1
|
Guan S, Qu X, Wang J, Zhang D, Lu J. 3-Monochloropropane-1,2-diol esters induce HepG2 cells necroptosis via CTSB/TFAM/ROS pathway. Food Chem Toxicol 2024; 186:114525. [PMID: 38408632 DOI: 10.1016/j.fct.2024.114525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
3-monochloropropane-1,2-diol esters (3-MCPDE) are toxic substances that form in food thermal processing and have a diverse range of toxicities. In this study, we found that 3-MCPDE triggered necroptosis by RIPK1/RIPK3/MLKL pathway in HepG2 cells. Previous studies have shown that ROS is an important activator of RIPK1 and RIPK3. The data showed that 3-MCPDE induced excessive ROS production through mitochondrial damage. After treatment with ROS inhibitor N-acetylcysteine (NAC), 3-MCPDE-induced necroptosis was relieved. Further, we explored how 3-MCPDE destroys mitochondria. The data suggested that 3-MCPDE induced mitochondrial dysfunction through the CTSB/TFAM pathway. Overall, the results indicated that 3-MCPDE induced necroptosis through CTSB/TFAM/ROS pathway in HepG2 cells. Our study provided a new mechanism for 3-MCPDE hepatotoxicity.
Collapse
Affiliation(s)
- Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Xiao Qu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Duoduo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| |
Collapse
|
2
|
Ishimaru K, Ikeda M, Miyamoto HD, Furusawa S, Abe K, Watanabe M, Kanamura T, Fujita S, Nishimura R, Toyohara T, Matsushima S, Koumura T, Yamada K, Imai H, Tsutsui H, Ide T. Deferasirox Targeting Ferroptosis Synergistically Ameliorates Myocardial Ischemia Reperfusion Injury in Conjunction With Cyclosporine A. J Am Heart Assoc 2024; 13:e031219. [PMID: 38158218 PMCID: PMC10863836 DOI: 10.1161/jaha.123.031219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Ferroptosis, an iron-dependent form of regulated cell death, is a major cell death mode in myocardial ischemia reperfusion (I/R) injury, along with mitochondrial permeability transition-driven necrosis, which is inhibited by cyclosporine A (CsA). However, therapeutics targeting ferroptosis during myocardial I/R injury have not yet been developed. Hence, we aimed to investigate the therapeutic efficacy of deferasirox, an iron chelator, against hypoxia/reoxygenation-induced ferroptosis in cultured cardiomyocytes and myocardial I/R injury. METHODS AND RESULTS The effects of deferasirox on hypoxia/reoxygenation-induced iron overload in the endoplasmic reticulum, lipid peroxidation, and ferroptosis were examined in cultured cardiomyocytes. In a mouse model of I/R injury, the infarct size and adverse cardiac remodeling were examined after treatment with deferasirox, CsA, or both in combination. Deferasirox suppressed hypoxia- or hypoxia/reoxygenation-induced iron overload in the endoplasmic reticulum, lipid peroxidation, and ferroptosis in cultured cardiomyocytes. Deferasirox treatment reduced iron levels in the endoplasmic reticulum and prevented increases in lipid peroxidation and ferroptosis in the I/R-injured myocardium 24 hours after I/R. Deferasirox and CsA independently reduced the infarct size after I/R injury to a similar degree, and combination therapy with deferasirox and CsA synergistically reduced the infarct size (infarct area/area at risk; control treatment: 64±2%; deferasirox treatment: 48±3%; CsA treatment: 48±4%; deferasirox+CsA treatment: 37±3%), thereby ameliorating adverse cardiac remodeling on day 14 after I/R. CONCLUSIONS Combination therapy with deferasirox and CsA may be a clinically feasible and effective therapeutic approach for limiting I/R injury and ameliorating adverse cardiac remodeling after myocardial infarction.
Collapse
Affiliation(s)
- Kosei Ishimaru
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Hiroko Deguchi Miyamoto
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shun Furusawa
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Ko Abe
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masatsugu Watanabe
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takuya Kanamura
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Satoshi Fujita
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Ryohei Nishimura
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takayuki Toyohara
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Tomoko Koumura
- Department of Hygienic Chemistry and Medical Research Laboratories, School of Pharmaceutical SciencesKitasato UniversityTokyoJapan
| | - Ken‐ichi Yamada
- Department of Molecular Pathobiology, Faculty of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Hirotaka Imai
- Department of Hygienic Chemistry and Medical Research Laboratories, School of Pharmaceutical SciencesKitasato UniversityTokyoJapan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- School of Medicine and Graduate SchoolInternational University of Health and WelfareFukuokaJapan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
3
|
Chang X, Liu J, Wang Y, Guan X, Liu R. Mitochondrial disorder and treatment of ischemic cardiomyopathy: Potential and advantages of Chinese herbal medicine. Biomed Pharmacother 2023; 159:114171. [PMID: 36641924 DOI: 10.1016/j.biopha.2022.114171] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial dysfunction is the main cause of damage to the pathological mechanism of ischemic cardiomyopathy. In addition, mitochondrial dysfunction can also affect the homeostasis of cardiomyocytes or endothelial cell dysfunction, leading to a vicious cycle of mitochondrial oxidative stress. And mitochondrial dysfunction is also an important pathological basis for ischemic cardiomyopathy and reperfusion injury after myocardial infarction or end-stage coronary heart disease. Therefore, mitochondria can be used as therapeutic targets against myocardial ischemia injury, and the regulation of mitochondrial morphology, function and structure is a key and important way of targeting mitochondrial quality control therapeutic mechanisms. Mitochondrial quality control includes mechanisms such as mitophagy, mitochondrial dynamics (mitochondrial fusion/fission), mitochondrial biosynthesis, and mitochondrial unfolded protein responses. Among them, the increase of mitochondrial fragmentation caused by mitochondrial pathological fission is the initial factor. The protective mitochondrial fusion can strengthen the interaction and synthesis of paired mitochondria and promote mitochondrial biosynthesis. In ischemia or hypoxia, pathological mitochondrial fission can promote the formation of mitochondrial fragments, fragmented mitochondria can lead to damaged mitochondrial DNA production, which can lead to mitochondrial biosynthesis dysfunction, insufficient mitochondrial ATP production, and mitochondrial ROS. Burst growth or loss of mitochondrial membrane potential. This eventually leads to the accumulation of damaged mitochondria. Then, under the leadership of mitophagy, damaged mitochondria can complete the mitochondrial degradation process through mitophagy, and transport the morphologically and structurally damaged mitochondria to lysosomes for degradation. But once the pathological mitochondrial fission increases, the damaged mitochondria increases, which may activate the pathway of cardiomyocyte death. Although laboratory studies have found that a variety of mitochondrial-targeted drugs can reduce myocardial ischemia and protect cardiomyocytes, there are still few drugs that have successfully passed clinical trials. In this review, we describe the role of MQS in ischemia/hypoxia-induced cardiomyocyte physiopathology and elucidate the relevant mechanisms of mitochondrial dysfunction in ischemic cardiomyopathy. In addition, we also further explained the advantages of natural products in improving mitochondrial dysfunction and protecting myocardial cells from the perspective of pharmacological mechanism, and explained its related mechanisms. Potential targeted therapies that can be used to improve MQS under ischemia/hypoxia are discussed, aiming to accelerate the development of cardioprotective drugs targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
4
|
Chen QM. Nrf2 for protection against oxidant generation and mitochondrial damage in cardiac injury. Free Radic Biol Med 2022; 179:133-143. [PMID: 34921930 DOI: 10.1016/j.freeradbiomed.2021.12.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023]
Abstract
Myocardial infarction is the most common form of acute coronary syndrome. Blockage of a coronary artery due to blood clotting leads to ischemia and subsequent cell death in the form of necrosis, apoptosis, necroptosis and ferroptosis. Revascularization by coronary artery bypass graft surgery or non-surgical percutaneous coronary intervention combined with pharmacotherapy is effective in relieving symptoms and decreasing mortality. However, reactive oxygen species (ROS) are generated from damaged mitochondria, NADPH oxidases, xanthine oxidase, and inflammation. Impairment of mitochondria is shown as decreased metabolic activity, increased ROS production, membrane permeability transition, and release of mitochondrial proteins into the cytoplasm. Oxidative stress activates Nrf2 transcription factor, which in turn mediates the expression of mitofusin 2 (Mfn 2) and proteasomal genes. Increased expression of Mfn2 and inhibition of mitochondrial fission due to decreased Drp1 protein by proteasomal degradation contribute to mitochondrial hyperfusion. Damaged mitochondria can be removed by mitophagy via Parkin or p62 mediated ubiquitination. Mitochondrial biogenesis compensates for the loss of mitochondria, but requires mitochondrial DNA replication and initiation of transcription or translation of mitochondrial genes. Experimental evidence supports a role of Nrf2 in mitophagy, via up-regulation of PINK1 or p62 gene expression; and in mitochondrial biogenesis, by influencing the expression of PGC-1α, NResF1, NResF2, TFAM and mitochondrial genes. Oxidative stress causes Nrf2 activation via Keap1 dissociation, de novo protein translation, and nuclear translocation related to inactivation of GSK3β. The mechanism of Keap 1 mediated Nrf2 activation has been hijacked for Nrf2 activation by small molecules derived from natural products, some of which have been shown capable of mitochondrial protection. Multiple lines of evidence support the importance of Nrf2 in protecting mitochondria and preserving or renewing energy metabolism following tissue injury.
Collapse
Affiliation(s)
- Qin M Chen
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, 1295 N. Martin Avenue, Tucson, AZ, 85721, United States.
| |
Collapse
|
5
|
Nusier M, Shah AK, Dhalla NS. Structure-Function Relationships and Modifications of Cardiac Sarcoplasmic Reticulum Ca2+-Transport. Physiol Res 2022; 70:S443-S470. [DOI: 10.33549/physiolres.934805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sarcoplasmic reticulum (SR) is a specialized tubular network, which not only maintains the intracellular concentration of Ca2+ at a low level but is also known to release and accumulate Ca2+ for the occurrence of cardiac contraction and relaxation, respectively. This subcellular organelle is composed of several phospholipids and different Ca2+-cycling, Ca2+-binding and regulatory proteins, which work in a coordinated manner to determine its function in cardiomyocytes. Some of the major proteins in the cardiac SR membrane include Ca2+-pump ATPase (SERCA2), Ca2+-release protein (ryanodine receptor), calsequestrin (Ca2+-binding protein) and phospholamban (regulatory protein). The phosphorylation of SR Ca2+-cycling proteins by protein kinase A or Ca2+-calmodulin kinase (directly or indirectly) has been demonstrated to augment SR Ca2+-release and Ca2+-uptake activities and promote cardiac contraction and relaxation functions. The activation of phospholipases and proteases as well as changes in different gene expressions under different pathological conditions have been shown to alter the SR composition and produce Ca2+-handling abnormalities in cardiomyocytes for the development of cardiac dysfunction. The post-translational modifications of SR Ca2+ cycling proteins by processes such as oxidation, nitrosylation, glycosylation, lipidation, acetylation, sumoylation, and O GlcNacylation have also been reported to affect the SR Ca2+ release and uptake activities as well as cardiac contractile activity. The SR function in the heart is also influenced in association with changes in cardiac performance by several hormones including thyroid hormones and adiponectin as well as by exercise-training. On the basis of such observations, it is suggested that both Ca2+-cycling and regulatory proteins in the SR membranes are intimately involved in determining the status of cardiac function and are thus excellent targets for drug development for the treatment of heart disease.
Collapse
Affiliation(s)
| | | | - NS Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen, Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6 Canada.
| |
Collapse
|
6
|
Ikeda M, Ide T, Tadokoro T, Miyamoto HD, Ikeda S, Okabe K, Ishikita A, Sato M, Abe K, Furusawa S, Ishimaru K, Matsushima S, Tsutsui H. Excessive Hypoxia-Inducible Factor-1α Expression Induces Cardiac Rupture via p53-Dependent Apoptosis After Myocardial Infarction. J Am Heart Assoc 2021; 10:e020895. [PMID: 34472375 PMCID: PMC8649270 DOI: 10.1161/jaha.121.020895] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Apoptosis plays a pivotal role in cardiac rupture after myocardial infarction (MI), and p53 is a key molecule in apoptosis during cardiac rupture. Hif‐1α (hypoxia‐inducible factor‐1α), upregulated under hypoxia, is a known p53 inducer. However, the role of Hif‐1α in the regulatory mechanisms underlying p53 upregulation, apoptosis, and cardiac rupture after MI is unclear. Methods and Results We induced MI in mice by ligating the left anterior descending artery. Hif‐1α and p53 expressions were upregulated in the border zone at day 5 after MI, accompanied by apoptosis. In rat neonatal cardiomyocytes, treatment with cobalt chloride (500 μmol/L), which mimics severe hypoxia by inhibiting PHD (prolyl hydroxylase domain‐containing protein), increased Hif‐1α and p53, accompanied by myocyte death with caspase‐3 cleavage. Silencing Hif‐1α or p53 inhibited caspase‐3 cleavage, and completely prevented myocyte death under PHD inhibition. In cardiac‐specific Hif‐1α hetero‐knockout mice, expression of p53 and cleavage of caspase‐3 and poly (ADP‐ribose) polymerase were reduced, and apoptosis was suppressed on day 5. Furthermore, the cleavage of caspase‐8 and IL‐1β (interleukin‐1β) was also suppressed in hetero knockout mice, accompanied by reduced macrophage infiltration and matrix metalloproteinase/tissue inhibitor of metalloproteinase activation. Although there was no intergroup difference in infarct size, the cardiac rupture and survival rates were significantly improved in the hetero knockout mice until day 10 after MI. Conclusions Hif‐1α plays a pivotal role in apoptosis, inflammation, and cardiac rupture after MI, in which p53 is a critical mediator, and may be a prospective therapeutic target for preventing cardiac rupture.
Collapse
Affiliation(s)
- Masataka Ikeda
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Tomonori Tadokoro
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Hiroko Deguchi Miyamoto
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Soichiro Ikeda
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Kosuke Okabe
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Akihito Ishikita
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Midori Sato
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Ko Abe
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Shun Furusawa
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Kosei Ishimaru
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| |
Collapse
|
7
|
Alikhani M, Touati E, Karimipoor M, Vosough M, Mohammadi M. Mitochondrial DNA Copy Number Variations in Gastrointestinal Tract Cancers: Potential Players. J Gastrointest Cancer 2021; 53:770-781. [PMID: 34486088 DOI: 10.1007/s12029-021-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Alterations of mitochondria have been linked to several cancers. Also, the mitochondrial DNA copy number (mtDNA-CN) is altered in various cancers, including gastrointestinal tract (GIT) cancers, and several research groups have investigated its potential as a cancer biomarker. However, the exact causes of mtDNA-CN variations are not yet revealed. This review discussed the conceivable players in this scheme, including reactive oxygen species (ROS), mtDNA genetic variations, DNA methylation, telomere length, autophagy, immune system activation, aging, and infections, and discussed their possible impact in the initiation and progression of cancer. By further exploring such mechanisms, mtDNA-CN variations may be effectively utilized as cancer biomarkers and provide grounds for developing novel cancer therapeutic agents.
Collapse
Affiliation(s)
- Mehdi Alikhani
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Eliette Touati
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS UMR2001, Institut Pasteur, 25-28 Rue du Dr Roux cedex 15, 75724, Paris, France
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Mohammadi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Feng Y, Huang W, Paul C, Liu X, Sadayappan S, Wang Y, Pauklin S. Mitochondrial nucleoid in cardiac homeostasis: bidirectional signaling of mitochondria and nucleus in cardiac diseases. Basic Res Cardiol 2021; 116:49. [PMID: 34392401 PMCID: PMC8364536 DOI: 10.1007/s00395-021-00889-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/20/2021] [Indexed: 01/11/2023]
Abstract
Metabolic function and energy production in eukaryotic cells are regulated by mitochondria, which have been recognized as the intracellular 'powerhouses' of eukaryotic cells for their regulation of cellular homeostasis. Mitochondrial function is important not only in normal developmental and physiological processes, but also in a variety of human pathologies, including cardiac diseases. An emerging topic in the field of cardiovascular medicine is the implication of mitochondrial nucleoid for metabolic reprogramming. This review describes the linear/3D architecture of the mitochondrial nucleoid (e.g., highly organized protein-DNA structure of nucleoid) and how it is regulated by a variety of factors, such as noncoding RNA and its associated R-loop, for metabolic reprogramming in cardiac diseases. In addition, we highlight many of the presently unsolved questions regarding cardiac metabolism in terms of bidirectional signaling of mitochondrial nucleoid and 3D chromatin structure in the nucleus. In particular, we explore novel techniques to dissect the 3D structure of mitochondrial nucleoid and propose new insights into the mitochondrial retrograde signaling, and how it regulates the nuclear (3D) chromatin structures in mitochondrial diseases.
Collapse
Affiliation(s)
- Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford, OX3 7LD, UK
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA
| | - Xingguo Liu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
9
|
Vozáriková V, Kunová N, Bauer JA, Frankovský J, Kotrasová V, Procházková K, Džugasová V, Kutejová E, Pevala V, Nosek J, Tomáška Ľ. Mitochondrial HMG-Box Containing Proteins: From Biochemical Properties to the Roles in Human Diseases. Biomolecules 2020; 10:biom10081193. [PMID: 32824374 PMCID: PMC7463775 DOI: 10.3390/biom10081193] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial DNA (mtDNA) molecules are packaged into compact nucleo-protein structures called mitochondrial nucleoids (mt-nucleoids). Their compaction is mediated in part by high-mobility group (HMG)-box containing proteins (mtHMG proteins), whose additional roles include the protection of mtDNA against damage, the regulation of gene expression and the segregation of mtDNA into daughter organelles. The molecular mechanisms underlying these functions have been identified through extensive biochemical, genetic, and structural studies, particularly on yeast (Abf2) and mammalian mitochondrial transcription factor A (TFAM) mtHMG proteins. The aim of this paper is to provide a comprehensive overview of the biochemical properties of mtHMG proteins, the structural basis of their interaction with DNA, their roles in various mtDNA transactions, and the evolutionary trajectories leading to their rapid diversification. We also describe how defects in the maintenance of mtDNA in cells with dysfunctional mtHMG proteins lead to different pathologies at the cellular and organismal level.
Collapse
Affiliation(s)
- Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Nina Kunová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Ján Frankovský
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Veronika Kotrasová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Katarína Procházková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Vladimíra Džugasová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Eva Kutejová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Vladimír Pevala
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia;
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
- Correspondence: ; Tel.: +421-2-90149-433
| |
Collapse
|
10
|
Deguchi H, Ikeda M, Ide T, Tadokoro T, Ikeda S, Okabe K, Ishikita A, Saku K, Matsushima S, Tsutsui H. Roxadustat Markedly Reduces Myocardial Ischemia Reperfusion Injury in Mice. Circ J 2020; 84:1028-1033. [PMID: 32213720 DOI: 10.1253/circj.cj-19-1039] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Ischemic preconditioning (IPC) is an effective procedure to protect against ischemia/reperfusion (I/R) injury. Hypoxia-inducible factor-1α (Hif-1α) is a key molecule in IPC, and roxadustat (RXD), a first-in-class prolyl hydroxylase domain-containing protein inhibitor, has been recently developed to treat anemia in patients with chronic kidney disease. Thus, we investigated whether RXD pretreatment protects against I/R injury. METHODS AND RESULTS RXD pretreatment markedly reduced the infarct size and suppressed plasma creatinine kinase activity in a murine I/R model. Analysis of oxygen metabolism showed that RXD could produce ischemic tolerance by shifting metabolism from aerobic to anaerobic respiration. CONCLUSIONS RXD pretreatment may be a novel strategy against I/R injury.
Collapse
Affiliation(s)
- Hiroko Deguchi
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| | - Tomomi Ide
- Department of Experimental and Clinical Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| | - Tomonori Tadokoro
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| | - Soichiro Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| | - Kosuke Okabe
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| | - Akihito Ishikita
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| | - Keita Saku
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| | | | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| |
Collapse
|
11
|
Tadokoro T, Ikeda M, Ide T, Deguchi H, Ikeda S, Okabe K, Ishikita A, Matsushima S, Koumura T, Yamada KI, Imai H, Tsutsui H. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight 2020; 5:132747. [PMID: 32376803 PMCID: PMC7253028 DOI: 10.1172/jci.insight.132747] [Citation(s) in RCA: 373] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
Doxorubicin (DOX), a chemotherapeutic agent, induces a cardiotoxicity referred to as doxorubicin-induced cardiomyopathy (DIC). This cardiotoxicity often limits chemotherapy for malignancies and is associated with poor prognosis. However, the molecular mechanism underlying this cardiotoxicity is yet to be fully elucidated. Here, we show that DOX downregulated glutathione peroxidase 4 (GPx4) and induced excessive lipid peroxidation through DOX-Fe2+ complex in mitochondria, leading to mitochondria-dependent ferroptosis; we also show that mitochondria-dependent ferroptosis is a major cause of DOX cardiotoxicity. In DIC mice, the left ventricular ejection fraction was significantly impaired, and fibrosis and TUNEL+ cells were induced at day 14. Additionally, GPx4, an endogenous regulator of ferroptosis, was downregulated, accompanied by the accumulation of lipid peroxides, especially in mitochondria. These cardiac impairments were ameliorated in GPx4 Tg mice and exacerbated in GPx4 heterodeletion mice. In cultured cardiomyocytes, GPx4 overexpression or iron chelation targeting Fe2+ in mitochondria prevented DOX-induced ferroptosis, demonstrating that DOX triggered ferroptosis in mitochondria. Furthermore, concomitant inhibition of ferroptosis and apoptosis with ferrostatin-1 and zVAD-FMK fully prevented DOX-induced cardiomyocyte death. Our findings suggest that mitochondria-dependent ferroptosis plays a key role in progression of DIC and that ferroptosis is the major form of regulated cell death in DOX cardiotoxicity.
Collapse
Affiliation(s)
| | | | - Tomomi Ide
- Department of Experimental and Clinical Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | - Shouji Matsushima
- Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Tomoko Koumura
- Department of Hygienic Chemistry and Medical Research Laboratories, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Ken-ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirotaka Imai
- Department of Hygienic Chemistry and Medical Research Laboratories, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | | |
Collapse
|
12
|
Ueda S, Shimasaki M, Ichiseki T, Hirata H, Kawahara N, Ueda Y. Mitochondrial Transcription Factor A added to Osteocytes in a Stressed Environment has a Cytoprotective Effect. Int J Med Sci 2020; 17:1293-1299. [PMID: 32547324 PMCID: PMC7294917 DOI: 10.7150/ijms.45335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/06/2020] [Indexed: 02/03/2023] Open
Abstract
The main precipitant of glucocorticoid-associated femoral head osteonecrosis is widely accepted to be an ischemic-hypoxic event, with oxidative stress also as an underlying factor. Mitochondrial DNA is more vulnerable to oxidative injury than the nucleus, and mitochondrial transcription factor A (TFAM), which plays roles in its function, preservation, and regulation is being increasingly investigated. In the present study we focused on the impact of TFAM on the relation between the oxidative injury induced by the addition of glucocorticoid to a hypoxic environment and osteocytic cell necrosis. Using cultured osteocytes MLO-Y4 in a 1% hypoxic environment (hypoxia) to which 1µM dexamethasone (Dex) was added (Dex(+)/hypoxia(+)), an immunocytochemical study was conducted using 8-hydroxy-2'-deoxyguanosine (8-OHdG), an index of oxidative stress, and hypoxia inducible factor-1α (HIF-1α), a marker of hypoxia. Next, after adding TFAM siRNA, TFAM knockdown, cultured for 24h, and mitochondrial membrane potential were measured, they were stained with ATP5A which labels adenosine triphosphate (ATP) production. Dex was added to MLO-Y4 to which TFAM had been added, and cultured for 24h in hypoxia. The ratio of dead cells to viable cells was determined and compared. Enhanced expression of 8-OHdG, HIF-1α was found in osteocytes following the addition of glucocorticoid in a hypoxic environment. With TFAM knockdown, as compared to normoxia, mitochondrial function significantly decreased. On the other hand, by adding TFAM, the incidence of osteocytic cell necrosis was significantly decreased as compared with Dex(+)/hypoxia(+). TFAM was confirmed to be important in mitochondrial function and preservation, inhibition of oxidative injury and maintenance of ATP production. Moreover, prevention of mitochondrial injury can best be achieved by decreasing the development of osteocytic cell necrosis.
Collapse
Affiliation(s)
- Shusuke Ueda
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Miyako Shimasaki
- Department of Pathology 2, Kanazawa Medical University, Daigaku 1-1, Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Toru Ichiseki
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Hiroaki Hirata
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Norio Kawahara
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Yoshimichi Ueda
- Department of Pathology 2, Kanazawa Medical University, Daigaku 1-1, Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan
| |
Collapse
|
13
|
Brand CS, Lighthouse JK, Trembley MA. Protective transcriptional mechanisms in cardiomyocytes and cardiac fibroblasts. J Mol Cell Cardiol 2019; 132:1-12. [PMID: 31042488 DOI: 10.1016/j.yjmcc.2019.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Heart failure is the leading cause of morbidity and mortality worldwide. Several lines of evidence suggest that physical activity and exercise can pre-condition the heart to improve the response to acute cardiac injury such as myocardial infarction or ischemia/reperfusion injury, preventing the progression to heart failure. It is becoming more apparent that cardioprotection is a concerted effort between multiple cell types and converging signaling pathways. However, the molecular mechanisms of cardioprotection are not completely understood. What is clear is that the mechanisms underlying this protection involve acute activation of transcriptional activators and their corresponding gene expression programs. Here, we review the known stress-dependent transcriptional programs that are activated in cardiomyocytes and cardiac fibroblasts to preserve function in the adult heart after injury. Focus is given to prominent transcriptional pathways such as mechanical stress or reactive oxygen species (ROS)-dependent activation of myocardin-related transcription factors (MRTFs) and transforming growth factor beta (TGFβ), and gene expression that positively regulates protective PI3K/Akt signaling. Together, these pathways modulate both beneficial and pathological responses to cardiac injury in a cell-specific manner.
Collapse
Affiliation(s)
- Cameron S Brand
- Department of Pharmacology, School of Medicine, University of California - San Diego, 9500 Gilman Drive, Biomedical Sciences Building, La Jolla, CA 92093, USA.
| | - Janet K Lighthouse
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY 14624, USA.
| | - Michael A Trembley
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Theilen NT, Jeremic N, Weber GJ, Tyagi SC. TFAM overexpression diminishes skeletal muscle atrophy after hindlimb suspension in mice. Arch Biochem Biophys 2018; 666:138-147. [PMID: 30553768 DOI: 10.1016/j.abb.2018.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/21/2018] [Accepted: 12/11/2018] [Indexed: 12/25/2022]
Abstract
The present study aims to investigate if overexpressing the mitochondrial transcription factor A (TFAM) gene in a transgenic mouse model diminishes soleus and gastrocnemius atrophy occurring during hindlimb suspension (HLS). Additionally, we aim to observe if combining exercise training in TFAM transgenic mice prior to HLS has a synergistic effect in preventing skeletal muscle atrophy. Male C57BL/6J-based transgenic mice (12-14 weeks old) overexpressing TFAM were assigned to a control (T-Control), 7-day HLS (T-HLS), and 2-week exercise training prior to 7-day HLS (T-Ex + HLS) groups. These groups were compared to male C57BL/6J wild-type (WT) mice (12-14 weeks old) assigned to Control, 7-day HLS (HLS), 2-week exercise training prior to 7-day HLS (Ex + HLS), and 2-week exercise training (Ex). Overexpressing TFAM results in a decrease of 8.3% in soleus and 2.6% in gastrocnemius muscle weight to bodyweight ratio after only HLS compared to wild-type mice incurring a loss of 27.1% in soleus and 21.5% in gastrocnemius muscle after HLS. Our data indicates TFAM may play a critical role in protecting skeletal muscle from disuse atrophy and is correlated with increased expression of antioxidants (SOD-2) and potential redox balance. TFAM may be an attractive molecule of interest for potential, future therapeutic development. NEW AND NOTEWORTHY: To the best of our knowledge, this is the first time a TFAM overexpression transgenic mouse model is being used in the analysis of disuse-induced skeletal muscle atrophy. Here we provide evidence of a potential role for TFAM in diminishing skeletal muscle atrophy.
Collapse
Affiliation(s)
| | - Nevena Jeremic
- Department of Physiology, University of Louisville, KY, USA
| | | | - Suresh C Tyagi
- Department of Physiology, University of Louisville, KY, USA
| |
Collapse
|
15
|
TFAM overexpression reduces pathological cardiac remodeling. Mol Cell Biochem 2018; 454:139-152. [PMID: 30353496 DOI: 10.1007/s11010-018-3459-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
Abstract
Heart failure (HF) is a functional lack of myocardial performance due to a loss of molecular control over increases in calcium and ROS, resulting in proteolytic degradative advances and cardiac remodeling. Mitochondria are the molecular powerhouse of cells, shifting the sphere of cardiomyocyte stability and performance. Functional mitochondria rely on the molecular abilities of safety factors such as TFAM to maintain physiological parameters. Mitochondrial transcription factor A (TFAM) creates a mitochondrial nucleoid structure around mtDNA, protecting it from mutation, inhibiting NFAT (ROS activator/hypertrophic stimulator), and transcriptionally activates Serca2a to decrease calcium mishandling. Calpain1 and MMP9 are proteolytic degratory factors that play a major role in cardiomyocyte decline in HF. Current literature depicts major decreases in TFAM as HF progresses. We aim to assess TFAM function against Calpain1 and MMP9 proteolytic activity and its role in cardiac remodeling. To this date, no publication has surfaced describing the effects of aortic banding (AB) as a surgical HF model in TFAM-TG mice. HF models were created via AB in TFAM transgenic (TFAM-TG) and C57BLJ-6 (WT) mice. Eight weeks post AB, functional analysis revealed a successful banding procedure, resulting in cardiac hypertrophy as observed via echocardiography. Pulse wave and color doppler show increased aortic flow rates as well as turbulent flow at the banding site. Preliminary results of cardiac tissue immuno-histochemistry of HF-control mice show decreased TFAM and compensatory increases in Serca2a fluorescent expression, along with increased Calpain1 and MMP9 expression. Protein, RNA, and IHC analysis will further assess TFAM-TG results post-banding. Echocardiography shows more cardiac stability and functionality in HF-induced TFAM-TG mice than the control counterpart. These findings complement our published in vitro results. Overall, this suggests that TFAM has molecular therapeutic potential to reduce protease expression.
Collapse
|
16
|
Popov DV, Lysenko EA, Bokov RO, Volodina MA, Kurochkina NS, Makhnovskii PA, Vyssokikh MY, Vinogradova OL. Effect of aerobic training on baseline expression of signaling and respiratory proteins in human skeletal muscle. Physiol Rep 2018; 6:e13868. [PMID: 30198217 PMCID: PMC6129775 DOI: 10.14814/phy2.13868] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022] Open
Abstract
Most studies examining the molecular mechanisms underlying adaptation of human skeletal muscles to aerobic exercise focused on the response to acute exercise. Here, we examined the effect of a 2-month aerobic training program on baseline parameters in human muscle. Ten untrained males performed a one-legged knee extension exercise for 1 h with the same relative intensity before and after a 2-month aerobic training program. Biopsy samples were taken from vastus lateralis muscle at rest before and after the 2 month training program (baseline samples). Additionally, biopsy samples were taken from the exercised leg 1 and 4 h after the one-legged continuous knee extension exercise. Aerobic training decreases baseline phosphorylation of FOXO1Ser256 , increases that of CaMKIIThr286 , CREB1Ser133 , increases baseline expression of mitochondrial proteins in respiratory complexes I-V, and some regulators of mitochondrial biogenesis (TFAM, NR4A3, and CRTC2). An increase in the baseline content of these proteins was not associated with a change in baseline expression of their genes. The increase in the baseline content of regulators of mitochondrial biogenesis (TFAM and NR4A3) was associated with a transient increase in transcription after acute exercise. Contrariwise, the increase in the baseline content of respiratory proteins does not seem to be regulated at the transcriptional level; rather, it is associated with other mechanisms. Adaptation of human skeletal muscle to regular aerobic exercise is associated not only with transient molecular responses to exercise, but also with changes in baseline phosphorylation and expression of regulatory proteins.
Collapse
Affiliation(s)
- Daniil V. Popov
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
- Faculty of Fundamental MedicineM.V. Lomonosov Moscow State UniversityMoscowRussia
| | - Evgeny A. Lysenko
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
- Faculty of Fundamental MedicineM.V. Lomonosov Moscow State UniversityMoscowRussia
| | - Roman O. Bokov
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
| | - Maria A. Volodina
- Laboratory of Mitochondrial MedicineResearch Center for ObstetricsGynecology and PerinatologyMinistry of Healthcare of the Russian FederationMoscowRussia
| | - Nadia S. Kurochkina
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
| | - Pavel A. Makhnovskii
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
| | - Mikhail Y. Vyssokikh
- Laboratory of Mitochondrial MedicineResearch Center for ObstetricsGynecology and PerinatologyMinistry of Healthcare of the Russian FederationMoscowRussia
| | - Olga L. Vinogradova
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
- Faculty of Fundamental MedicineM.V. Lomonosov Moscow State UniversityMoscowRussia
| |
Collapse
|
17
|
Abstract
Mitochondrial dysfunction underlines a multitude of pathologies; however, studies are scarce that rescue the mitochondria for cellular resuscitation. Exploration into the protective role of mitochondrial transcription factor A (TFAM) and its mitochondrial functions respective to cardiomyocyte death are in need of further investigation. TFAM is a gene regulator that acts to mitigate calcium mishandling and ROS production by wrapping around mitochondrial DNA (mtDNA) complexes. TFAM's regulatory functions over serca2a, NFAT, and Lon protease contribute to cardiomyocyte stability. Calcium- and ROS-dependent proteases, calpains, and matrix metalloproteinases (MMPs) are abundantly found upregulated in the failing heart. TFAM's regulatory role over ROS production and calcium mishandling leads to further investigation into the cardioprotective role of exogenous TFAM. In an effort to restabilize physiological and contractile activity of cardiomyocytes in HF models, we propose that TFAM-packed exosomes (TFAM-PE) will act therapeutically by mitigating mitochondrial dysfunction. Notably, this is the first mention of exosomal delivery of transcription factors in the literature. Here we elucidate the role of TFAM in mitochondrial rescue and focus on its therapeutic potential.
Collapse
Affiliation(s)
- George H Kunkel
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA
| | - Pankaj Chaturvedi
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA.
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA
| |
Collapse
|
18
|
Kunkel GH, Chaturvedi P, Thelian N, Nair R, Tyagi SC. Mechanisms of TFAM-mediated cardiomyocyte protection. Can J Physiol Pharmacol 2017; 96:173-181. [PMID: 28800400 DOI: 10.1139/cjpp-2016-0718] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although mitochondrial transcription factor A (TFAM) is a protective component of mitochondrial DNA and a regulator of calcium and reactive oxygen species (ROS) production, the mechanism remains unclear. In heart failure, TFAM is significantly decreased and cardiomyocyte instability ensues. TFAM inhibits nuclear factor of activated T cells (NFAT), which reduces ROS production; additionally, TFAM transcriptionally activates SERCA2a to decrease free calcium. Therefore, decreasing TFAM vastly increases protease expression and hypertrophic factors, leading to cardiomyocyte functional decline. To examine this hypothesis, treatments of 1.0 μg of a TFAM vector and 1.0 μg of a CRISPR-Cas9 TFAM plasmid were administered to HL-1 cardiomyocytes via lipofectamine transfection. Western blotting and confocal microscopy analysis show that CRISPR-Cas9 knockdown of TFAM significantly increased proteases Calpain1, MMP9, and regulators Serca2a, and NFAT4 protein expression. CRISPR knockdown of TFAM in HL-1 cardiomyocytes upregulates degradation factors, leading to cardiomyocyte instability. Hydrogen peroxide oxidative stress decreased TFAM expression and increased Calpain1, MMP9, and NFAT4 protein expression. TFAM overexpression normalizes pathological hypertrophic factor NFAT4 in the presence of oxidative stress.
Collapse
Affiliation(s)
- George H Kunkel
- Department of Physiology and Biophysics, University of Louisville, KY, USA.,Department of Physiology and Biophysics, University of Louisville, KY, USA
| | - Pankaj Chaturvedi
- Department of Physiology and Biophysics, University of Louisville, KY, USA.,Department of Physiology and Biophysics, University of Louisville, KY, USA
| | - Nicholas Thelian
- Department of Physiology and Biophysics, University of Louisville, KY, USA.,Department of Physiology and Biophysics, University of Louisville, KY, USA
| | - Rohit Nair
- Department of Physiology and Biophysics, University of Louisville, KY, USA.,Department of Physiology and Biophysics, University of Louisville, KY, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville, KY, USA.,Department of Physiology and Biophysics, University of Louisville, KY, USA
| |
Collapse
|
19
|
Theilen NT, Kunkel GH, Tyagi SC. The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy. J Cell Physiol 2017; 232:2348-2358. [PMID: 27966783 DOI: 10.1002/jcp.25737] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/31/2022]
Abstract
Skeletal muscle atrophy is the consequence of protein degradation exceeding protein synthesis. This arises for a multitude of reasons including the unloading of muscle during microgravity, post-surgery bedrest, immobilization of a limb after injury, and overall disuse of the musculature. The development of therapies prior to skeletal muscle atrophy settings to diminish protein degradation is scarce. Mitochondrial dysfunction is associated with skeletal muscle atrophy and contributes to the induction of protein degradation and cell apoptosis through increased levels of ROS observed with the loss of organelle function. ROS binds mtDNA, leading to its degradation and decreasing functionality. Mitochondrial transcription factor A (TFAM) will bind and coat mtDNA, protecting it from ROS and degradation while increasing mitochondrial function. Exercise stimulates cell signaling pathways that converge on and increase PGC-1α, a well-known activator of the transcription of TFAM and mitochondrial biogenesis. Therefore, in the present review we are proposing, separately, exercise and TFAM treatments prior to atrophic settings (muscle unloading or disuse) alleviate skeletal muscle atrophy through enhanced mitochondrial adaptations and function. Additionally, we hypothesize the combination of exercise and TFAM leads to a synergistic effect in targeting mitochondrial function to prevent skeletal muscle atrophy. J. Cell. Physiol. 232: 2348-2358, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas T Theilen
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - George H Kunkel
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
20
|
Oka S, Leon J, Sakumi K, Ide T, Kang D, LaFerla FM, Nakabeppu Y. Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer's disease. Sci Rep 2016; 6:37889. [PMID: 27897204 PMCID: PMC5126576 DOI: 10.1038/srep37889] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022] Open
Abstract
In the mitochondria-mediated vicious cycle of Alzheimer’s disease (AD), intracellular amyloid β (Aβ) induces mitochondrial dysfunction and reactive oxygen species, which further accelerate Aβ accumulation. This vicious cycle is thought to play a pivotal role in the development of AD, although the molecular mechanism remains unclear. Here, we examined the effects of human mitochondrial transcriptional factor A (hTFAM) on the pathology of a mouse model of AD (3xTg-AD), because TFAM is known to protect mitochondria from oxidative stress through maintenance of mitochondrial DNA (mtDNA). Expression of hTFAM significantly improved cognitive function, reducing accumulation of both 8-oxoguanine, an oxidized form of guanine, in mtDNA and intracellular Aβ in 3xTg-AD mice and increasing expression of transthyretin, known to inhibit Aβ aggregation. Next, we found that AD model neurons derived from human induced pluripotent stem cells carrying a mutant PSEN1(P117L) gene, exhibited mitochondrial dysfunction, accumulation of 8-oxoguanine and single-strand breaks in mtDNA, and impaired neuritogenesis with a decreased expression of transthyretin, which is known to be downregulated by oxidative stress. Extracellular treatment with recombinant hTFAM effectively suppressed these deleterious outcomes. Moreover, the treatment increased expression of transthyretin, accompanied by reduction of intracellular Aβ. These results provide new insights into potential novel therapeutic targets.
Collapse
Affiliation(s)
- Sugako Oka
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Julio Leon
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Frank M LaFerla
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| |
Collapse
|
21
|
Ichimura K, Matoba T, Nakano K, Tokutome M, Honda K, Koga JI, Egashira K. A Translational Study of a New Therapeutic Approach for Acute Myocardial Infarction: Nanoparticle-Mediated Delivery of Pitavastatin into Reperfused Myocardium Reduces Ischemia-Reperfusion Injury in a Preclinical Porcine Model. PLoS One 2016; 11:e0162425. [PMID: 27603665 PMCID: PMC5014419 DOI: 10.1371/journal.pone.0162425] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/19/2016] [Indexed: 01/14/2023] Open
Abstract
Background There is an unmet need to develop an innovative cardioprotective modality for acute myocardial infarction, for which interventional reperfusion therapy is hampered by ischemia-reperfusion (IR) injury. We recently reported that bioabsorbable poly(lactic acid/glycolic acid) (PLGA) nanoparticle-mediated treatment with pitavastatin (pitavastatin-NP) exerts a cardioprotective effect in a rat IR injury model by activating the PI3K-Akt pathway and inhibiting inflammation. To obtain preclinical proof-of-concept evidence, in this study, we examined the effect of pitavastatin-NP on myocardial IR injury in conscious and anesthetized pig models. Methods and Results Eighty-four Bama mini-pigs were surgically implanted with a pneumatic cuff occluder at the left circumflex coronary artery (LCx) and telemetry transmitters to continuously monitor electrocardiogram as well as to monitor arterial blood pressure and heart rate. The LCx was occluded for 60 minutes, followed by 24 hours of reperfusion under conscious conditions. Intravenous administration of pitavastatin-NP containing ≥ 8 mg/body of pitavastatin 5 minutes before reperfusion significantly reduced infarct size; by contrast, pitavastatin alone (8 mg/body) showed no therapeutic effects. Pitavastatin-NP produced anti-apoptotic effects on cultured cardiomyocytes in vitro. Cardiac magnetic resonance imaging performed 4 weeks after IR injury revealed that pitavastatin-NP reduced the extent of left ventricle remodeling. Importantly, pitavastatin-NP exerted no significant effects on blood pressure, heart rate, or serum biochemistry. Exploratory examinations in anesthetized pigs showed pharmacokinetic analysis and the effects of pitavastatin-NP on no-reflow phenomenon. Conclusions NP-mediated delivery of pitavastatin to IR-injured myocardium exerts cardioprotective effects on IR injury without apparent adverse side effects in a preclinical conscious pig model. Thus, pitavastatin-NP represents a novel therapeutic modality for IR injury in acute myocardial infarction.
Collapse
Affiliation(s)
- Kenzo Ichimura
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kaku Nakano
- Department of Cardiovascular Research, Development, and Translational Medicine, Center for Cardiovascular Disruptive Innovation, Kyushu University, Fukuoka, Japan
| | - Masaki Tokutome
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Katsuya Honda
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Jun-ichiro Koga
- Department of Cardiovascular Research, Development, and Translational Medicine, Center for Cardiovascular Disruptive Innovation, Kyushu University, Fukuoka, Japan
| | - Kensuke Egashira
- Department of Cardiovascular Research, Development, and Translational Medicine, Center for Cardiovascular Disruptive Innovation, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
22
|
Inoue T, Ikeda M, Ide T, Fujino T, Matsuo Y, Arai S, Saku K, Sunagawa K. Twinkle overexpression prevents cardiac rupture after myocardial infarction by alleviating impaired mitochondrial biogenesis. Am J Physiol Heart Circ Physiol 2016; 311:H509-19. [PMID: 27342873 DOI: 10.1152/ajpheart.00044.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/21/2016] [Indexed: 11/22/2022]
Abstract
Cardiac rupture is a fatal complication after myocardial infarction (MI). However, the detailed mechanism underlying cardiac rupture after MI remains to be fully elucidated. In this study, we investigated the role of mitochondrial DNA (mtDNA) and mitochondria in the pathophysiology of cardiac rupture by analyzing Twinkle helicase overexpression mice (TW mice). Twinkle overexpression increased mtDNA copy number approximately twofold and ameliorated ischemic cardiomyopathy at day 28 after MI. Notably, Twinkle overexpression markedly prevented cardiac rupture and improved post-MI survival, accompanied by the suppression of MMP-2 and MMP-9 in the MI border area at day 5 after MI when cardiac rupture frequently occurs. Additionally, these cardioprotective effects of Twinkle overexpression were abolished in transgenic mice overexpressing mutant Twinkle with an in-frame duplication of amino acids 353-365, which resulted in no increases in mtDNA copy number. Furthermore, although apoptosis and oxidative stress were induced and mitochondria were damaged in the border area, these injuries were improved in TW mice. Further analysis revealed that mitochondrial biogenesis, including mtDNA copy number, transcription, and translation, was severely impaired in the border area at day 5 In contrast, Twinkle overexpression maintained mtDNA copy number and restored the impaired transcription and translation of mtDNA in the border area. These results demonstrated that Twinkle overexpression alleviated impaired mitochondrial biogenesis in the border area through maintained mtDNA copy number and thereby prevented cardiac rupture accompanied by the reduction of apoptosis and oxidative stress, and suppression of MMP activity.
Collapse
Affiliation(s)
- Takahiro Inoue
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Takeo Fujino
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Yuka Matsuo
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Shinobu Arai
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Keita Saku
- Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Kenji Sunagawa
- Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Darbandi S, Darbandi M, Khorshid HRK, Sadeghi MR, Al-Hasani S, Agarwal A, Shirazi A, Heidari M, Akhondi MM. Experimental strategies towards increasing intracellular mitochondrial activity in oocytes: A systematic review. Mitochondrion 2016; 30:8-17. [PMID: 27234976 DOI: 10.1016/j.mito.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/04/2016] [Accepted: 05/20/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE The mitochondrial complement is critical in sustaining the earliest stages of life. To improve the Assisted Reproductive Technology (ART), current methods of interest were evaluated for increasing the activity and copy number of mitochondria in the oocyte cell. METHODS This covered the researches from 1966 to September 2015. RESULTS The results provided ten methods that can be studied individually or simultaneously. CONCLUSION Though the use of these techniques generated great concern about heteroplasmy observation in humans, it seems that with study on these suggested methods there is real hope for effective treatments of old oocyte or oocytes containing mitochondrial problems in the near future.
Collapse
Affiliation(s)
- Sara Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahsa Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | | | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Safaa Al-Hasani
- Reproductive Medicine Unit, University of Schleswig-Holstein, Luebeck, Germany.
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahnaz Heidari
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran. M.@avicenna.ar.ir
| | - Mohammad Mehdi Akhondi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
24
|
A Dual-Ligand Liposomal System Composed of a Cell-Penetrating Peptide and a Mitochondrial RNA Aptamer Synergistically Facilitates Cellular Uptake and Mitochondrial Targeting. J Pharm Sci 2016; 105:1705-1713. [PMID: 27056631 DOI: 10.1016/j.xphs.2016.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/08/2016] [Accepted: 03/01/2016] [Indexed: 01/22/2023]
Abstract
It has been reported that the use of mitochondrial RNA aptamers including RNase P (RP) results in the selective mitochondrial delivery of endogenous and exogenous RNAs. The issue of whether these aptamers would be useful ligands for the mitochondrial targeting of a nanoparticle has not been demonstrated to date because nanocarriers modified with these RNA aptamers are insufficiently internalized by cells. We report here on the development of a dual-ligand liposomal system composed of octaarginine (R8), a device that enhances cellular uptake, and an RP aptamer for mitochondrial targeting to permit a nanocarrier to be efficiently delivered to mitochondria. Surprisingly, the cellular uptake of the R8-modified nanocarrier was facilitated by modification with an RP aptamer. The optimal composition of a nanocarrier needed for efficient cellular uptake and mitochondrial targeting was determined. In a confocal laser scanning microscopy analysis, the dual-ligand-modified nanocarrier was found to result in effective mitochondrial targeting through an ATP-dependent pathway and was much more effective than a single-ligand R8-modified nanocarrier. This is the first report of the regulation of intracellular trafficking by a mitochondrial RNA aptamer-modified nanocarrier system.
Collapse
|
25
|
Nanoparticle-Mediated Targeting of Cyclosporine A Enhances Cardioprotection Against Ischemia-Reperfusion Injury Through Inhibition of Mitochondrial Permeability Transition Pore Opening. Sci Rep 2016; 6:20467. [PMID: 26861678 PMCID: PMC4748220 DOI: 10.1038/srep20467] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/05/2016] [Indexed: 12/16/2022] Open
Abstract
Myocardial ischemia-reperfusion (IR) injury limits the therapeutic effects of early reperfusion therapy for acute myocardial infarction (MI), in which mitochondrial permeability transition pore (mPTP) opening plays a critical role. Our aim was to determine whether poly-lactic/glycolic acid (PLGA) nanoparticle-mediated mitochondrial targeting of a molecule that inhibits mPTP opening, cyclosporine A (CsA), enhances CsA-induced cardioprotection. In an in vivo murine IR model, intravenously injected PLGA nanoparticles were located at the IR myocardium mitochondria. Treatment with nanoparticles incorporated with CsA (CsA-NP) at the onset of reperfusion enhanced cardioprotection against IR injury by CsA alone (as indicated by the reduced MI size at a lower CsA concentration) through the inhibition of mPTP opening. Left ventricular remodeling was ameliorated 28 days after IR, but the treatment did not affect inflammatory monocyte recruitment to the IR heart. In cultured rat cardiomyocytes in vitro, mitochondrial PLGA nanoparticle-targeting was observed after the addition of hydrogen peroxide, which represents oxidative stress during IR, and was prevented by CsA. CsA-NP can be developed as an effective mPTP opening inhibitor and may protect organs from IR injury.
Collapse
|
26
|
Wang J, Lin F, Guo LL, Xiong XJ, Fan X. Cardiovascular Disease, Mitochondria, and Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:143145. [PMID: 26074984 PMCID: PMC4449907 DOI: 10.1155/2015/143145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/06/2014] [Accepted: 09/14/2014] [Indexed: 01/24/2023]
Abstract
Recent studies demonstrated that mitochondria play an important role in the cardiovascular system and mutations of mitochondrial DNA affect coronary artery disease, resulting in hypertension, atherosclerosis, and cardiomyopathy. Traditional Chinese medicine (TCM) has been used for thousands of years to treat cardiovascular disease, but it is not yet clear how TCM affects mitochondrial function. By reviewing the interactions between the cardiovascular system, mitochondrial DNA, and TCM, we show that cardiovascular disease is negatively affected by mutations in mitochondrial DNA and that TCM can be used to treat cardiovascular disease by regulating the structure and function of mitochondria via increases in mitochondrial electron transport and oxidative phosphorylation, modulation of mitochondrial-mediated apoptosis, and decreases in mitochondrial ROS. However further research is still required to identify the mechanism by which TCM affects CVD and modifies mitochondrial DNA.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Clinical Medical College, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Fei Lin
- Clinical Medical College, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Li-li Guo
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xing-jiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xun Fan
- Clinical Medical College, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
27
|
Ikeda M, Ide T, Fujino T, Arai S, Saku K, Kakino T, Tyynismaa H, Yamasaki T, Yamada KI, Kang D, Suomalainen A, Sunagawa K. Overexpression of TFAM or twinkle increases mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress. PLoS One 2015; 10:e0119687. [PMID: 25822152 PMCID: PMC4379048 DOI: 10.1371/journal.pone.0119687] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/15/2015] [Indexed: 12/01/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) copy number decreases in animal and human heart failure (HF), yet its role in cardiomyocytes remains to be elucidated. Thus, we investigated the cardioprotective function of increased mtDNA copy number resulting from the overexpression of human transcription factor A of mitochondria (TFAM) or Twinkle helicase in volume overload (VO)-induced HF. Methods and Results Two strains of transgenic (TG) mice, one overexpressing TFAM and the other overexpressing Twinkle helicase, exhibit an approximately 2-fold equivalent increase in mtDNA copy number in heart. These TG mice display similar attenuations in eccentric hypertrophy and improved cardiac function compared to wild-type (WT) mice without any deterioration of mitochondrial enzymatic activities in response to VO, which was accompanied by a reduction in matrix-metalloproteinase (MMP) activity and reactive oxygen species after 8 weeks of VO. Moreover, acute VO-induced MMP-2 and MMP-9 upregulation was also suppressed at 24 h in both TG mice. In isolated rat cardiomyocytes, mitochondrial reactive oxygen species (mitoROS) upregulated MMP-2 and MMP-9 expression, and human TFAM (hTFAM) overexpression suppressed mitoROS and their upregulation. Additionally, mitoROS were equally suppressed in H9c2 rat cardiomyoblasts that overexpress hTFAM or rat Twinkle, both of which exhibit increased mtDNA copy number. Furthermore, mitoROS and mitochondrial protein oxidation from both TG mice were suppressed compared to WT mice. Conclusions The overexpression of TFAM or Twinkle results in increased mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress. Our findings suggest that increasing mtDNA copy number could be a useful therapeutic strategy to target mitoROS in HF.
Collapse
Affiliation(s)
- Masataka Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Takeo Fujino
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinobu Arai
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keita Saku
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takamori Kakino
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland
| | - Toshihide Yamasaki
- Department of Biofunctional Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken-ichi Yamada
- Department of Biofunctional Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Anu Suomalainen
- Research Programs Unit, Molecular Neurology, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland
| | - Kenji Sunagawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
28
|
The overexpression of Twinkle helicase ameliorates the progression of cardiac fibrosis and heart failure in pressure overload model in mice. PLoS One 2013; 8:e67642. [PMID: 23840758 PMCID: PMC3695923 DOI: 10.1371/journal.pone.0067642] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/20/2013] [Indexed: 11/25/2022] Open
Abstract
Myocardial mitochondrial DNA (mtDNA) copy number decreases in heart failure. In post-myocardial infarction mice, increasing mtDNA copy number by overexpressing mitochondrial transcription factor attenuates mtDNA deficiency and ameliorates pathological remodeling thereby markedly improving survival. However, the functional significance of increased mtDNA copy number in hypertensive heart disease remains unknown. We addressed this question using transgenic mice that overexpress Twinkle helicase (Twinkle; Tg), the mtDNA helicase, and examined whether Twinkle overexpression protects the heart from left ventricular (LV) remodeling and failure after pressure overload created by transverse aortic constriction (TAC). Twinkle overexpression increased mtDNA copy number by 2.2±0.1-fold. Heart weight, LV diastolic volume and wall thickness were comparable between Tg and wild type littermates (WT) at 28 days after TAC operation. LV end-diastolic pressure increased in WT after TAC (8.6±2.8 mmHg), and this increase was attenuated in Tg (4.6±2.6 mmHg). Impaired LV fractional shortening after TAC operation was also suppressed in Tg, as measured by echocardiography (WT: 16.2±7.2% vs Tg: 20.7±6.2%). These LV functional improvements were accompanied by a decrease in interstitial fibrosis (WT: 10.6±1.1% vs Tg: 3.0±0.6%). In in vitro studies, overexpressing Twinkle using an adenovirus vector in cultured cardiac fibroblasts significantly suppressed mRNA of collagen 1a, collagen 3a and connective tissue growth factor, and angiotensin II-induced transforming growth factor β1 expression. The findings suggest that Twinkle overexpression prevents LV function deterioration. In conclusion, Twinkle overexpression increases mtDNA copy number and ameliorates the progression of LV fibrosis and heart failure in a mouse pressure overload model. Increasing mtDNA copy number by Twinkle overexpression could be a novel therapeutic strategy for hypertensive heart disease.
Collapse
|