1
|
Ashraf M, Mao Q, Hong J, Shi L, Ran X, Liaquat F, Uzair M, Liang W, Fernie AR, Shi J. HSP70-16 and VDAC3 jointly inhibit seed germination under cold stress in Arabidopsis. PLANT, CELL & ENVIRONMENT 2021; 44:3616-3627. [PMID: 34173257 DOI: 10.1111/pce.14138] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/09/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Abscisic acid (ABA) transport plays a crucial role in seed germination under unfavourable conditions such as cold stress. Both heat shock protein 70 (HSP70) and voltage-dependent anion channel (VDAC) protein are involved in cold stress responses in Arabidopsis. However, their roles in seed germination with regard to ABA signaling remain unknown. Here we demonstrated that Arabidopsis HSP70-16 and VDAC3 jointly suppress seed germination under cold stress conditions. At 4°C, both HSP70-16 and VDAC3 facilitated the efflux of ABA from the endosperm to the embryo and thus inhibited seed germination. HSP70-16 interacted with VDAC3 on the plasma membrane and in the nucleus, and the interplay between HSP70-16 and VDAC3 activated the opening of the VDAC3 ion channel. Our work established a novel function of HSP70-16 in seed germination under cold stress and a possible association of VDAC3 activity with ABA transportation from endosperm to embryo under cold stress conditions. This study reveals that HSP70-16 interacts with VDAC3 and facilitates the opening of the VDAC3 ion channel, which influences ABA efflux from endosperm to embryo, thus negatively regulates seed germination under cold stress.
Collapse
Affiliation(s)
- Muhammad Ashraf
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qionglei Mao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Hong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoruo Ran
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fiza Liaquat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Uzair
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Benz R. Historical Perspective of Pore-Forming Activity Studies of Voltage-Dependent Anion Channel (Eukaryotic or Mitochondrial Porin) Since Its Discovery in the 70th of the Last Century. Front Physiol 2021; 12:734226. [PMID: 35547863 PMCID: PMC9083909 DOI: 10.3389/fphys.2021.734226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/24/2021] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic porin, also known as Voltage-Dependent Anion Channel (VDAC), is the most frequent protein in the outer membrane of mitochondria that are responsible for cellular respiration. Mitochondria are most likely descendants of strictly aerobic Gram-negative bacteria from the α-proteobacterial lineage. In accordance with the presumed ancestor, mitochondria are surrounded by two membranes. The mitochondrial outer membrane contains besides the eukaryotic porins responsible for its major permeability properties a variety of other not fully identified channels. It encloses also the TOM apparatus together with the sorting mechanism SAM, responsible for the uptake and assembly of many mitochondrial proteins that are encoded in the nucleus and synthesized in the cytoplasm at free ribosomes. The recognition and the study of electrophysiological properties of eukaryotic porin or VDAC started in the late seventies of the last century by a study of Schein et al., who reconstituted the pore from crude extracts of Paramecium mitochondria into planar lipid bilayer membranes. Whereas the literature about structure and function of eukaryotic porins was comparatively rare during the first 10years after the first study, the number of publications started to explode with the first sequencing of human Porin 31HL and the recognition of the important function of eukaryotic porins in mitochondrial metabolism. Many genomes contain more than one gene coding for homologs of eukaryotic porins. More than 100 sequences of eukaryotic porins are known to date. Although the sequence identity between them is relatively low, the polypeptide length and in particular, the electrophysiological characteristics are highly preserved. This means that all eukaryotic porins studied to date are anion selective in the open state. They are voltage-dependent and switch into cation-selective substates at voltages in the physiological relevant range. A major breakthrough was also the elucidation of the 3D structure of the eukaryotic pore, which is formed by 19 β-strands similar to those of bacterial porin channels. The function of the presumed gate an α-helical stretch of 20 amino acids allowed further studies with respect to voltage dependence and function, but its exact role in channel gating is still not fully understood.
Collapse
Affiliation(s)
- Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
3
|
Hoogerheide DP, Rostovtseva TK, Bezrukov SM. Exploring lipid-dependent conformations of membrane-bound α-synuclein with the VDAC nanopore. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183643. [PMID: 33971161 PMCID: PMC8255272 DOI: 10.1016/j.bbamem.2021.183643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Regulation of VDAC by α-synuclein (αSyn) is a rich and instructive example of protein-protein interactions catalyzed by a lipid membrane surface. αSyn, a peripheral membrane protein involved in Parkinson's disease pathology, is known to bind to membranes in a transient manner. αSyn's negatively charged C-terminal domain is then available to be electromechanically trapped by the VDAC β-barrel, a process that is observed in vitro as the reversible reduction of ion flow through a single voltage-biased VDAC nanopore. Binding of αSyn to the lipid bilayer is a prerequisite of the channel-protein interaction; surprisingly, however, we find that the strength of αSyn binding to the membrane does not correlate in any simple way with its efficiency of blocking VDAC, suggesting that the lipid-dependent conformations of the membrane-bound αSyn control the interaction. Quantitative models of the free energy landscape governing the capture and release processes allow us to discriminate between several αSyn (sub-) conformations on the membrane surface. These results, combined with known structural features of αSyn on anionic lipid membranes, point to a model in which the lipid composition determines the fraction of αSyn molecules for which the charged C terminal domain is constrained to be close, but not tightly bound, to the membrane surface and thus readily captured by the VDAC nanopore. We speculate that changes in the mitochondrial membrane lipid composition may be key regulators of the αSyn-VDAC interaction and consequently of VDAC-facilitated transport of ions and metabolites in and out of mitochondria and, i.e. mitochondrial metabolism.
Collapse
Affiliation(s)
- David P Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Molecular mechanism of thiamine pyrophosphate import into mitochondria: a molecular simulation study. J Comput Aided Mol Des 2021; 35:987-1007. [PMID: 34406552 DOI: 10.1007/s10822-021-00414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The import of thiamine pyrophosphate (TPP) through both mitochondrial membranes was studied using a total of 3-µs molecular dynamics simulations. Regarding the translocation through the mitochondrial outer membrane, our simulations support the conjecture that TPP uses the voltage-dependent anion channel, the major pore of this membrane, for its passage to the intermembrane space, as its transport presents significant analogies with that used by other metabolites previously studied, in particular with ATP. As far as passing through the mitochondrial inner membrane is concerned, our simulations show that the specific carrier of TPP has a single binding site that becomes accessible, through an alternating access mechanism. The preference of this transporter for TPP can be rationalized mainly by three residues located in the binding site that differ from those identified in the ATP/ADP carrier, the most studied member of the mitochondrial carrier family. The simulated transport mechanism of TPP highlights the essential role, at the energetic level, of the contributions coming from the formation and breakage of two networks of salt bridges, one on the side of the matrix and the other on the side of the intermembrane space, as well as the interactions, mainly of an ionic nature, formed by TPP upon its binding. The energy contribution provided by the cytosolic network establishes a lower barrier than that of the matrix network, which can be explained by the lower interaction energy of TPP on the matrix side or possibly a uniport activity.
Collapse
|
5
|
Saidani H, Léonetti M, Kmita H, Homblé F. The Open State Selectivity of the Bean Seed VDAC Depends on Stigmasterol and Ion Concentration. Int J Mol Sci 2021; 22:ijms22063034. [PMID: 33809742 PMCID: PMC8002290 DOI: 10.3390/ijms22063034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
The voltage-dependent anion channel (VDAC) is the major pathway for metabolites and ions transport through the mitochondrial outer membrane. It can regulate the flow of solutes by switching to a low conductance state correlated with a selectivity reversal, or by a selectivity inversion of its open state. The later one was observed in non-plant VDACs and is poorly characterized. We aim at investigating the selectivity inversion of the open state using plant VDAC purified from Phaseolus coccineus (PcVDAC) to evaluate its physiological role. Our main findings are: (1) The VDAC selectivity inversion of the open state occurs in PcVDAC, (2) Ion concentration and stigmasterol affect the occurrence of the open state selectivity inversion and stigmasterol appears to interact directly with PcVDAC. Interestingly, electrophysiological data concerning the selectivity inversion of the PcVDAC open state suggests that the phenomenon probably does not have a significant physiological effect in vivo.
Collapse
Affiliation(s)
- Hayet Saidani
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Bruxelles, Belgium;
- Laboratory of Functional Neurophysiology and Pathology, Research Unit, UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, 1068 Tunis, Tunisia
| | - Marc Léonetti
- Université de. Grenoble Alpes, CNRS, LRP, 38000 Grenoble, France;
| | - Hanna Kmita
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Fabrice Homblé
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Bruxelles, Belgium;
- Correspondence: ; Tel.: +32-2-650-5383
| |
Collapse
|
6
|
Rosencrans WM, Aguilella VM, Rostovtseva TK, Bezrukov SM. α-Synuclein emerges as a potent regulator of VDAC-facilitated calcium transport. Cell Calcium 2021; 95:102355. [PMID: 33578201 DOI: 10.1016/j.ceca.2021.102355] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Voltage-dependent anion channel (VDAC) is the most ubiquitous channel at the mitochondrial outer membrane, and is believed to be the pathway for calcium entering or leaving the mitochondria. Therefore, understanding the molecular mechanisms of how VDAC regulates calcium influx and efflux from the mitochondria is of particular interest for mitochondrial physiology. When the Parkinson's disease (PD) related neuronal protein, alpha-synuclein (αSyn), is added to the reconstituted VDAC, it reversibly and partially blocks VDAC conductance by its acidic C-terminal tail. Using single-molecule VDAC electrophysiology of reconstituted VDAC we now demonstrate that, at CaCl2 concentrations below 150 mM, αSyn reverses the channel's selectivity from anionic to cationic. Importantly, we find that the decrease in channel conductance upon its blockage by αSyn is hugely overcompensated by a favorable change in the electrostatic environment for calcium, making the blocked state orders-of-magnitude more selective for calcium and thus increasing its net flux. -Our findings with higher calcium concentrations also demonstrate that the phenomenon of "charge inversion" is taking place at the level of a single polypeptide chain. Measurements of ion selectivity of three VDAC isoforms in CaCl2 gradient show that VDAC3 exhibits the highest calcium permeability among them, followed by VDAC2 and VDAC1, thus pointing to isoform-dependent physiological function. Mutation of the E73 residue - VDAC1 purported calcium binding site - shows that there is no measurable effect of the mutation in either open or αSyn-blocked VDAC1 states. Our results confirm VDACs involvement in calcium signaling and reveal a new regulatory role of αSyn, with clear implications for both normal calcium signaling and PD-associated mitochondrial dysfunction.
Collapse
Affiliation(s)
- William M Rosencrans
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vicente M Aguilella
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, Av. Vicent Sos Baynat s/n 12071, Castellón, Spain
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
7
|
Rostovtseva TK, Queralt-Martín M, Rosencrans WM, Bezrukov SM. Targeting the Multiple Physiologic Roles of VDAC With Steroids and Hydrophobic Drugs. Front Physiol 2020; 11:446. [PMID: 32457654 PMCID: PMC7221028 DOI: 10.3389/fphys.2020.00446] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
There is accumulating evidence that endogenous steroids and non-polar drugs are involved in the regulation of mitochondrial physiology. Many of these hydrophobic compounds interact with the Voltage Dependent Anion Channel (VDAC). This major metabolite channel in the mitochondrial outer membrane (MOM) regulates the exchange of ions and water-soluble metabolites, such as ATP and ADP, across the MOM, thus governing mitochondrial respiration. Proteomics and biochemical approaches together with molecular dynamics simulations have identified an impressively large number of non-polar compounds, including endogenous, able to bind to VDAC. These findings have sparked speculation that both natural steroids and synthetic hydrophobic drugs regulate mitochondrial physiology by directly affecting VDAC ion channel properties and modulating its metabolite permeability. Here we evaluate recent studies investigating the effect of identified VDAC-binding natural steroids and non-polar drugs on VDAC channel functioning. We argue that while many compounds are found to bind to the VDAC protein, they do not necessarily affect its channel functions in vitro. However, they may modify other aspects of VDAC physiology such as interaction with its cytosolic partner proteins or complex formation with other mitochondrial membrane proteins, thus altering mitochondrial function.
Collapse
Affiliation(s)
- Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - María Queralt-Martín
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - William M Rosencrans
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Magrì A, Karachitos A, Di Rosa MC, Reina S, Conti Nibali S, Messina A, Kmita H, De Pinto V. Recombinant yeast VDAC2: a comparison of electrophysiological features with the native form. FEBS Open Bio 2019; 9:1184-1193. [PMID: 31206247 PMCID: PMC6609568 DOI: 10.1002/2211-5463.12574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022] Open
Abstract
Voltage‐dependent anion channel isoform 2 of the yeast Saccharomyces cerevisiae (yVDAC2) was believed for many years to be devoid of channel activity. Recently, we isolated yVDAC2 and showed that it exhibits channel‐forming activity in the planar lipid bilayer system when in its so‐called native form. Here, we describe an alternative strategy for yVDAC2 isolation, through heterologous expression in bacteria and refolding in vitro. Recombinant yVDAC2, like its native form, is able to form voltage‐dependent channels. However, some differences between native and recombinant yVDAC2 emerged in terms of voltage dependence and ion selectivity, suggesting that, in this specific case, the recombinant protein might be depleted of post‐translational modification(s) that occur in eukaryotic cells.
Collapse
Affiliation(s)
- Andrea Magrì
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy.,Department of Biological, Geological and Environmental Sciences, Section of Molecular Biology, University of Catania, Italy
| | - Andonis Karachitos
- Department of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Maria Carmela Di Rosa
- Department of Biological, Geological and Environmental Sciences, Section of Molecular Biology, University of Catania, Italy
| | - Simona Reina
- Department of Biological, Geological and Environmental Sciences, Section of Molecular Biology, University of Catania, Italy
| | - Stefano Conti Nibali
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, Section of Molecular Biology, University of Catania, Italy.,National Institute for Biomembranes and Biosystems, Section of Catania, Italy
| | - Hanna Kmita
- Department of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy.,National Institute for Biomembranes and Biosystems, Section of Catania, Italy
| |
Collapse
|
9
|
Van Liefferinge F, Krammer EM, Sengupta D, Prévost M. Lipid composition and salt concentration as regulatory factors of the anion selectivity of VDAC studied by coarse-grained molecular dynamics simulations. Chem Phys Lipids 2018; 220:66-76. [PMID: 30448398 DOI: 10.1016/j.chemphyslip.2018.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022]
Abstract
The voltage-dependent anion channel (VDAC) is a mitochondrial outer membrane protein whose fundamental function is to facilitate and regulate the flow of metabolites between the cytosol and the mitochondrial intermembrane space. Using coarse-grained molecular dynamics simulations, we investigated the dependence of VDAC selectivity towards small inorganic anions on two factors: the ionic strength and the lipid composition. In agreement with experimental data we found that VDAC becomes less anion selective with increasing salt concentration due to the screening of a few basic residues that point into the pore lumen. The molecular dynamics simulations provide insight into the regulation mechanism of VDAC selectivity by the composition in the lipid membrane and suggest that the ion distribution is differently modulated by POPE compared to the POPC bilayer. This occurs through the more persistent interactions of acidic residues located at both rims of the β-barrel with head groups of POPE which in turn impact the electrostatic potential and thereby the selectivity of the pore. This mechanism occurs not only in POPE single component membranes but also in a mixed POPE/POPC bilayer by an enrichment of POPE over POPC lipids on the surface of VDAC. Thus we show here that computationally-inexpensive coarse-grained simulations are able to capture, in a semi-quantitative way, essential features of VDAC anion selectivity and could pave the way toward a molecular level understanding of metabolite transport in natural membranes.
Collapse
Affiliation(s)
- F Van Liefferinge
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - E-M Krammer
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - D Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - M Prévost
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
10
|
Guardiani C, Magrì A, Karachitos A, Di Rosa MC, Reina S, Bodrenko I, Messina A, Kmita H, Ceccarelli M, De Pinto V. yVDAC2, the second mitochondrial porin isoform of Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:270-279. [PMID: 29408701 DOI: 10.1016/j.bbabio.2018.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 01/09/2018] [Accepted: 01/25/2018] [Indexed: 10/18/2022]
Abstract
The yeast Saccharomyces cerevisiae genome is endowed with two distinct isoforms of Voltage-Dependent Anion Channel (VDAC). The isoform yVDAC2 is currently understudied with respect to the best known yVDAC1. Yet, since the discovery, the function of yVDAC2 was unclear, leading to the hypothesis that it might be devoid of a channel function. In this work we have elucidated, by bioinformatics modeling and electrophysiological analysis, the functional activity of yVDAC2. The conformation of yVDAC2 and, for comparison, of yVDAC1 were modeled using a multiple template approach involving mouse, human and zebrafish structures and both showed to arrange the sequences as the typical 19-stranded VDAC β-barrel. Molecular dynamics simulations showed that yVDAC2, in comparison with yVDAC1, has a different number of permeation paths of potassium and chloride ions. yVDAC2 protein was over-expressed in the S. cerevisiae cells depleted of functional yVDAC1 (Δpor1 mutant) and, after purification, it was reconstituted in artificial membranes (planar lipid bilayer (PLB) system). The protein displayed channel-forming activity and the calculated conductance, voltage-dependence and ion selectivity values were similar to those of yVDAC1 and other members of VDAC family. This is the first time that yVDAC2 channel features are detected and characterized.
Collapse
Affiliation(s)
| | - Andrea Magrì
- Department of Biological, Geological and Environmental Sciences, Section of Molecular Biology, University of Catania, Italy
| | - Andonis Karachitos
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Maria Carmela Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Simona Reina
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Igor Bodrenko
- Department of Physics, University of Cagliari, Cagliari, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, Section of Molecular Biology, University of Catania, Italy
| | - Hanna Kmita
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | | | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy.
| |
Collapse
|
11
|
Mlayeh L, Krammer EM, Léonetti M, Prévost M, Homblé F. The mitochondrial VDAC of bean seeds recruits phosphatidylethanolamine lipids for its proper functioning. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:786-794. [PMID: 28666835 DOI: 10.1016/j.bbabio.2017.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/28/2017] [Accepted: 06/24/2017] [Indexed: 12/31/2022]
Abstract
The voltage-dependent anion-selective channel (VDAC) is the main pathway for inorganic ions and metabolites through the mitochondrial outer membrane. Studies recently demonstrated that membrane lipids regulate its function. It remains, however, unclear how this regulation takes place. In this study, we show that phospholipids are key regulators of Phaseolus VDAC function and, furthermore, that the salt concentration modulates this regulation. Both selectivity and voltage dependence of Phaseolus VDAC are very sensitive to a change in the lipid polar head from PC to PE. Interestingly enough, this dependence is observed only at low salt concentration. Furthermore, significant changes in VDAC functional properties also occur with the gradual methylation of the PE group pointing to the role of subtle chemical variations in the lipid head group. The dependence of PcVDAC gating upon the introduction of a small mole fraction of PE in a PC bilayer has prompted us to propose the existence of a specific interaction site for PE on the outer surface of PcVDAC. Eventually, comparative modeling and molecular dynamics simulations suggest a potential mechanism to get insight into the anion selectivity enhancement of PcVDAC observed in PE relative to PC.
Collapse
Affiliation(s)
- Lamia Mlayeh
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium
| | - Eva-Maria Krammer
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium.
| | - Marc Léonetti
- I.R.P.H.E., Aix-Marseille Université, CNRS, Technopôle de Château-Gombert, F-13384, Marseille Cedex 13, France.
| | - Martine Prévost
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium.
| | - Fabrice Homblé
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium.
| |
Collapse
|
12
|
The VDAC channel: Molecular basis for selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2498-502. [PMID: 26826035 DOI: 10.1016/j.bbamcr.2016.01.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/14/2016] [Accepted: 01/22/2016] [Indexed: 11/21/2022]
Abstract
The voltage dependent anion-selective channel, VDAC, is the major permeability pathway by which molecules and ion cross the mitochondrial outer membrane. This pathway has evolved to optimize the flow of these substances and to control this flow by a gating process that is influenced by a variety of factors including transmembrane voltage. The permeation pathway formed through the membrane by VDAC is complex. Small ion flow is primarily influenced by the charged surface of the inner walls of the channel. Channel closure changes this landscape resulting in a change from a channel that favors anions to one that favors cations. Molecular ions interact more intimately with the inner walls of the channel and are selected by their 3-dimensional structure, not merely by their size and charge. Molecular ions typically found in cells are greatly favored over those that are not. For these larger structures the channel may form a low-energy translocation path that complements the structure of the permeant. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
|
13
|
Krammer EM, Vu GT, Homblé F, Prévost M. Dual mechanism of ion permeation through VDAC revealed with inorganic phosphate ions and phosphate metabolites. PLoS One 2015; 10:e0121746. [PMID: 25860993 PMCID: PMC4393092 DOI: 10.1371/journal.pone.0121746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/03/2015] [Indexed: 11/19/2022] Open
Abstract
In the exchange of metabolites and ions between the mitochondrion and the cytosol, the voltage-dependent anion channel (VDAC) is a key element, as it forms the major transport pathway for these compounds through the mitochondrial outer membrane. Numerous experimental studies have promoted the idea that VDAC acts as a regulator of essential mitochondrial functions. In this study, using a combination of molecular dynamics simulations, free-energy calculations, and electrophysiological measurements, we investigated the transport of ions through VDAC, with a focus on phosphate ions and metabolites. We showed that selectivity of VDAC towards small anions including monovalent phosphates arises from short-lived interactions with positively charged residues scattered throughout the pore. In dramatic contrast, permeation of divalent phosphate ions and phosphate metabolites (AMP and ATP) involves binding sites along a specific translocation pathway. This permeation mechanism offers an explanation for the decrease in VDAC conductance measured in the presence of ATP or AMP at physiological salt concentration. The binding sites occur at similar locations for the divalent phosphate ions, AMP and ATP, and contain identical basic residues. ATP features a marked affinity for a central region of the pore lined by two lysines and one arginine of the N-terminal helix. This cluster of residues together with a few other basic amino acids forms a "charged brush" which facilitates the passage of the anionic metabolites through the pore. All of this reveals that VDAC controls the transport of the inorganic phosphates and phosphate metabolites studied here through two different mechanisms.
Collapse
Affiliation(s)
- Eva-Maria Krammer
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Giang Thi Vu
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fabrice Homblé
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Martine Prévost
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Brussels, Belgium
- * E-mail: (MP)
| |
Collapse
|
14
|
Goulart CL, Bisch PM, von Krüger WMA, Homblé F. VCA1008: An Anion-Selective Porin of Vibrio Cholerae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:680-7. [PMID: 25462170 DOI: 10.1016/j.bbamem.2014.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/05/2014] [Accepted: 11/10/2014] [Indexed: 01/14/2023]
Abstract
A putative porin function has been assigned to VCA1008 of Vibrio cholerae. Its coding gene, vca1008, is expressed upon colonization of the small intestine in infant mice and human volunteers, and is essential for infection. In vitro, vca1008 is expressed under inorganic phosphate limitation and, in this condition, VCA1008 is the major outer membrane protein of the bacterium. Here, we provide the first functional characterization of VCA1008 reconstituted into planar lipid bilayers. Our main findings were: 1) VCA1008 forms an ion channel that, at high voltage (~±100 mV), presents a voltage-dependent activity and displays closures typical of trimeric porins, with a conductance of 4.28±0.04 nS (n=164) in 1M KCl; 2) It has a preferred selectivity for anions over cations; 3) Its conductance saturates with increasing inorganic phosphate concentration, suggesting VCA1008 contains binding site(s) for this anion; 4) Its ion selectivity is controlled by both fixed charged residues within the channel and diffusion along the pore; 5) Partitioning of poly (ethylene glycol)s (PEGs) of different molecular mass suggests that VCA1008 channel has a pore exclusion limit of 0.9 nm.
Collapse
Affiliation(s)
- Carolina L Goulart
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Faculté des Sciences, Université Libre de Bruxelles, Campus Plaine (CP 206/2), B - 1050 Brussels, Belgium
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanda M A von Krüger
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabrice Homblé
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Faculté des Sciences, Université Libre de Bruxelles, Campus Plaine (CP 206/2), B - 1050 Brussels, Belgium.
| |
Collapse
|