1
|
Freire de Carvalho J, Skare T. Coenzyme Q10 supplementation in rheumatic diseases: A systematic review. Clin Nutr ESPEN 2024; 59:63-69. [PMID: 38220408 DOI: 10.1016/j.clnesp.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 01/16/2024]
Abstract
Coenzyme Q10 (CoQ10) is a potent antioxidant and anti-inflammatory substance used to treat some rheumatic diseases. Our objective was to review the use of CoQ10 in rheumatic diseases. PubMed/Medline, Embase, Scopus, and Web of Science databases were searched for articles on CoQ10 and rheumatic diseases between 1966 and April 2023. Twenty articles were found, including 483 patients. The investigated conditions were Fibromyalgia (FM) with 15 studies, Rheumatoid Arthritis (RA) with 3 studies, and Antiphospholipid Syndrome (APS) with 2 studies. After CoQ10 supplementation, RA patients observed improvements in disease activity index, inflammatory biomarkers (erythrocyte sedimentation rate), cytokine levels, and a decrease in malondialdehyde. In APS, CoQ10 improved endothelial function and decreased prothrombotic and proinflammatory mediators. Regarding FM, in most of the studies, the patients observed improvements in pain, fatigue, sleep, tender points count, mood disorders, and scores on the Fibromyalgia Impact Questionnaire (FIQ). The drug was well tolerated, with reports of minor side effects in two studies. CoQ10 supplementation seems to be efficacious as a complementary treatment for RA and FM. Upcoming studies with larger samples and including other rheumatic diseases are welcome.
Collapse
Affiliation(s)
- Jozélio Freire de Carvalho
- Núcleo de Pesquisa em Doenças Crônicas não Transmissíveis (NUPEN), School of Nutrition from the Federal University of Bahia, Salvador, Bahia, Brazil.
| | - Thelma Skare
- Unit of Rheumatology, Hospital Evangélico Mackenzie, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Nederveen JP, Mastrolonardo AJ, Xhuti D, Di Carlo A, Manta K, Fuda MR, Tarnopolsky MA. Novel Multi-Ingredient Supplement Facilitates Weight Loss and Improves Body Composition in Overweight and Obese Individuals: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2023; 15:3693. [PMID: 37686725 PMCID: PMC10490028 DOI: 10.3390/nu15173693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Despite the growing recognition of the obesity crisis, its rates continue to rise. The current first-line therapies, such as dietary changes, energy restriction, and physical activity, are typically met with poor adherence. Novel nutritional interventions can address the root causes of obesity, including mitochondrial dysfunction, and facilitate weight loss. OBJECTIVE The objective of this study was to investigate the effects of a multi-ingredient nutritional supplement designed to facilitate mitochondrial function and metabolic health outcomes over a 12 wk period. METHODS Fifty-five overweight and/or obese participants (age (mean ± SEM): 26 ± 1; body mass index (BMI) (kg/m2): 30.5 ± 0.6) completed this double-blind, placebo-controlled clinical trial. Participants were randomized to 12 wks of daily consumption of multi-ingredient supplement (MIS; n = 28; containing 50 mg forskolin, 500 mg green coffee bean extract, 500 mg green tea extract, 500 mg beet root extract, 400 mg α-lipoic acid, 200 IU vitamin E, and 200 mg CoQ10) or control placebo (PLA, n = 27; containing microcrystalline cellulose) matched in appearance. The co-primary outcomes were bodyweight and fat mass (kg) changes. The secondary outcomes included other body composition measures, plasma markers of obesity, fatty liver disease biomarkers, resting energy metabolism, blood pressure, physical performance, and quality of life. The post-intervention differences between MIS and PLA were examined via ANCOVA which was adjusted for the respective pre-intervention variables. RESULTS After adjustment for pre-intervention data, there was a significant difference in weight (p < 0.001) and fat mass (p < 0.001) post-intervention between the PLA and MIS treatment arms. Post-intervention weight and fat mass were significantly lower in MIS. Significant post-intervention differences corrected for baseline were found in markers of clinical biochemistry (AST, p = 0.017; ALT, p = 0.008), molecular metabolism (GDF15, p = 0.028), and extracellular vesicle-associated miRNA species miR-122 and miR-34a in MIS (p < 0.05). CONCLUSIONS Following the 12 wks of MIS supplementation, weight and body composition significantly improved, concomitant with improvements in molecular markers of liver health and metabolism.
Collapse
Affiliation(s)
- Joshua P. Nederveen
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
| | - Alexander J. Mastrolonardo
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
| | - Donald Xhuti
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
| | - Alessia Di Carlo
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
| | - Katherine Manta
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
| | - Matthew R. Fuda
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
| | - Mark A. Tarnopolsky
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
3
|
González-Flores D, López-Pingarrón L, Castaño MY, Gómez MÁ, Rodríguez AB, García JJ, Garrido M. Melatonin as a Coadjuvant in the Treatment of Patients with Fibromyalgia. Biomedicines 2023; 11:1964. [PMID: 37509603 PMCID: PMC10377739 DOI: 10.3390/biomedicines11071964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Fibromyalgia syndrome (FMS) is a chronic widespread pain syndrome that is accompanied by fatigue, sleep disturbances, anxiety, depression, lack of concentration, and neurocognitive impairment. As the currently available drugs are not completely successful against these symptoms and frequently have several side effects, many scientists have taken on the task of looking for nonpharmacological remedies. Many of the FMS-related symptoms have been suggested to be associated with an altered pattern of endogenous melatonin. Melatonin is involved in the regulation of several physiological processes, including circadian rhythms, pain, mood, and oxidative as well as immunomodulatory balance. Preliminary clinical studies have propounded that the administration of different doses of melatonin to patients with FMS can reduce pain levels and ameliorate mood and sleep disturbances. Moreover, the total antioxidant capacity, 6-sulfatoxymelatonin and urinary cortisol levels, and other biological parameters improve after the ingestion of melatonin. Recent investigations have proposed a pathophysiological relationship between mitochondrial dysfunction, oxidative stress, and FMS by looking at certain proteins involved in mitochondrial homeostasis according to the etiopathogenesis of this syndrome. These improvements exert positive effects on the quality of life of FMS patients, suggesting that the use of melatonin as a coadjuvant may be a successful strategy for the management of this syndrome.
Collapse
Affiliation(s)
- David González-Flores
- Department of Anatomy, Cell Biology and Zoology, Science Faculty, University of Extremadura, 06006 Badajoz, Spain
- Neuroimmunophysiology and Chrononutrition Research Group, University of Extremadura, 06006 Badajoz, Spain
| | - Laura López-Pingarrón
- Oxidative Stress and Aging Research Group, Department of Pharmacology, Physiology, Legal and Forensic Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - María Yolanda Castaño
- Neuroimmunophysiology and Chrononutrition Research Group, University of Extremadura, 06006 Badajoz, Spain
- Department of Nursing, Merida University Center, University of Extremadura, 06006 Badajoz, Spain
| | - María Ángeles Gómez
- Neuroimmunophysiology and Chrononutrition Research Group, University of Extremadura, 06006 Badajoz, Spain
- Department of Physiology, Science Faculty, University of Extremadura, 06006 Badajoz, Spain
| | - Ana B Rodríguez
- Neuroimmunophysiology and Chrononutrition Research Group, University of Extremadura, 06006 Badajoz, Spain
- Department of Physiology, Science Faculty, University of Extremadura, 06006 Badajoz, Spain
| | - Joaquín J García
- Oxidative Stress and Aging Research Group, Department of Pharmacology, Physiology, Legal and Forensic Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - María Garrido
- Neuroimmunophysiology and Chrononutrition Research Group, University of Extremadura, 06006 Badajoz, Spain
- Department of Physiology, Science Faculty, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
4
|
Gasmi A, Bjørklund G, Mujawdiya PK, Semenova Y, Piscopo S, Peana M. Coenzyme Q 10 in aging and disease. Crit Rev Food Sci Nutr 2022; 64:3907-3919. [PMID: 36300654 DOI: 10.1080/10408398.2022.2137724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Coenzyme Q10 (CoQ10) is an essential component of the electron transport chain. It also acts as an antioxidant in cellular membranes. It can be endogenously produced in all cells by a specialized mitochondrial pathway. CoQ10 deficiency, which can result from aging or insufficient enzyme function, has been considered to increase oxidative stress. Some drugs, including statins and bisphosphonates, often used by older individuals, can interfere with enzymes responsible for endogenous CoQ10 synthesis. Oral supplementation with high doses of CoQ10 can increase both its circulating and intracellular levels and several clinical trials observed that its administration provided beneficial effects on different disorders such as cardiovascular disease and inflammation which have been associated with low CoQ10 levels and high oxidative stress. Moreover, CoQ10 has been suggested as a promising therapeutic agent to prevent and slow the progression of other diseases including metabolic syndrome and type 2 diabetes, neurodegenerative and male infertility. However, there is still a need for further studies and well-designed clinical trials involving a large number of participants undergoing longer treatments to assess the benefits of CoQ10 for these disorders.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | | | - Yuliya Semenova
- Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Salva Piscopo
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
5
|
Haddad HW, Mallepalli NR, Scheinuk JE, Bhargava P, Cornett EM, Urits I, Kaye AD. The Role of Nutrient Supplementation in the Management of Chronic Pain in Fibromyalgia: A Narrative Review. Pain Ther 2021; 10:827-848. [PMID: 33909266 PMCID: PMC8586285 DOI: 10.1007/s40122-021-00266-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/09/2021] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION The multifaceted clinical presentation of fibromyalgia (FM) supports the modern understanding of the disorder as a more global condition than one simply affecting pain sensation. The main pharmacologic therapies used clinically include anti-epileptics and anti-depressants. Conservative treatment options include exercise, myofascial release, psychotherapy, and nutrient supplementation. METHODS Narrative review. RESULTS Nutrient supplementation is a broadly investigated treatment modality as numerous deficiencies have been linked to FM. Additionally, a proposed link between gut microbiome patterns and chronic pain syndromes has led to studies investigating probiotics as a possible treatment. Despite positive results, much of the current evidence regarding this topic is of poor quality, with variable study designs, limited sample sizes, and lack of control groups. CONCLUSIONS The etiology of FM is complex, and has shown to be multi-factorial with genetics and environmental exposures lending influence into its development. Preliminary results are promising, however, much of the existing evidence regarding diet supplementation is of poor quality. Further, more robust studies are needed to fully elucidate the potential of this alternative therapeutic option.
Collapse
Affiliation(s)
| | - Nikita Reddy Mallepalli
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA USA
| | - John Emerson Scheinuk
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA USA
| | - Pranav Bhargava
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA USA
| | - Elyse M. Cornett
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA USA
| | - Ivan Urits
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA USA
- Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA USA
| | - Alan David Kaye
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA USA
| |
Collapse
|
6
|
Aaseth J, Alexander J, Alehagen U. Coenzyme Q 10 supplementation - In ageing and disease. Mech Ageing Dev 2021; 197:111521. [PMID: 34129891 DOI: 10.1016/j.mad.2021.111521] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022]
Abstract
Coenzyme Q10 (CoQ10) is an essential component of the mitochondrial electron transport chain. It is also an antioxidant in cellular membranes and lipoproteins. All cells produce CoQ10 by a specialized cytoplasmatic-mitochondrial pathway. CoQ10 deficiency can result from genetic failure or ageing. Some drugs including statins, widely used by inter alia elderly, may inhibit endogenous CoQ10 synthesis. There are also chronic diseases with lower levels of CoQ10 in tissues and organs. High doses of CoQ10 may increase both circulating and intracellular levels, but there are conflicting results regarding bioavailability. Here, we review the current knowledge of CoQ10 biosynthesis and primary and acquired CoQ10 deficiency, and results from clinical trials based on CoQ10 supplementation. There are indications that supplementation positively affects mitochondrial deficiency syndrome and some of the symptoms of ageing. Cardiovascular disease and inflammation appear to be alleviated by the antioxidant effect of CoQ10. There is a need for further studies and well-designed clinical trials, with CoQ10 in a formulation of proven bioavailability, involving a greater number of participants undergoing longer treatments in order to assess the benefits of CoQ10 treatment in neurodegenerative disorders, as well as in metabolic syndrome and its complications.
Collapse
Affiliation(s)
- Jan Aaseth
- Research Department, Innlandet Hospital Trust, PO Box 104, N-2381, Brumunddal, Norway
| | - Jan Alexander
- Norwegian Institute of Public Health, PO Box 222 Skøyen, N-0213, Oslo, Norway.
| | - Urban Alehagen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Se-581 85, Linköping, Sweden
| |
Collapse
|
7
|
Martínez-Lara A, Moreno-Fernández AM, Jiménez-Guerrero M, Díaz-López C, De-Miguel M, Cotán D, Sánchez-Alcázar JA. <p>Mitochondrial Imbalance as a New Approach to the Study of Fibromyalgia</p>. Open Access Rheumatol 2020; 12:175-185. [PMID: 32922097 PMCID: PMC7455536 DOI: 10.2147/oarrr.s257470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/04/2020] [Indexed: 11/23/2022] Open
Abstract
Background Fibromyalgia (FM) is a common chronic pain disease, whose pathogenic mechanism still remains elusive. Oxidative stress markers and impaired bioenergetics homeostasis have been proposed as relevant events in the pathogenesis of the disease. Hence, the aim of the study is to analyse the potential biomarkers of mitochondrial imbalance in FM patients along with coenzyme Q10 (CoQ10) as a possible treatment. Methods The symptomatology of patients was recorded with an adaption of the Fibromyalgia Impact Questionnaire (FIQ). Mitochondrial imbalance was tested from blood extraction and serum isolation in 33 patients diagnosed with FM and 30 healthy controls. Western blot and HPLC techniques were performed to study the different parameters. Finally, bioinformatic analysis of machine learning was performed to predict possible associations of results. Results CoQ10 parameter did not show evidence to be a good marker of the disease, as the values are not significantly different between control and patient groups (Student’s t-test, CI 95%). For this reason, the focus of the study changed into the ratio between mitochondrial mass and autophagy levels. The bioinformatics analysis showed a possible association between this ratio and patients’ symptomatology. Finally, the effects of coenzyme Q10 as a potential treatment for the disease were different within patients, and its efficacy may be related to the initial mitochondrial status. However, there is no statistical significance due to limitations within the sample size. Conclusion Our study supports the hypothesis that an imbalance in mitochondrial homeostasis is involved in the FM pathogenesis. However, whether the increase in oxidative stress is the result of mitochondrial imbalance or the cause of this disease remains an open question. The measurement of this imbalance might be used as a preliminary biomarker for the diagnosis and follow-up of patients with FM, and even for the evaluation of the effects of the different antioxidants therapies.
Collapse
Affiliation(s)
| | - Ana María Moreno-Fernández
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | | | | | - Manuel De-Miguel
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - David Cotán
- Pronacera Therapeutics S.L., Seville, Spain
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Seville41013, Spain
- Correspondence: David Cotán Tel +34 615 41 26 42 Email
| | | |
Collapse
|
8
|
Heterogeneous Network Model to Identify Potential Associations Between Plasmodium vivax and Human Proteins. Int J Mol Sci 2020; 21:ijms21041310. [PMID: 32075230 PMCID: PMC7072978 DOI: 10.3390/ijms21041310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/29/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Integration of multiple sources and data levels provides a great insight into the complex associations between human and malaria systems. In this study, a meta-analysis framework was developed based on a heterogeneous network model for integrating human-malaria protein similarities, a human protein interaction network, and a Plasmodium vivax protein interaction network. An iterative network propagation was performed on the heterogeneous network until we obtained stabilized weights. The association scores were calculated for qualifying a novel potential human-malaria protein association. This method provided a better performance compared to random experiments. After that, the stabilized network was clustered into association modules. The potential association candidates were then thoroughly analyzed by statistical enrichment analysis with protein complexes and known drug targets. The most promising target proteins were the succinate dehydrogenase protein complex in the human citrate (TCA) cycle pathway and the nicotinic acetylcholine receptor in the human central nervous system. Promising associations and potential drug targets were also provided for further studies and designs in therapeutic approaches for malaria at a systematic level. In conclusion, this method is efficient to identify new human-malaria protein associations and can be generalized to infer other types of association studies to further advance biomedical science.
Collapse
|
9
|
Role of coenzymes in cancer metabolism. Semin Cell Dev Biol 2019; 98:44-53. [PMID: 31176736 DOI: 10.1016/j.semcdb.2019.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023]
Abstract
Cancer is a heterogeneous set of diseases characterized by the rewiring of cellular signaling and the reprogramming of metabolic pathways to sustain growth and proliferation. In past decades, studies were focused primarily on the genetic complexity of cancer. Recently, increasing number of studies have discovered several mutations among metabolic enzymes in different tumor cells. Most of the enzymes are regulated by coenzymes, organic cofactors, that function as intermediate carrier of electrons or functional groups that are transferred during the reaction. However, the precise role of cofactors is not well elucidated. In this review, we discuss several metabolic enzymes associated to cancer metabolism rewiring, whose inhibition may represent a therapeutic target. Such enzymes, upon expression or inhibition, may impact also the coenzymes levels, but only in few cases, it was possible to direct correlate coenzymes changes with a specific enzyme. In addition, we also summarize an up-to-date information on biological role of some coenzymes, preclinical and clinical studies, that have been carried out in various cancers and their outputs.
Collapse
|
10
|
Danda S, Thomas BM, Paramasivam G, Thomas R, Mathew J, Danda D. A descriptive pilot study of mitochondrial mutations & clinical phenotype in fibromyalgia syndrome. Indian J Med Res 2019; 149:47-50. [PMID: 31115374 PMCID: PMC6507534 DOI: 10.4103/ijmr.ijmr_1977_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background & objectives: Fibromyalgia syndrome (FMS) is one of the most common chronic pain conditions of unknown aetiology. Mitochondrial dysfunction has been reported in FMS with some studies reporting the presence of mitochondrial mutation namely A3243G, which also causes mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes. This pilot study was conducted to assess this mutation and also detect large deletions in mitochondrial DNA (mtDNA) in patients with FMS. Methods: Thirty female patients with FMS participated and 30 matched controls were included. Genomic DNA was subjected to polymerase chain reaction (PCR) amplification using specific primers followed by restriction digestion with ApaI enzyme to detect the specific A3243G mtDNA mutation. Long-range PCR was done in two sets to detect the large deletions in the mtDNA. Biochemical parameters including thyroid-stimulating hormone and vitamin D levels were also looked at. Results: None of the patients were found to carry the common mutation or large deletions. Low vitamin D level was a common finding. Hypothyroidism was found in a few patients. Interpretation & conclusions: Although the common mutation or large mtDNA deletions were not detected in blood mtDNA in the FMS patients, mutations in the muscle and sequence variation in mtDNA remained a possibility. Future studies in both blood and muscle tissue including mtDNA sequencing are warranted in such patients to determine if a subset of FMS patients have mitochondrial myopathy.
Collapse
Affiliation(s)
- Sumita Danda
- Department of Medical Genetics, Christian Medical College & Hospital, Vellore, India
| | - Blessy Mariam Thomas
- Department of Medical Genetics, Christian Medical College & Hospital, Vellore, India
| | - G Paramasivam
- Department of Medical Genetics, Christian Medical College & Hospital, Vellore, India
| | - Raji Thomas
- Department of Physical Medicine & Rehabilitation, Christian Medical College & Hospital, Vellore, India
| | - John Mathew
- Department of Clinical Immunology & Rheumatology, Christian Medical College & Hospital, Vellore, India
| | - Debashish Danda
- Department of Clinical Immunology & Rheumatology, Christian Medical College & Hospital, Vellore, India
| |
Collapse
|
11
|
Favero G, Bonomini F, Franco C, Rezzani R. Mitochondrial Dysfunction in Skeletal Muscle of a Fibromyalgia Model: The Potential Benefits of Melatonin. Int J Mol Sci 2019; 20:ijms20030765. [PMID: 30754674 PMCID: PMC6386947 DOI: 10.3390/ijms20030765] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/24/2022] Open
Abstract
Fibromyalgia syndrome (FMS) is considered a musculoskeletal disorder associated to other symptoms including chronic pain. Since the hypothesis of FMS etiogenesis is consistent with mitochondrial dysfunction and oxidative stress, we evaluated the pathophysiological correlation among these factors studying some proteins involved in the mitochondrial homeostasis. We focused our attention on the roles of peroxisome proliferator activated receptor gamma coactivator-1alpha (PGC-1α), mitofusin2 (Mfn2), and coenzyme Q10 (CoQ10) in reserpine-induced myalgic (RIM) rats that manifest fibromyalgia-like chronic pain symptoms. First, we underlined that RIM rats are a good model for studying the pathophysiology of FMS and moreover, we found that PGC-1α, Mfn2, and CoQ10 are involved in FMS. In fact, their expressions were reduced in gastrocnemius muscle determining an incorrect mitochondrial homeostasis. Today, none of the currently available drugs are fully effective against the symptoms of this disease and they, often, induce several adverse events; hence, many scientists have taken on the challenge of searching for non-pharmacological treatments. Another goal of this study was therefore the evaluation of the potential benefits of melatonin, an endogenous indoleamine having several functions including its potent capacity to induce antioxidant enzymes and to determine the protective or reparative mechanisms in the cells. We observed that melatonin supplementation significantly preserved all the studied parameters, counteracting oxidative stress in RIM rats and confirming that this indoleamine should be taken in consideration for improving health and/or counteract mitochondrial related diseases.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| | - Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
12
|
Maguire Á, Hargreaves A, Gill M. Coenzyme Q10 and neuropsychiatric and neurological disorders: relevance for schizophrenia. Nutr Neurosci 2018; 23:756-769. [PMID: 30537908 DOI: 10.1080/1028415x.2018.1556481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: Mitochondrial dysfunction has been implicated in the pathophysiology of schizophrenia and other neuropsychiatric disorders. Though the exact mechanisms and clinical implications for this dysfunction are not fully determined, there is a hypothesis that deficiency in coenzyme Q10 (CoQ10) may contribute to mitochondrial impairments and be reflected in cognitive, affective, and energy disturbances in the disorders. CoQ10 is a critical component of the mitochondrial respiratory chain and an essential free radical scavenger, necessary for mitochondrial function. Here, we review the results of CoQ10 supplementation interventions for adults with various neurological and neuropsychiatric disorders and consider the therapeutic potential of CoQ10 supplementation for schizophrenia in light of these studies. Methods: A literature review of randomised controlled trials and open-label studies investigating the effect of CoQ10 as a single intervention in adults with neurological and neuropsychiatric disorders was conducted. Results: CoQ10 supplementation has some positive effects on fatigue, cognitive impairment and affective difficulties in several neurological and neuropsychiatric conditions with associated mitochondrial dysfunction. Discussion: CoQ10 may be of therapeutic value to schizophrenia given evidence of mitochondrial dysfunction in the disorder.
Collapse
Affiliation(s)
- Áine Maguire
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - April Hargreaves
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Department of Psychology, National College of Ireland, Dublin, Ireland
| | - Michael Gill
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
|
14
|
Oezel L, Then H, Jung AL, Jabari S, Bonaterra GA, Wissniowski TT, Önel SF, Ocker M, Thieme K, Kinscherf R, Di Fazio P. Fibromyalgia syndrome: metabolic and autophagic processes in intermittent cold stress mice. Pharmacol Res Perspect 2016; 4:e00248. [PMID: 27713820 PMCID: PMC5045934 DOI: 10.1002/prp2.248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 02/05/2023] Open
Abstract
Fibromyalgia is characterized by widespread musculoskeletal pain, fatigue, and depression. The aim was to analyze potential mitochondrial dysfunction or autophagy in mice after exposure to intermittent cold stress (ICS). Muscle and liver specimens were obtained from 36 mice. Lactate dehydrogenase (LDH) activity was measured. Microtubule-associated protein light chain 3 (MAP1LC3B) and glycogen content were determined histologically; muscle ultrastructure by electron microscopy. Mitochondrial- and autophagy-related markers were analyzed by RT-qPCR and Western blotting. ATP level, cytotoxicity, and caspase 3 activity were measured in murine C2C12 myoblasts after ICS exposure. Coenzyme Q10B (COQ10B) transcript was up-regulated in limb muscle of ICS mice, whereas its protein content was stable. Cytochrome C oxidase 4 (COX4I1) and LDH activity increased in limb muscle of male ICS mice. Glycogen content was lower in muscle and liver tissue of male ICS mice. Electron micrographs of ICS mice specimens showed mitochondrial damage and autophagic vesicles. A significant up-regulation of autophagic transcripts of MAP1LC3B and BECLIN 1 (BECN1) was observed. Map1lc3b protein showed an aggregated distribution in ICS mice and SqSTM1/p62 (p62) protein level was stable. Furthermore, ATP level and caspase activity, detected as apoptotic marker, were significantly lowered after ICS exposure in differentiated C2C12 myoblasts. The present study shows that ICS mice are characterized by mitochondrial dysfunction, autophagic processes, and metabolic alterations. Further investigations could dissect autophagy process in the proposed model and link these mechanisms to potential therapeutic options for fibromyalgia.
Collapse
Affiliation(s)
- Lisa Oezel
- Department of Visceral Thoracic and Vascular Surgery Philipps University of Marburg Baldingerstrasse 35043 Marburg Germany
| | - Hanna Then
- Institute of Anatomy and Cell Biology Philipps University of Marburg Robert-Koch-Strasse 8 35032 Marburg Germany
| | - Anna L Jung
- Institute for Lung Research Philipps University of Marburg Baldingerstrasse 35043 Marburg Germany
| | - Samir Jabari
- Institute for Anatomy I University Hospital Erlangen Krankenhausstrasse 9 91054 Erlangen Germany
| | - Gabriel A Bonaterra
- Institute of Anatomy and Cell Biology Philipps University of Marburg Robert-Koch-Strasse 8 35032 Marburg Germany
| | - Thaddeus T Wissniowski
- Department of Gastroenterology and Endocrinology Philipps University of Marburg Baldingerstrasse 35043 Marburg Germany
| | - Susanne F Önel
- Developmental Biology Department of Biology Philipps University of Marburg Karl-von-Frisch-Strasse 8 35043 Marburg Germany
| | - Matthias Ocker
- Experimental Medicine Oncology Bayer Pharma AG Berlin Germany
| | - Kati Thieme
- Institute for Medical Psychology Philipps University of Marburg Karl-von-Frisch-Strasse 4 35032 Marburg Germany
| | - Ralf Kinscherf
- Institute of Anatomy and Cell Biology Philipps University of Marburg Robert-Koch-Strasse 8 35032 Marburg Germany
| | - Pietro Di Fazio
- Department of Visceral Thoracic and Vascular Surgery Philipps University of Marburg Baldingerstrasse 35043 Marburg Germany
| |
Collapse
|
15
|
Li D, Deng W, Xu H, Sun Y, Wang Y, Chen S, Ding X. Electrochemical Investigation of Coenzyme Q10 on Silver Electrode in Ethanol Aqueous Solution and Its Determination Using Differential Pulse Voltammetry. ACTA ACUST UNITED AC 2016; 21:579-89. [DOI: 10.1177/2211068216644442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 11/15/2022]
|
16
|
Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life Sci 2016; 146:163-73. [PMID: 26792059 DOI: 10.1016/j.lfs.2016.01.014] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 12/16/2022]
Abstract
Free radical generation occurs continuously within cells as a consequence of common metabolic processes. However, in high concentrations, whether from endogenous or exogenous sources, free radicals can lead to oxidative stress; a harmful process that cause serious damages to all biomolecules in our body hence impairs cell functions and even results in cell death and diseased states. Oxidative injuries accumulate over time and participate in cancer development, cardiovascular and neurodegenerative disorders as well as aging. Nature has bestowed the human body with a complex web of antioxidant defense system including enzymatic antioxidants like glutathione peroxidase and glutathione reductase, catalase and superoxide dismutase as well as non-enzymatic antioxidants such as thiol antioxidants, melatonin, coenzyme Q, and metal chelating proteins, which are efficient enough to fight against excessive free radicals. Also, nutrient antioxidants such as vitamin C, vitamin E, carotenoids, polyphenols, and trace elements are known to have high antioxidant potency to assist in minimizing harmful effects of reactive species. The immune system is also extremely vulnerable to oxidant and antioxidant balance as uncontrolled free radical production can impair its function and defense mechanism. The present paper reviews the ways by which free radicals form in the body and promote tissue damage, as well as the role of the antioxidants defense mechanisms. Finally, we will have a brief glance at oxidants and antioxidants relevance to the immune system.
Collapse
|
17
|
Morris G, Berk M, Galecki P, Walder K, Maes M. The Neuro-Immune Pathophysiology of Central and Peripheral Fatigue in Systemic Immune-Inflammatory and Neuro-Immune Diseases. Mol Neurobiol 2015; 53:1195-1219. [PMID: 25598355 DOI: 10.1007/s12035-015-9090-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/05/2015] [Indexed: 01/18/2023]
Abstract
Many patients with systemic immune-inflammatory and neuro-inflammatory disorders, including depression, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's disease, cancer, cardiovascular disorder, Parkinson's disease, multiple sclerosis, stroke, and chronic fatigue syndrome/myalgic encephalomyelitis, endure pathological levels of fatigue. The aim of this narrative review is to delineate the wide array of pathways that may underpin the incapacitating fatigue occurring in systemic and neuro-inflammatory disorders. A wide array of immune, inflammatory, oxidative and nitrosative stress (O&NS), bioenergetic, and neurophysiological abnormalities are involved in the etiopathology of these disease states and may underpin the incapacitating fatigue that accompanies these disorders. This range of abnormalities comprises: increased levels of pro-inflammatory cytokines, e.g., interleukin-1 (IL-1), IL-6, tumor necrosis factor (TNF) α and interferon (IFN) α; O&NS-induced muscle fatigue; activation of the Toll-Like Receptor Cycle through pathogen-associated (PAMPs) and damage-associated (DAMPs) molecular patterns, including heat shock proteins; altered glutaminergic and dopaminergic neurotransmission; mitochondrial dysfunctions; and O&NS-induced defects in the sodium-potassium pump. Fatigue is also associated with altered activities in specific brain regions and muscle pathology, such as reductions in maximum voluntary muscle force, downregulation of the mitochondrial biogenesis master gene peroxisome proliferator-activated receptor gamma coactivator 1-alpha, a shift to glycolysis and buildup of toxic metabolites within myocytes. As such, both mental and physical fatigue, which frequently accompany immune-inflammatory and neuro-inflammatory disorders, are the consequence of interactions between multiple systemic and central pathways.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia.,Orygen Youth Health Research Centre and the Centre of Youth Mental Health, Poplar Road 35, Parkville, 3052, Australia.,The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, Royal Parade 30, Parkville, 3052, Australia.,Department of Psychiatry, University of Melbourne, Level 1 North, Main Block, Royal Melbourne Hospital, Parkville, 3052, Australia
| | - Piotr Galecki
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Ken Walder
- Metabolic Research Unit, Deakin University, Geelong, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia. .,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil. .,Impact Strategic Research Center, Deakin University, Geelong, Australia.
| |
Collapse
|
18
|
Golomb BA, Allison M, Koperski S, Koslik HJ, Devaraj S, Ritchie JB. Coenzyme Q10 benefits symptoms in Gulf War veterans: results of a randomized double-blind study. Neural Comput 2014; 26:2594-651. [PMID: 25149705 DOI: 10.1162/neco_a_00659] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We sought to assess whether coenzyme Q10 (CoQ10) benefits the chronic multisymptom problems that affect one-quarter to one-third of 1990-1 Gulf War veterans, using a randomized, double-blind, placebo-controlled study. Participants were 46 veterans meeting Kansas and Centers for Disease Control criteria for Gulf War illness. Intervention was PharmaNord (Denmark) CoQ10 100 mg per day (Q100), 300 mg per day (Q300), or an identical-appearing placebo for 3.5 ± 0.5 months. General self-rated health (GSRH), the primary outcome, differed across randomization arms at baseline, and sex significantly predicted GSRH change, compelling adjustment for baseline GSRH and prompting sex-stratified analysis. GSRH showed no significant benefit in the combined-sex sample. Among males (85% of participants), Q100 significantly benefited GSRH versus placebo and versus Q300, providing emphasis on Q100. Physical function (summary performance score, SPS) improved on Q100 versus placebo. A rise in CoQ10 approached significance as a predictor of improvement in GSRH and significantly predicted SPS improvement. Among 20 symptoms each present in half or more of the enrolled veterans, direction-of-difference on Q100 versus placebo was favorable for all except sleep problems; sign test 19:1, p=0.00004) with several symptoms individually significant. Significance for these symptoms despite the small sample underscores large effect sizes, and an apparent relation of key outcomes to CoQ10 change increases prospects for causality. In conclusion, Q100 conferred benefit to physical function and symptoms in veterans with Gulf War illness. Examination in a larger sample is warranted, and findings from this study can inform the conduct of a larger trial.
Collapse
Affiliation(s)
- Beatrice A Golomb
- Departments of Medicine and of Family and Preventive Medicine, University of California, San Diego, La Jolla, CA 92093, U.S.A.
| | | | | | | | | | | |
Collapse
|
19
|
Garrido-Maraver J, Cordero MD, Oropesa-Ávila M, Fernández Vega A, de la Mata M, Delgado Pavón A, de Miguel M, Pérez Calero C, Villanueva Paz M, Cotán D, Sánchez-Alcázar JA. Coenzyme q10 therapy. Mol Syndromol 2014; 5:187-97. [PMID: 25126052 DOI: 10.1159/000360101] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
For a number of years, coenzyme Q10 (CoQ10) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in blood plasma, and extensively investigated its antioxidant role. These 2 functions constitute the basis for supporting the clinical use of CoQ10. Also, at the inner mitochondrial membrane level, CoQ10 is recognized as an obligatory cofactor for the function of uncoupling proteins and a modulator of the mitochondrial transition pore. Furthermore, recent data indicate that CoQ10 affects the expression of genes involved in human cell signaling, metabolism and transport, and some of the effects of CoQ10 supplementation may be due to this property. CoQ10 deficiencies are due to autosomal recessive mutations, mitochondrial diseases, aging-related oxidative stress and carcinogenesis processes, and also statin treatment. Many neurodegenerative disorders, diabetes, cancer, and muscular and cardiovascular diseases have been associated with low CoQ10 levels as well as different ataxias and encephalomyopathies. CoQ10 treatment does not cause serious adverse effects in humans and new formulations have been developed that increase CoQ10 absorption and tissue distribution. Oral administration of CoQ10 is a frequent antioxidant strategy in many diseases that may provide a significant symptomatic benefit.
Collapse
Affiliation(s)
- Juan Garrido-Maraver
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Mario D Cordero
- Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain ; Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Manuel Oropesa-Ávila
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Alejandro Fernández Vega
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Ana Delgado Pavón
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Manuel de Miguel
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Carmen Pérez Calero
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Marina Villanueva Paz
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - David Cotán
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain ; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| |
Collapse
|
20
|
van Tilburg MA, Zaki EA, Venkatesan T, Boles RG. Irritable bowel syndrome may be associated with maternal inheritance and mitochondrial DNA control region sequence variants. Dig Dis Sci 2014; 59:1392-7. [PMID: 24500451 PMCID: PMC4071137 DOI: 10.1007/s10620-014-3045-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 01/20/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Mitochondrial dysfunction has been implicated in various functional disorders that are co-morbid to irritable bowel syndrome (IBS) such as migraine, depression and chronic fatigue syndrome. The aim of the current case-control pilot study was to determine if functional symptoms in IBS show a maternal inheritance bias, and if the degree of this maternal inheritance is related to mitochondrial DNA (mtDNA) polymorphisms. METHODS Pedigrees were obtained from 308 adult IBS patients, 102 healthy controls, and 36 controls with inflammatory bowel disease (IBD), all from Caucasian heritage, to determine probable maternal inheritance. Two mtDNA polymorphisms (16519T and 3010A), which have previously been implicated in other functional disorders, were assayed in mtDNA haplogroup H IBS subjects and compared to genetic data from 344 published haplogroup H controls. RESULTS Probable maternal inheritance was found in 17.5 % IBS, 2 % healthy controls and 0 % IBD controls (p < .0001). No difference was found between IBS and control for 3010A, and a trend was found for 16519T (p = 0.05). IBS with maternal inheritance were significantly more likely to have the 16519T than controls (OR 5.8; 95 % CI 1.5-23.1) or IBS without maternal inheritance (OR 5.2; 95 % CI 1.2-22.6). CONCLUSIONS This small pilot study shows that a significant minority (1/6) of IBS patients have pedigrees suggestive of maternal inheritance. The mtDNA polymorphism 16519T, which has been previously implicated in other functional disorders, is also associated with IBS patients who display maternal inheritance. These findings suggest that mtDNA-related mitochondrial dysfunction may constitute a sub-group within IBS. Future replication studies in larger samples are needed.
Collapse
Affiliation(s)
| | - Essam A. Zaki
- Division of Medical Genetics, Children’s Hospital Los Angeles and the Department of Pediatrics, Keck School of Medicine at USC, Los Angeles, CA
| | - Thangam Venkatesan
- Department of Gastroenterology & Hepatology, Medical College of Wisconsin, Milwaukee, WI
| | - Richard G. Boles
- Division of Medical Genetics, Children’s Hospital Los Angeles and the Department of Pediatrics, Keck School of Medicine at USC, Los Angeles, CA
| |
Collapse
|
21
|
Cordero MD, Alcocer-Gómez E, Culic O, Carrión AM, de Miguel M, Díaz-Parrado E, Pérez-Villegas EM, Bullón P, Battino M, Sánchez-Alcazar JA. NLRP3 inflammasome is activated in fibromyalgia: the effect of coenzyme Q10. Antioxid Redox Signal 2014; 20:1169-80. [PMID: 23886272 PMCID: PMC3934515 DOI: 10.1089/ars.2013.5198] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Fibromyalgia (FM) is a prevalent chronic pain syndrome characterized by generalized hyperalgesia associated with a wide spectrum of symptoms such as fatigue and joint stiffness. Diagnosis of FM is difficult due to the lack of reliable diagnostic biomarkers, while treatment is largely inadequate. We have investigated the role of coenzyme Q10 (CoQ10) deficiency and mitochondrial dysfunction in inflammasome activation in blood cells from FM patients, and in vitro and in vivo CoQ10 deficiency models. RESULTS Mitochondrial dysfunction was accompanied by increased protein expression of interleukin (IL)-1β, NLRP3 (NOD-like receptor family, pyrin domain containing 3) and caspase-1 activation, and an increase of serum levels of proinflammatory cytokines (IL-1β and IL-18). CoQ10 deficiency induced by p-aminobenzoate treatment in blood mononuclear cells and mice showed NLRP3 inflammasome activation with marked algesia. A placebo-controlled trial of CoQ10 in FM patients has shown a reduced NLRP3 inflammasome activation and IL-1β and IL-18 serum levels. INNOVATION These results show an important role for the NLRP3 inflammasome in the pathogenesis of FM, and the capacity of CoQ10 in the control of inflammasome. CONCLUSION These findings provide new insights into the pathogenesis of FM and suggest that NLRP3 inflammasome inhibition represents a new therapeutic intervention for the disease.
Collapse
Affiliation(s)
- Mario D Cordero
- 1 Dpto. Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla , Sevilla, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bozkurt M, Oktayoglu P, Em S, Çaglayan M, Yuksel H, Uçar D, Batmaz İ, Sarıyıldız MA, Karatoprak S, Nas K. Serum Coenzyme Q10 Levels and Oxidative Status in Patients with Fibromyalgia Syndrome. ACTA ACUST UNITED AC 2014. [DOI: 10.3109/10582452.2014.883040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Alcocer-Gómez E, Cano-García FJ, Cordero MD. Effect of coenzyme Q10 evaluated by 1990 and 2010 ACR Diagnostic Criteria for Fibromyalgia and SCL-90-R: Four case reports and literature review. Nutrition 2013; 29:1422-5. [DOI: 10.1016/j.nut.2013.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/15/2013] [Accepted: 05/12/2013] [Indexed: 01/07/2023]
|
24
|
Miyamae T, Seki M, Naga T, Uchino S, Asazuma H, Yoshida T, Iizuka Y, Kikuchi M, Imagawa T, Natsumeda Y, Yokota S, Yamamoto Y. Increased oxidative stress and coenzyme Q10 deficiency in juvenile fibromyalgia: amelioration of hypercholesterolemia and fatigue by ubiquinol-10 supplementation. Redox Rep 2013; 18:12-9. [PMID: 23394493 DOI: 10.1179/1351000212y.0000000036] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Fibromyalgia (FM) is characterized by generalized pain and chronic fatigue of unknown etiology. To evaluate the role of oxidative stress in this disorder, we measured plasma levels of ubiquinone-10, ubiquinol-10, free cholesterol (FC), cholesterol esters (CE), and free fatty acids (FFA) in patients with juvenile FM (n=10) and in healthy control subjects (n=67). Levels of FC and CE were significantly increased in juvenile FM as compared with controls, suggesting the presence of hypercholesterolemia in this disease. However, plasma level of ubiquinol-10 was significantly decreased and the ratio of ubiquinone-10 to total coenzyme Q10 (%CoQ10) was significantly increased in juvenile FM relative to healthy controls, suggesting that FM is associated with coenzyme Q10 deficiency and increased oxidative stress. Moreover, plasma level of FFA was significantly higher and the content of polyunsaturated fatty acids (PUFA) in total FFA was significantly lower in FM than in controls, suggesting increased tissue oxidative damage in juvenile FM. Interestingly, the content of monoenoic acids, such as oleic and palmitoleic acids, was significantly increased in FM relative to controls, probably to compensate for the loss of PUFA. Next, we examined the effect of ubiquinol-10 supplementation (100 mg/day for 12 weeks) in FM patients. This resulted in an increase in coenzyme Q10 levels and a decrease in %CoQ10. No changes were observed in FFA levels or their composition. However, plasma levels of FC and CE significantly decreased and the ratio of FC to CE also significantly decreased, suggesting that ubiquinol-10 supplementation improved cholesterol metabolism. Ubiquinol-10 supplementation also improved chronic fatigue scores as measured by the Chalder Fatigue Scale.
Collapse
Affiliation(s)
- Takako Miyamae
- Department of Pediatrics, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Coenzyme Q10 depletion in medical and neuropsychiatric disorders: potential repercussions and therapeutic implications. Mol Neurobiol 2013; 48:883-903. [PMID: 23761046 DOI: 10.1007/s12035-013-8477-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 05/29/2013] [Indexed: 12/18/2022]
Abstract
Coenzyme Q10 (CoQ10) is an antioxidant, a membrane stabilizer, and a vital cofactor in the mitochondrial electron transport chain, enabling the generation of adenosine triphosphate. It additionally regulates gene expression and apoptosis; is an essential cofactor of uncoupling proteins; and has anti-inflammatory, redox modulatory, and neuroprotective effects. This paper reviews the known physiological role of CoQ10 in cellular metabolism, cell death, differentiation and gene regulation, and examines the potential repercussions of CoQ10 depletion including its role in illnesses such as Parkinson's disease, depression, myalgic encephalomyelitis/chronic fatigue syndrome, and fibromyalgia. CoQ10 depletion may play a role in the pathophysiology of these disorders by modulating cellular processes including hydrogen peroxide formation, gene regulation, cytoprotection, bioenegetic performance, and regulation of cellular metabolism. CoQ10 treatment improves quality of life in patients with Parkinson's disease and may play a role in delaying the progression of that disorder. Administration of CoQ10 has antidepressive effects. CoQ10 treatment significantly reduces fatigue and improves ergonomic performance during exercise and thus may have potential in alleviating the exercise intolerance and exhaustion displayed by people with myalgic encepholamyletis/chronic fatigue syndrome. Administration of CoQ10 improves hyperalgesia and quality of life in patients with fibromyalgia. The evidence base for the effectiveness of treatment with CoQ10 may be explained via its ability to ameliorate oxidative stress and protect mitochondria.
Collapse
|
26
|
Cornelius N, Byron C, Hargreaves I, Guerra PF, Furdek AK, Land J, Radford WW, Frerman F, Corydon TJ, Gregersen N, Olsen RKJ. Secondary coenzyme Q10 deficiency and oxidative stress in cultured fibroblasts from patients with riboflavin responsive multiple Acyl-CoA dehydrogenation deficiency. Hum Mol Genet 2013; 22:3819-27. [PMID: 23727839 DOI: 10.1093/hmg/ddt232] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is essential for the energy production of the cells and as an electron transporter in the mitochondrial respiratory chain. CoQ10 links the mitochondrial fatty acid β-oxidation to the respiratory chain by accepting electrons from electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO). Recently, it was shown that a group of patients with the riboflavin responsive form of multiple acyl-CoA dehydrogenation deficiency (RR-MADD) carrying inherited amino acid variations in ETF-QO also had secondary CoQ10 deficiency with beneficial effects of CoQ10 treatment, thus adding RR-MADD to an increasing number of diseases involving secondary CoQ10 deficiency. In this study, we show that moderately decreased CoQ10 levels in fibroblasts from six unrelated RR-MADD patients were associated with increased levels of mitochondrial reactive oxygen species (ROS). Treatment with CoQ10, but not with riboflavin, could normalize the CoQ10 level and decrease the level of ROS in the patient cells. Additionally, riboflavin-depleted control fibroblasts showed moderate CoQ10 deficiency, but not increased mitochondrial ROS, indicating that variant ETF-QO proteins and not CoQ10 deficiency are the causes of mitochondrial ROS production in the patient cells. Accordingly, the corresponding variant Rhodobacter sphaeroides ETF-QO proteins, when overexpressed in vitro, bind a CoQ10 pseudosubstrate, Q10Br, less tightly than the wild-type ETF-QO protein, suggesting that molecular oxygen can get access to the electrons in the misfolded ETF-QO protein, thereby generating superoxide and oxidative stress, which can be reversed by CoQ10 treatment.
Collapse
|
27
|
Cordero MD, Cotán D, del-Pozo-Martín Y, Carrión AM, de Miguel M, Bullón P, Sánchez-Alcazar JA. Oral coenzyme Q10 supplementation improves clinical symptoms and recovers pathologic alterations in blood mononuclear cells in a fibromyalgia patient. Nutrition 2012; 28:1200-3. [PMID: 22898267 DOI: 10.1016/j.nut.2012.03.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/02/2012] [Accepted: 03/26/2012] [Indexed: 11/29/2022]
Abstract
Fibromyalgia (FM) is a chronic pain syndrome with unknown etiology. Recent studies have shown evidence demonstrating that mitochondrial dysfunction and oxidative stress may have a role in the pathophysiology of FM. Coenzyme Q10 (CoQ10) is an essential electron carrier in the mitochondrial respiratory chain and a strong antioxidant. Low CoQ10 levels have been detected in patients with FM, and a significant decrease of clinical symptoms has been reported after oral CoQ10 supplementation. In this report, we show the effect of CoQ10 treatment on clinical symptoms, blood mononuclear cells, and mitochondrial and oxidative stress markers from a woman with FM. After CoQ10 treatment, the patient reported a significant improvement of clinical symptoms. At the cellular level, CoQ10 treatment restored mitochondrial dysfunction and the mtDNA copy number, decreased oxidative stress, and increased mitochondrial biogenesis. Our results suggest that CoQ10 could be an alternative therapeutic approach for FM.
Collapse
Affiliation(s)
- Mario D Cordero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-Junta de Andalucía and Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Seville, Spain.
| | | | | | | | | | | | | |
Collapse
|
28
|
Cordero MD, Santos-García R, Bermejo-Jover D, Sánchez-Domínguez B, Jaramillo-Santos MR, Bullón P. Coenzyme Q10 in salivary cells correlate with blood cells in Fibromyalgia: improvement in clinical and biochemical parameter after oral treatment. Clin Biochem 2012; 45:509-11. [PMID: 22342824 DOI: 10.1016/j.clinbiochem.2012.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/30/2012] [Accepted: 02/02/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVE We have determined Coenzyme Q(10) (CoQ(10)) levels in salivary cells (SCs) and mononuclear blood cells (BMCs) from Fibromyalgia (FM), and we study the influence of oral CoQ(10) supplementation on cells levels and clinical symptoms. METHODS CoQ(10) was determined by high-performance liquid chromatography (HPLC). Ten patients were supplemented daily with 300 mg of CoQ(10) during 3 months. RESULTS CoQ(10) were reduced in both cell models. Oral supplementation showed an improvement in clinical symptoms and restored levels. CONCLUSIONS Patients with FM showed an important dysfunction in CoQ(10) levels and might benefit from oral supplementation.
Collapse
Affiliation(s)
- Mario D Cordero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-Junta de Andalucía, ISCIII, Sevilla, Spain.
| | | | | | | | | | | |
Collapse
|