-270, Brazil
| | - Bruna Martins Garcia
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Karen Freire Carvalho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Thiago Simões Machado
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil.,Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, 05508-270, Brazil
| | | | | |
Collapse
|
12
|
Kristensen SG, Pors SE, Andersen CY. Improving oocyte quality by transfer of autologous mitochondria from fully grown oocytes. Hum Reprod 2017; 32:725-732. [PMID: 28333265 DOI: 10.1093/humrep/dex043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/17/2017] [Indexed: 01/12/2023] Open
Abstract
Older women are often the most challenging group of patients in fertility clinics due to a decline in both number and overall quality of oocytes. The quality of oocytes has been linked to mitochondrial dysfunction. In this mini-review, we discuss this hypothesis and suggest alternative treatment options using autologous mitochondria to potentially augment pregnancy potential in ART. Autologous transfer of mitochondria from the patient's own germline cells has attracted much attention as a possible new treatment to revitalize deficient oocytes. IVF births have been reported after transfer of oogonial precursor cell-derived mitochondria; however, the source and quality of the mitochondria are still unclear. In contrast, fully grown oocytes are loaded with mitochondria which have passed the genetic bottleneck and are likely to be of high quality. An increased supply of such oocytes could potentially be obtained by in vitro follicle activation of ovarian cortical biopsies or from surplus immature oocytes collected from women undergoing ART or fertility preservation of ovarian tissue. Taken together, autologous oocytes are not necessarily a limiting resource in ART as fully grown oocytes with high quality mitochondria can be obtained from natural or stimulated ovaries and potentially be used to improve both quality and quantity of oocytes available for fertility treatment.
Collapse
Affiliation(s)
- Stine Gry Kristensen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, University of Copenhagen, Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, University of Copenhagen, Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, University of Copenhagen, Blegdamsvej, DK-2100 Copenhagen, Denmark
| |
Collapse
|
13
|
Manipulating the Mitochondrial Genome To Enhance Cattle Embryo Development. G3-GENES GENOMES GENETICS 2017; 7:2065-2080. [PMID: 28500053 PMCID: PMC5499117 DOI: 10.1534/g3.117.042655] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mixing of mitochondrial DNA (mtDNA) from the donor cell and the recipient oocyte in embryos and offspring derived from somatic cell nuclear transfer (SCNT) compromises genetic integrity and affects embryo development. We set out to generate SCNT embryos that inherited their mtDNA from the recipient oocyte only, as is the case following natural conception. While SCNT blastocysts produced from Holstein (Bos taurus) fibroblasts were depleted of their mtDNA, and oocytes derived from Angus (Bos taurus) cattle possessed oocyte mtDNA only, the coexistence of donor cell and oocyte mtDNA resulted in blastocysts derived from nondepleted cells. Moreover, the use of the reprogramming agent, Trichostatin A (TSA), further improved the development of embryos derived from depleted cells. RNA-seq analysis highlighted 35 differentially expressed genes from the comparison between blastocysts generated from nondepleted cells and blastocysts from depleted cells, both in the presence of TSA. The only differences between these two sets of embryos were the presence of donor cell mtDNA, and a significantly higher mtDNA copy number for embryos derived from nondepleted cells. Furthermore, the use of TSA on embryos derived from depleted cells positively modulated the expression of CLDN8, TMEM38A, and FREM1, which affect embryonic development. In conclusion, SCNT embryos produced by mtDNA depleted donor cells have the same potential to develop to the blastocyst stage without the presumed damaging effect resulting from the mixture of donor and recipient mtDNA.
Collapse
|
14
|
Caicedo A, Aponte PM, Cabrera F, Hidalgo C, Khoury M. Artificial Mitochondria Transfer: Current Challenges, Advances, and Future Applications. Stem Cells Int 2017; 2017:7610414. [PMID: 28751917 PMCID: PMC5511681 DOI: 10.1155/2017/7610414] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/30/2017] [Accepted: 05/15/2017] [Indexed: 12/18/2022] Open
Abstract
The objective of this review is to outline existing artificial mitochondria transfer techniques and to describe the future steps necessary to develop new therapeutic applications in medicine. Inspired by the symbiotic origin of mitochondria and by the cell's capacity to transfer these organelles to damaged neighbors, many researchers have developed procedures to artificially transfer mitochondria from one cell to another. The techniques currently in use today range from simple coincubations of isolated mitochondria and recipient cells to the use of physical approaches to induce integration. These methods mimic natural mitochondria transfer. In order to use mitochondrial transfer in medicine, we must answer key questions about how to replicate aspects of natural transport processes to improve current artificial transfer methods. Another priority is to determine the optimum quantity and cell/tissue source of the mitochondria in order to induce cell reprogramming or tissue repair, in both in vitro and in vivo applications. Additionally, it is important that the field explores how artificial mitochondria transfer techniques can be used to treat different diseases and how to navigate the ethical issues in such procedures. Without a doubt, mitochondria are more than mere cell power plants, as we continue to discover their potential to be used in medicine.
Collapse
Affiliation(s)
- Andrés Caicedo
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Pedro M. Aponte
- Mito-Act Research Consortium, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
| | - Francisco Cabrera
- Mito-Act Research Consortium, Quito, Ecuador
- Colegio de Ciencias de la Salud, Escuela de Medicina Veterinaria, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Institute for Regenerative Medicine and Biotherapy (IRMB), INSERM U1183, 2 Montpellier University, Montpellier, France
| | - Carmen Hidalgo
- Mito-Act Research Consortium, Quito, Ecuador
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
| | - Maroun Khoury
- Mito-Act Research Consortium, Quito, Ecuador
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- Cells for Cells, Santiago, Chile
| |
Collapse
|
15
|
Takeda K, Kobayashi E, Akagi S, Nishino K, Kaneda M, Watanabe S. Differentially methylated CpG sites in bull spermatozoa revealed by human DNA methylation arrays and bisulfite analysis. J Reprod Dev 2017; 63:279-287. [PMID: 28320989 PMCID: PMC5481630 DOI: 10.1262/jrd.2016-160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methylation status of sperm DNA differs between individual bulls. However, the relationship between methylation status and bull sperm parameters is not well elucidated. The present study investigated genome-wide methylation
profiles at 450,000 CpG sites in bull spermatozoa by using a human DNA methylation microarray. Semen samples from three adult Japanese Black bulls with different in vitro fertilization (IVF) results and from a
young Holstein bull through sexual maturation (at ages 10, 10.5, 15, and 25 months) were used for the analysis. The heatmap displaying the results of microarray analysis shows inter- and intra-individual differences in methylation
profiles. After setting a cut-off of 0.2 for differences between ages (10, 10.5 vs. 15, 25 months) or between IVF results (developed to the blastocyst-stage, > 20% vs. < 10%), different
methylation levels were detected at approximately 100 CpGs. We confirmed the different DNA methylation levels of CpG sites by using combined bisulfite restriction analysis (COBRA); five of the CpG sites reflected methylation
levels similar to those detected by the microarray. One of the CpG sites was thought to reflect an age-related increase in methylation levels, which was confirmed by COBRA and bisulfite sequencing. However, the relationship
between methylation status and IVF results could not be shown here. In conclusion, methylation profiles of individual and age-related alterations in bull spermatozoa can be revealed using a human microarray, and methylation
changes in some CpG sites can be easily visualized using COBRA. Combined analysis of DNA methylation levels and sperm parameters could be considered an effective approach for assessing bull fertility in the future.
Collapse
Affiliation(s)
- Kumiko Takeda
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| | - Eiji Kobayashi
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| | - Satoshi Akagi
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| | - Kagetomo Nishino
- Beef Cattle Institute, Ibaraki Prefectural Livestock Research Center, Ibaraki 319-2224, Japan
| | - Masahiro Kaneda
- Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Shinya Watanabe
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| |
Collapse
|
16
|
Wang T, Zhang M, Jiang Z, Seli E. Mitochondrial dysfunction and ovarian aging. Am J Reprod Immunol 2017; 77. [PMID: 28194828 DOI: 10.1111/aji.12651] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/17/2017] [Indexed: 01/02/2023] Open
Abstract
Mitochondria are double-membrane-bound organelles that are responsible for the generation of most of the cell's energy. Mitochondrial dysfunction has been implicated in cellular senescence in general and ovarian aging in particular. Recent studies exploited this association by studying mitochondrial DNA (mtDNA) copy number as a potential biomarker of embryo viability and the use of mitochondrial nutrients and autologous mitochondrial transfer as a potential treatment for poor ovarian function and response.
Collapse
Affiliation(s)
- Tianren Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Man Zhang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Zongliang Jiang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
17
|
May-Panloup P, Boucret L, Chao de la Barca JM, Desquiret-Dumas V, Ferré-L'Hotellier V, Morinière C, Descamps P, Procaccio V, Reynier P. Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update 2016; 22:725-743. [PMID: 27562289 DOI: 10.1093/humupd/dmw028] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/15/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND There is a great inter-individual variability of ovarian ageing, and almost 20% of patients consulting for infertility show signs of premature ovarian ageing. This feature, taken together with delayed childbearing in modern society, leads to the emergence of age-related ovarian dysfunction concomitantly with the desire for pregnancy. Assisted reproductive technology is frequently inefficacious in cases of ovarian ageing, thus raising the economic, medical and societal costs of the procedures. OBJECTIVE AND RATIONAL Ovarian ageing is characterized by quantitative and qualitative alteration of the ovarian oocyte reserve. Mitochondria play a central role in follicular atresia and could be the main target of the ooplasmic factors determining oocyte quality adversely affected by ageing. Indeed, the oocyte is the richest cell of the body in mitochondria and depends largely on these organelles to acquire competence for fertilization and early embryonic development. Moreover, the oocyte ensures the uniparental transmission and stability of the mitochondrial genome across the generations. This review focuses on the role played by mitochondria in ovarian ageing and on the possible consequences over the generations. SEARCH METHODS PubMed was used to search the MEDLINE database for peer-reviewed original articles and reviews concerning mitochondria and ovarian ageing, in animal and human species. Searches were performed using keywords belonging to three groups: 'mitochondria' or 'mitochondrial DNA'; 'ovarian reserve', 'oocyte', 'ovary' or 'cumulus cells'; and 'ageing' or 'ovarian ageing'. These keywords were combined with other search phrases relevant to the topic. References from these articles were used to obtain additional articles. OUTCOMES There is a close relationship, in mammalian models and humans, between mitochondria and the decline of oocyte quality with ageing. Qualitatively, ageing-related mitochondrial (mt) DNA instability, which leads to the accumulation of mtDNA mutations in the oocyte, plays a key role in the deterioration of oocyte quality in terms of competence and of the risk of transmitting mitochondrial abnormalities to the offspring. In contrast, some mtDNA haplogroups are protective against the decline of ovarian reserve. Quantitatively, mitochondrial biogenesis is crucial during oogenesis for constituting a mitochondrial pool sufficiently large to allow normal early embryonic development and to avoid the untimely activation of mitochondrial biogenesis. Ovarian ageing also seriously affects the dynamic nature of mitochondrial biogenesis in the surrounding granulosa cells that may provide interesting alternative biomarkers of oocyte quality. WIDER IMPLICATIONS A fuller understanding of the involvement of mitochondria in cases of infertility linked to ovarian ageing would contribute to a better management of the disorder in the future.
Collapse
Affiliation(s)
- Pascale May-Panloup
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France .,PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Lisa Boucret
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France.,PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Juan-Manuel Chao de la Barca
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Valérie Desquiret-Dumas
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Véronique Ferré-L'Hotellier
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Catherine Morinière
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Philippe Descamps
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Vincent Procaccio
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Pascal Reynier
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| |
Collapse
|
18
|
Darbandi S, Darbandi M, Khorshid HRK, Sadeghi MR, Al-Hasani S, Agarwal A, Shirazi A, Heidari M, Akhondi MM. Experimental strategies towards increasing intracellular mitochondrial activity in oocytes: A systematic review. Mitochondrion 2016; 30:8-17. [PMID: 27234976 DOI: 10.1016/j.mito.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/04/2016] [Accepted: 05/20/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE The mitochondrial complement is critical in sustaining the earliest stages of life. To improve the Assisted Reproductive Technology (ART), current methods of interest were evaluated for increasing the activity and copy number of mitochondria in the oocyte cell. METHODS This covered the researches from 1966 to September 2015. RESULTS The results provided ten methods that can be studied individually or simultaneously. CONCLUSION Though the use of these techniques generated great concern about heteroplasmy observation in humans, it seems that with study on these suggested methods there is real hope for effective treatments of old oocyte or oocytes containing mitochondrial problems in the near future.
Collapse
Affiliation(s)
- Sara Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahsa Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | | | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Safaa Al-Hasani
- Reproductive Medicine Unit, University of Schleswig-Holstein, Luebeck, Germany.
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahnaz Heidari
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran. M.@avicenna.ar.ir
| | - Mohammad Mehdi Akhondi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
19
|
Plotnikov EY, Babenko VA, Silachev DN, Zorova LD, Khryapenkova TG, Savchenko ES, Pevzner IB, Zorov DB. Intercellular Transfer of Mitochondria. BIOCHEMISTRY (MOSCOW) 2016; 80:542-8. [PMID: 26071771 DOI: 10.1134/s0006297915050041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recently described phenomenon of intercellular transfer of mitochondria attracts the attention of researchers in both fundamental science and translational medicine. In particular, the transfer of mitochondria results in the initiation of stem cell differentiation, in reprogramming of differentiated cells, and in the recovery of the lost mitochondrial function in recipient cells. However, the mechanisms of mitochondria transfer between cells and conditions inducing this phenomenon are studied insufficiently. It is still questionable whether this phenomenon exists in vivo. Moreover, it is unclear, how the transfer of mitochondria into somatic cells is affected by the ubiquitination system that, for example, is responsible for the elimination of "alien" mitochondria of the spermatozoon in the oocyte during fertilization. Studies on these processes can provide a powerful incentive for development of strategies for treatment of mitochondria-associated pathologies and give rise a new avenue for therapeutic approaches based on "mitochondrial transplantation".
Collapse
Affiliation(s)
- E Y Plotnikov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Dobler R, Rogell B, Budar F, Dowling DK. A meta-analysis of the strength and nature of cytoplasmic genetic effects. J Evol Biol 2014; 27:2021-34. [DOI: 10.1111/jeb.12468] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/25/2014] [Accepted: 07/27/2014] [Indexed: 01/07/2023]
Affiliation(s)
- R. Dobler
- Institute of Evolution and Ecology; University of Tübingen; Tübingen Germany
| | - B. Rogell
- School of Biological Sciences; Monash University; Clayton Vic. Australia
| | - F. Budar
- UMR 1318; Institut Jean-Pierre Bourgin; INRA; Versailles France
- UMR 1318; Institut Jean-Pierre Bourgin; AgroParisTech; Versailles France
| | - D. K. Dowling
- School of Biological Sciences; Monash University; Clayton Vic. Australia
| |
Collapse
|
21
|
Liu CS, Chang JC, Kuo SJ, Liu KH, Lin TT, Cheng WL, Chuang SF. Delivering healthy mitochondria for the therapy of mitochondrial diseases and beyond. Int J Biochem Cell Biol 2014; 53:141-6. [PMID: 24842105 DOI: 10.1016/j.biocel.2014.05.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/13/2014] [Accepted: 05/11/2014] [Indexed: 01/15/2023]
Abstract
Mitochondrial transfer has been demonstrated to a play a physiological role in the rescuing of mitochondrial DNA deficient cells by co-culture with human mesenchymal stem cells. The successful replacement of mitochondria using microinjection into the embryo has been revealed to improve embryo maturation. Evidence of mitochondrial transfer has been shown to minimize injury of the ischemic-reperfusion rabbit heart model. In this mini review, the therapeutic strategies of mitochondrial diseases based on the concept of mitochondrial transfer are illustrated, as well as a novel approach to peptide-mediated mitochondrial delivery. The possible mechanism of peptide-mediated mitochondrial delivery in the treatment of the myoclonic epilepsy and ragged-red fiber disease is summarized. Understanding the feasibility of mitochondrial manipulation in cells facilitates novel therapeutic skills in the future clinical practice of mitochondrial disorder.
Collapse
Affiliation(s)
- Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua 50094, Taiwan; Department of Neurology, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua 50094, Taiwan; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan.
| | - Jui-Chih Chang
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua 50094, Taiwan
| | - Shou-Jen Kuo
- Department of Surgery, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua 50094, Taiwan
| | - Ko-Hung Liu
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua 50094, Taiwan
| | - Ta-Tsung Lin
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua 50094, Taiwan
| | - Wen-Ling Cheng
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua 50094, Taiwan
| | - Sheng-Fei Chuang
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua 50094, Taiwan
| |
Collapse
|
22
|
Viet Linh N, Kikuchi K, Nakai M, Tanihara F, Noguchi J, Kaneko H, Dang-Nguyen TQ, Men NT, Van Hanh N, Somfai T, Nguyen BX, Nagai T, Manabe N. Fertilization ability of porcine oocytes reconstructed from ooplasmic fragments produced and characterized after serial centrifugations. J Reprod Dev 2013; 59:549-56. [PMID: 23965685 PMCID: PMC3934151 DOI: 10.1262/jrd.2013-042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondria are reported to be critical in in vitro maturation of oocytes and subsequent embryo development after fertilization, but their contribution for fertilization has not been investigated in detail. In the present study, we investigate the contribution of mitochondria to fertilization using reconstructed porcine oocytes by fusion of ooplasmic fragments produced by serial centrifugations (centri-fusion). Firstly, we evaluated the characteristics of ooplasmic fragments. Three types of fragments were obtained by centrifugation of porcine oocytes matured in vitro for 46 h: brownish (B), transparent (T) and large (L) fragments containing both B and T parts in a fragment. The production efficiencies of these types of fragments were 71.7, 91.0 and 17.8 fragments/100 oocytes, respectively. In experiments, L fragments were excluded because they contained both brownish and transparent components that were apparently intermediate between B and T fragments. Observations by confocal microscopy after staining with MitoTracker Red CMXRos® and transmission electron microscopy revealed highly condensed active mitochondria in B fragments in contrast to T fragments that contained only sparse organelles. We reconstructed oocytes by fusion of a karyoplast and two cytoplasts from B and T fragments (B and T oocytes, respectively). The B oocytes showed higher sperm penetration (95.8%) and male pronuclear formation rates (94.2%) by in vitro fertilization than T oocytes (66.7% and 50.0%, respectively). These results suggest that the active mitochondria in oocytes may be related to their ability for fertilization.
Collapse
Affiliation(s)
- Nguyen Viet Linh
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki 319-0206, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
The role of mitochondria from mature oocyte to viable blastocyst. Obstet Gynecol Int 2013; 2013:183024. [PMID: 23766762 PMCID: PMC3671549 DOI: 10.1155/2013/183024] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/23/2013] [Accepted: 04/29/2013] [Indexed: 12/19/2022] Open
Abstract
The oocyte requires a vast supply of energy after fertilization to support critical events such as spindle formation, chromatid separation, and cell division. Until blastocyst implantation, the developing zygote is dependent on the existing pool of mitochondria. That pool size within each cell decreases with each cell division. Mitochondria obtained from oocytes of women of advanced reproductive age harbor DNA deletions and nucleotide variations that impair function. The combination of lower number and increased frequency of mutations and deletions may result in inadequate mitochondrial activity necessary for continued embryo development and cause pregnancy failure. Previous reports suggested that mitochondrial activity within oocytes may be supplemented by donor cytoplasmic transfer at the time of intracytoplasmic sperm injection (ICSI). Those reports showed success; however, safety concerns arose due to the potential of two distinct populations of mitochondrial genomes in the offspring. Mitochondrial augmentation of oocytes is now reconsidered in light of our current understanding of mitochondrial function and the publication of a number of animal studies. With a better understanding of the role of this organelle in oocytes immediately after fertilization, blastocyst and offspring, mitochondrial augmentation may be reconsidered as a method to improve oocyte quality.
Collapse
|
24
|
Takeda K. Mitochondrial DNA transmission and confounding mitochondrial influences in cloned cattle and pigs. Reprod Med Biol 2013; 12:47-55. [PMID: 29699130 DOI: 10.1007/s12522-012-0142-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 12/21/2012] [Indexed: 01/05/2023] Open
Abstract
Although somatic cell nuclear transfer (SCNT) is a powerful tool for production of cloned animals, SCNT embryos generally have low developmental competency and many abnormalities. The interaction between the donor nucleus and the enucleated ooplasm plays an important role in early embryonic development, but the underlying mechanisms that negatively impact developmental competency remain unclear. Mitochondria have a broad range of critical functions in cellular energy supply, cell signaling, and programmed cell death; thus, affect embryonic and fetal development. This review focuses on mitochondrial considerations influencing SCNT techniques in farm animals. Donor somatic cell mitochondrial DNA (mtDNA) can be transmitted through what has been considered a "bottleneck" in mitochondrial genetics via the SCNT maternal lineage. This indicates that donor somatic cell mitochondria have a role in the reconstructed cytoplasm. However, foreign somatic cell mitochondria may affect the early development of SCNT embryos. Nuclear-mitochondrial interactions in interspecies/intergeneric SCNT (iSCNT) result in severe problems. A major biological selective pressure exists against survival of exogenous mtDNA in iSCNT. Yet, mtDNA differences in SCNT animals did not reflect transfer of proteomic components following proteomic analysis. Further study of nuclear-cytoplasmic interactions is needed to illuminate key developmental characteristics of SCNT animals associated with mitochondrial biology.
Collapse
Affiliation(s)
- Kumiko Takeda
- NARO Institute of Livestock and Grassland Science National Agriculture and Food Research Organization 2 Ikenodai 305-0901 Tsukuba Japan
| |
Collapse
|
25
|
Ceramide and its transport protein (CERT) contribute to deterioration of mitochondrial structure and function in aging oocytes. Mech Ageing Dev 2012; 134:43-52. [PMID: 23246342 DOI: 10.1016/j.mad.2012.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/03/2012] [Accepted: 12/01/2012] [Indexed: 11/22/2022]
Abstract
In women as well as in mice, oocytes exhibit decreased developmental potential (oocyte quality) with advanced age. Our current data implicate alterations in the levels of oocyte ceramide and associated changes in mitochondrial function and structure as being prominent elements contributing to reduced oocyte quality. Both ROS levels and ATP content were significantly reduced in aged oocytes. The decreased in ROS levels are of intrigue because it is contrary to what has been previously reported. Lowered levels of both ROS and ATP indicate diminished mitochondrial function that was accompanied by alterations in mitochondrial structure. Interestingly, developmental potential of old oocytes was improved by microinjection of mitochondria isolated from young oocytes. Co-treatment of aged oocytes with ceramide and a cytoplasmic lipid carrier (l-carnitine) improved both mitochondrial morphology and function, and totally rescued spontaneous in vitro fragmentation. In addition, ceramide localization was altered in old oocytes possibly due to downregulation of the ceramide transport protein (CERT). However, knockdown of CERT alone was not sufficient to increase young oocyte's susceptibility to death, because the sequential manipulation of ceramide levels (its chronic decrease, followed by downregulation of CERT, and finally a ceramide spike) were all necessary to replicate the aging phenotype. These results indicate that oocyte aging is due to a multiplicity of events; and that with increasing biological age, changes in levels of both ceramide and its transport protein contribute to deterioration of oocyte mitochondrial structure and function. Hence, those changes may represent potential targets to manipulate when attempting to ameliorate aging phenotypes in germ cells.
Collapse
|
26
|
Hua S, Lu C, Song Y, Li R, Liu X, Quan F, Wang Y, Liu J, Su F, Zhang Y. High levels of mitochondrial heteroplasmy modify the development of ovine-bovine interspecies nuclear transferred embryos. Reprod Fertil Dev 2012; 24:501-9. [PMID: 22401282 DOI: 10.1071/rd11091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 09/03/2011] [Indexed: 01/09/2023] Open
Abstract
To investigate the effect of mitochondrial heteroplasmy on embryo development, cloned embryos produced using bovine oocytes as the recipient cytoplasm and ovine granulosa cells as the donor nuclei were complemented with 2pL mitochondrial suspension isolated from ovine (BOOMT embryos) or bovine (BOBMT embryos) granulosa cells; cloned embryos without mitochondrial injection served as the control group (BO embryos). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and sodium bisulfite genomic sequencing were used to analyse mRNA and methylation levels of pluripotency genes (OCT4, SOX2) and mitochondrial genes (TFAM, POLRMT) in the early developmental stages of cloned embryos. The number of mitochondrial DNA copies in 2pL ovine-derived and bovine-derived mitochondrial suspensions was 960±110 and 1000±120, respectively. The blastocyst formation rates were similar in BOBMT and BO embryos (P>0.05), but significantly higher than in BOOMT embryos (P<0.01). Expression of OCT4 and SOX2, as detected by RT-qPCR, decreased significantly in BOOMT embryos (P<0.05), whereas the expression of TFAM and POLRMT increased significantly, compared with expression in BOOMT and BO embryos (P<0.05). In addition, methylation levels of OCT4 and SOX2 were significantly greater (P<0.05), whereas those of TFAM and POLRMT were significantly lower (P<0.01), in BOOMT embryos compared with BOBMT and BO embryos. Together, the results of the present study suggest that the degree of mitochondrial heteroplasmy may affect embryonic development.
Collapse
Affiliation(s)
- Song Hua
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hua S, Zhang H, Song Y, Li R, Liu J, Wang Y, Quan F, Zhang Y. High expression of Mfn1 promotes early development of bovine SCNT embryos: improvement of mitochondrial membrane potential and oxidative metabolism. Mitochondrion 2012; 12:320-7. [PMID: 22245982 DOI: 10.1016/j.mito.2011.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 11/17/2011] [Accepted: 12/27/2011] [Indexed: 01/29/2023]
Abstract
Mitofusin 1 (Mfn1) is the main mediator of mitochondrial fusion and homeostasis. To determine whether increased Mfn1 expression level could promote the fusion of heteroplasmic mitochondria and development of somatic cell nuclear transfer (SCNT) embryos. Embryos were constructed using bovine oocytes as recipient cytoplasm, and Holstein cow fetal fibroblasts with different expression levels of Mfn1 gene as donor nuclei. Mitochondrial membrane potential, ATP and H(2)O(2) generation, as well as the expression level of Mfn1 were detected in different development stages. The results showed that high level of Mfn1 expression significantly improved the embryo development rates by increasing ATP level and Δψm, while reducing H(2)O(2) generation. This study suggests that overexpression of Mfn1 could promote the early development of bovine SCNT embryos via improving oxidative phosphorylation.
Collapse
Affiliation(s)
- Song Hua
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi Province, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Takeda K, Tasai M, Iwamoto M, Oe M, Chikuni K, Nakamura Y, Tagami T, Nirasawa K, Hanada H, Pinkert CA, Onishi A. Comparative proteomic analysis of liver mitochondrial proteins derived from cloned adult pigs reconstructed with Meishan pig fibroblast cells and European pig enucleated oocytes. J Reprod Dev 2011; 58:248-53. [PMID: 22188878 DOI: 10.1262/jrd.11-074a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) has been exploited in efforts to clone and propagate valuable animal lineages. However, in many instances, recipient oocytes are obtained from sources independent of donor cell populations. As such, influences of potential nuclear-cytoplasmic incompatibility, post SCNT, are largely unknown. In the present study, alterations in mitochondrial protein levels were investigated in adult SCNT pigs produced by microinjection of Meishan pig fetus fibroblast cells into enucleated matured oocytes (maternal Landrace genetic background). Mitochondrial fractions were prepared from liver samples by mechanical homogenization and differential centrifugation. Liver mitochondria were then subjected to two-dimensional difference gel electrophoresis (2-D DIGE). Protein expression changes were confirmed with a volume ratio greater than 2 fold (P<0.05). 2-D DIGE analysis further revealed differential expression of three proteins between the Meishan (n=3) and Landrace (n=3) breeds. Differential expression patterns of 16 proteins were detected in SCNT pig liver tissue (n=3) when compared with Meishan control samples. However, none of the 16 proteins correlated with the three differentially expressed Meishan and Landrace liver mitochondrial proteins. In summary, alteration of mitochondrial protein expression levels was observed in adult SCNT pigs that did not reflect the breed difference of the recipient oocytes. Comparative proteomic analysis represents an important tool for further studies on SCNT animals.
Collapse
Affiliation(s)
- Kumiko Takeda
- National Agricultural and Food Research Organization (NARO), Institute of Livestock and Grassland Science (NILGS), Ibaraki 305-0901, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cannon MV, Takeda K, Pinkert CA. Mitochondrial biology in reproduction. Reprod Med Biol 2011; 10:251-258. [PMID: 29662358 DOI: 10.1007/s12522-011-0101-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 06/22/2011] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial biology plays an important role in the reproductive process, with influence on germ cell development and quality as well as embryonic development and reproductive success. This review outlines the role of mitochondrial genetics and function in reproductive biology, including a discussion of general mitochondrial function, genetics and germline transmission. Also highlighted are the mitochondrial morphologic changes that occur during oogenesis and the role these changes play in the mitochondrial bottleneck that influences the distribution of deleterious mitochondrial genomes to offspring. The review covers the influence of mitochondria in embryonic stem cell and induced pluripotent stem cell biology and development. Lastly, the role of mitochondrial biology in assisted reproductive techniques is discussed.
Collapse
Affiliation(s)
| | - Kumiko Takeda
- National Institute of Livestock and Grassland Science, NARO Tsukuba Japan
| | | |
Collapse
|
30
|
Ibrahim N, Handa H, Cosset A, Koulintchenko M, Konstantinov Y, Lightowlers RN, Dietrich A, Weber-Lotfi F. DNA delivery to mitochondria: sequence specificity and energy enhancement. Pharm Res 2011; 28:2871-82. [PMID: 21748538 DOI: 10.1007/s11095-011-0516-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 06/15/2011] [Indexed: 12/15/2022]
Abstract
PURPOSE Mitochondria are competent for DNA uptake in vitro, a mechanism which may support delivery of therapeutic DNA to complement organelle DNA mutations. We document here key aspects of the DNA import process, so as to further lay the ground for mitochondrial transfection in intact cells. METHODS We developed DNA import assays with isolated mitochondria from different organisms, using DNA substrates of various sequences and sizes. Further import experiments investigated the possible role of ATP and protein phosphorylation in the uptake process. The fate of adenine nucleotides and the formation of phosphorylated proteins were analyzed. RESULTS We demonstrate that the efficiency of mitochondrial uptake depends on the sequence of the DNA to be translocated. The process becomes sequence-selective for large DNA substrates. Assays run with a natural mitochondrial plasmid identified sequence elements which promote organellar uptake. ATP enhances DNA import and allows tight integration of the exogenous DNA into mitochondrial nucleoids. ATP hydrolysis has to occur during the DNA uptake process and might trigger phosphorylation of co-factors. CONCLUSIONS Our data contribute critical information to optimize DNA delivery into mitochondria and open the prospect of targeting whole mitochondrial genomes or complex constructs into mammalian organelles in vitro and in vivo.
Collapse
Affiliation(s)
- Noha Ibrahim
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|