1
|
Salagre D, Bajit H, Fernández-Vázquez G, Dwairy M, Garzón I, Haro-López R, Agil A. Melatonin induces fiber switching by improvement of mitochondrial oxidative capacity and function via NRF2/RCAN/MEF2 in the vastus lateralis muscle from both sex Zücker diabetic fatty rats. Free Radic Biol Med 2025; 227:322-335. [PMID: 39645208 DOI: 10.1016/j.freeradbiomed.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The positive role of melatonin in obesity control and skeletal muscle (SKM) preservation is well known. We recently showed that melatonin improves vastus lateralis muscle (VL) fiber oxidative phenotype. However, fiber type characterization, mitochondrial function, and molecular mechanisms that underlie VL fiber switching by melatonin are still undefined. Our study aims to investigate whether melatonin induces fiber switching by NRF2/RCAN/MEF2 pathway activation and mitochondrial oxidative metabolism modulation in the VL of both sex Zücker diabetic fatty (ZDF) rats. 5-Weeks-old male and female ZDF rats (N = 16) and their age-matched lean littermates (ZL) were subdivided into two subgroups: control (C) and orally treated with melatonin (M) (10 mg/kg/day) for 12 weeks. Interestingly, melatonin increased oxidative fibers amounts (Types I and IIa) counteracting the decreased levels found in the VL of obese-diabetic rats, and upregulated NRF2, calcineurin and MEF2 expression. Melatonin also restored the mitochondrial oxidative capacity increasing the respiratory control ratio (RCR) in both sex and phenotype rats through the reduction of the proton leak component of respiration (state 4). Melatonin also improved the VL mitochondrial phosphorylation coefficient and modulated the total oxygen consumption by enhancing complex I, III and IV activity, and fatty acid oxidation (FAO) in both sex obese-diabetic rats, decreasing in male and increasing in female the complex II oxygen consumption. These findings suggest that melatonin treatment induces fiber switching in SKM improving mitochondrial functionality by NRF2/RCAN/MEF2 pathway activation.
Collapse
Affiliation(s)
- Diego Salagre
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain
| | - Habiba Bajit
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain
| | | | - Mutaz Dwairy
- Department of Civil Engineering, Yarmuk University, 21163, Irbid, Jordan
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, BioHealth Institute Granada (IBs Granada), School of Medicine, University of Granada, 18016, Granada, Spain
| | - Rocío Haro-López
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain
| | - Ahmad Agil
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain.
| |
Collapse
|
2
|
Peng H, Yuan J, Wang Z, Mo B, Wang Y, Wang Y, Wang Q. NR4A3 prevents diabetes induced atrial cardiomyopathy by maintaining mitochondrial energy metabolism and reducing oxidative stress. EBioMedicine 2024; 106:105268. [PMID: 39098108 PMCID: PMC11334830 DOI: 10.1016/j.ebiom.2024.105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Atrial cardiomyopathy (ACM) is responsible for atrial fibrillation (AF) and thromboembolic events. Diabetes mellitus (DM) is an important risk factor for ACM. However, the potential mechanism between ACM and DM remains elusive. METHODS Atrial tissue samples were obtained from patients diagnosed with AF or sinus rhythm (SR) to assess alterations in NR4A3 expression, and then two distinct animal models were generated by subjecting Nr4a3-/- mice and WT mice to a high-fat diet (HFD) and Streptozotocin (STZ), while db/db mice were administered AAV9-Nr4a3 or AAV9-ctrl. Subsequently, in vivo and in vitro experiments were conducted to assess the impact of NR4A3 on diabetes-induced atrial remodeling through electrophysiological, biological, and histological analyses. RNA sequencing (RNA-seq) and metabolomics analysis were employed to unravel the downstream mechanisms. FINDINGS The expression of NR4A3 was significantly decreased in atrial tissues of both AF patients and diabetic mice compared to their respective control groups. NR4A3 deficiency exacerbated atrial hypertrophy and atrial fibrosis, and increased susceptibility to pacing-induced AF. Conversely, overexpression of NR4A3 alleviated atrial structural remodeling and reduced AF induction rate. Mechanistically, we confirmed that NR4A3 improves mitochondrial energy metabolism and reduces oxidative stress injury by preserving the transcriptional expression of Sdha, thereby exerting a protective influence on atrial remodeling induced by diabetes. INTERPRETATION Our data confirm that NR4A3 plays a protective role in atrial remodeling caused by diabetes, so it may be a new target for treating ACM. FUNDING This study was supported by the major research program of National Natural Science Foundation of China (NSFC) No: 82370316 (to Q-S. W.), No. 81974041 (to Y-P. W.), and No. 82270447 (to Y-P. W.) and Fundation of Shanghai Hospital Development Center (No. SHDC2022CRD044 to Q-S. W.).
Collapse
Affiliation(s)
- Hong Peng
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiali Yuan
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhengshuai Wang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Binfeng Mo
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yihui Wang
- The Department of Radiology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuepeng Wang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Qunshan Wang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
3
|
Stegmüller J, Rodríguez Estévez M, Shu W, Gläser L, Myronovskyi M, Rückert-Reed C, Kalinowski J, Luzhetskyy A, Wittmann C. Systems metabolic engineering of the primary and secondary metabolism of Streptomyces albidoflavus enhances production of the reverse antibiotic nybomycin against multi-resistant Staphylococcus aureus. Metab Eng 2024; 81:123-143. [PMID: 38072358 DOI: 10.1016/j.ymben.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024]
Abstract
Nybomycin is an antibiotic compound with proven activity against multi-resistant Staphylococcus aureus, making it an interesting candidate for combating these globally threatening pathogens. For exploring its potential, sufficient amounts of nybomycin and its derivatives must be synthetized to fully study its effectiveness, safety profile, and clinical applications. As native isolates only accumulate low amounts of the compound, superior producers are needed. The heterologous cell factory S. albidoflavus 4N24, previously derived from the cluster-free chassis S. albidoflavus Del14, produced 860 μg L-1 of nybomycin, mainly in the stationary phase. A first round of strain development modulated expression of genes involved in supply of nybomycin precursors under control of the common Perm* promoter in 4N24, but without any effect. Subsequent studies with mCherry reporter strains revealed that Perm* failed to drive expression during the product synthesis phase but that use of two synthetic promoters (PkasOP* and P41) enabled strong constitutive expression during the entire process. Using PkasOP*, several rounds of metabolic engineering successively streamlined expression of genes involved in the pentose phosphate pathway, the shikimic acid pathway, supply of CoA esters, and nybomycin biosynthesis and export, which more than doubled the nybomycin titer to 1.7 mg L-1 in the sixth-generation strain NYB-6B. In addition, we identified the minimal set of nyb genes needed to synthetize the molecule using single-gene-deletion strains. Subsequently, deletion of the regulator nybW enabled nybomycin production to begin during the growth phase, further boosting the titer and productivity. Based on RNA sequencing along the created strain genealogy, we discovered that the nyb gene cluster was unfavorably downregulated in all advanced producers. This inspired removal of a part and the entire set of the four regulatory genes at the 3'-end nyb of the cluster. The corresponding mutants NYB-8 and NYB-9 exhibited marked further improvement in production, and the deregulated cluster was combined with all beneficial targets from primary metabolism. The best strain, S. albidoflavus NYB-11, accumulated up to 12 mg L-1 nybomycin, fifteenfold more than the basic strain. The absence of native gene clusters in the host and use of a lean minimal medium contributed to a selective production process, providing an important next step toward further development of nybomycin.
Collapse
Affiliation(s)
- Julian Stegmüller
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Wei Shu
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Lars Gläser
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Maksym Myronovskyi
- Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
4
|
Zhang W, Lang R. Succinate metabolism: a promising therapeutic target for inflammation, ischemia/reperfusion injury and cancer. Front Cell Dev Biol 2023; 11:1266973. [PMID: 37808079 PMCID: PMC10556696 DOI: 10.3389/fcell.2023.1266973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
Succinate serves as an essential circulating metabolite within the tricarboxylic acid (TCA) cycle and functions as a substrate for succinate dehydrogenase (SDH), thereby contributing to energy production in fundamental mitochondrial metabolic pathways. Aberrant changes in succinate concentrations have been associated with pathological states, including chronic inflammation, ischemia/reperfusion (IR) injury, and cancer, resulting from the exaggerated response of specific immune cells, thereby rendering it a central area of investigation. Recent studies have elucidated the pivotal involvement of succinate and SDH in immunity beyond metabolic processes, particularly in the context of cancer. Current scientific endeavors are concentrated on comprehending the functional repercussions of metabolic modifications, specifically pertaining to succinate and SDH, in immune cells operating within a hypoxic milieu. The efficacy of targeting succinate and SDH alterations to manipulate immune cell functions in hypoxia-related diseases have been demonstrated. Consequently, a comprehensive understanding of succinate's role in metabolism and the regulation of SDH is crucial for effectively targeting succinate and SDH as therapeutic interventions to influence the progression of specific diseases. This review provides a succinct overview of the latest advancements in comprehending the emerging functions of succinate and SDH in metabolic processes. Furthermore, it explores the involvement of succinate, an intermediary of the TCA cycle, in chronic inflammation, IR injury, and cancer, with particular emphasis on the mechanisms underlying succinate accumulation. This review critically assesses the potential of modulating succinate accumulation and metabolism within the hypoxic milieu as a means to combat various diseases. It explores potential targets for therapeutic interventions by focusing on succinate metabolism and the regulation of SDH in hypoxia-related disorders.
Collapse
Affiliation(s)
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Maudsley S, Schrauwen C, Harputluoğlu İ, Walter D, Leysen H, McDonald P. GPR19 Coordinates Multiple Molecular Aspects of Stress Responses Associated with the Aging Process. Int J Mol Sci 2023; 24:ijms24108499. [PMID: 37239845 DOI: 10.3390/ijms24108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 04/15/2023] [Indexed: 05/28/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play a significant role in controlling biological paradigms such as aging and aging-related disease. We have previously identified receptor signaling systems that are specifically associated with controlling molecular pathologies associated with the aging process. Here, we have identified a pseudo-orphan GPCR, G protein-coupled receptor 19 (GPR19), that is sensitive to many molecular aspects of the aging process. Through an in-depth molecular investigation process that involved proteomic, molecular biological, and advanced informatic experimentation, this study found that the functionality of GPR19 is specifically linked to sensory, protective, and remedial signaling systems associated with aging-related pathology. This study suggests that the activity of this receptor may play a role in mitigating the effects of aging-related pathology by promoting protective and remedial signaling systems. GPR19 expression variation demonstrates variability in the molecular activity in this larger process. At low expression levels in HEK293 cells, GPR19 expression regulates signaling paradigms linked with stress responses and metabolic responses to these. At higher expression levels, GPR19 expression co-regulates systems involved in sensing and repairing DNA damage, while at the highest levels of GPR19 expression, a functional link to processes of cellular senescence is seen. In this manner, GPR19 may function as a coordinator of aging-associated metabolic dysfunction, stress response, DNA integrity management, and eventual senescence.
Collapse
Affiliation(s)
- Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Claudia Schrauwen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Patricia McDonald
- Moffitt Cancer Center, Department of Metabolism & Physiology, 12902 Magnolia Drive, Tampa, FL 33612, USA
- Lexicon Pharmaceuticals Inc. Research & Development, 2445 Technology Forest, The Woodlands, TX 77381, USA
| |
Collapse
|
6
|
Wang Q, Li M, Zeng N, Zhou Y, Yan J. Succinate dehydrogenase complex subunit C: Role in cellular physiology and disease. Exp Biol Med (Maywood) 2023; 248:263-270. [PMID: 36691338 PMCID: PMC10107392 DOI: 10.1177/15353702221147567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Succinate dehydrogenase complex subunit C (SDHC) is a subunit of mitochondrial complex II (MCII), which is also known as succinate dehydrogenase (SDH) or succinate: ubiquinone oxidoreductase. Mitochondrial complex II is the smallest respiratory complex in the respiratory chain and contains four subunits. SDHC is a membrane-anchored subunit of SDH, which connects the tricarboxylic acid cycle and the electron transport chain. SDH regulates several physiological processes within cells, plays an important role in generating energy to maintain normal cell growth, and is involved in apoptosis. Currently, SDHC is generally recognized as a tumor-suppressor gene. SDHC mutations can cause oxidative damage in the body. It is closely related to the occurrence and development of cancer, neurodegenerative diseases, and aging-related diseases. Here, we review studies on the structure, biological function, related diseases of SDHC, and the mev-1 Animal Model of SDHC Mutation and its potential use as a therapeutic target of certain human diseases.
Collapse
Affiliation(s)
- Qi Wang
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Mao Li
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Nannan Zeng
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Yali Zhou
- Department of Microbiology, Guilin Medical University, Guilin 541004, China
| | - Jianguo Yan
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
7
|
Bassot A, Morio B, Bortoli S, Coumoul X. Le B-A-BA de la mitochondrie, une cheffe d’orchestre intracellulaire très dynamique. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2022. [DOI: 10.1016/j.cnd.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Vignault C, Cadoret V, Jarrier-Gaillard P, Papillier P, Téteau O, Desmarchais A, Uzbekova S, Binet A, Guérif F, Elis S, Maillard V. Bisphenol S Impairs Oestradiol Secretion during In Vitro Basal Folliculogenesis in a Mono-Ovulatory Species Model. TOXICS 2022; 10:toxics10080437. [PMID: 36006116 PMCID: PMC9412475 DOI: 10.3390/toxics10080437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 05/28/2023]
Abstract
Bisphenol S (BPS) affects terminal folliculogenesis by impairing steroidogenesis in granulosa cells from different species. Nevertheless, limited data are available on its effects during basal folliculogenesis. In this study, we evaluate in vitro the effects of a long-term BPS exposure on a model of basal follicular development in a mono-ovulatory species. We cultured ovine preantral follicles (180−240 μm, n = 168) with BPS (0.1 μM (possible human exposure dose) or 10 μM (high dose)) and monitored antrum appearance and follicular survival and growth for 15 days. We measured hormonal secretions (oestradiol (at day 13 [D13]), progesterone and anti-Müllerian hormone [D15]) and expression of key follicular development and redox status genes (D15) in medium and whole follicles, respectively. BPS (0.1 µM) decreased oestradiol secretion compared with the control (−48.8%, p < 0.001), without significantly impairing antrum appearance, follicular survival and growth, anti-Müllerian hormone and progesterone secretion and target gene expression. Thus, BPS could also impair oestradiol secretion during basal folliculogenesis as it is the case during terminal folliculogenesis. It questions the use of BPS as a safe BPA substitute in the human environment. More studies are required to elucidate mechanisms of action of BPS and its effects throughout basal follicular development.
Collapse
Affiliation(s)
- Claire Vignault
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, 37000 Tours, France
| | - Véronique Cadoret
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, 37000 Tours, France
| | - Peggy Jarrier-Gaillard
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Pascal Papillier
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Alice Desmarchais
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Aurélien Binet
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
- Service de Chirurgie Pédiatrique Viscérale, Urologique, Plastique et Brûlés, CHRU de Tours, 37000 Tours, France
| | - Fabrice Guérif
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, 37000 Tours, France
| | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Virginie Maillard
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| |
Collapse
|
9
|
Duarte-Hospital C, Tête A, Brial F, Benoit L, Koual M, Tomkiewicz C, Kim MJ, Blanc EB, Coumoul X, Bortoli S. Mitochondrial Dysfunction as a Hallmark of Environmental Injury. Cells 2021; 11:cells11010110. [PMID: 35011671 PMCID: PMC8750015 DOI: 10.3390/cells11010110] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023] Open
Abstract
Environmental factors including diet, sedentary lifestyle and exposure to pollutants largely influence human health throughout life. Cellular and molecular events triggered by an exposure to environmental pollutants are extremely variable and depend on the age, the chronicity and the doses of exposure. Only a fraction of all relevant mechanisms involved in the onset and progression of pathologies in response to toxicants has probably been identified. Mitochondria are central hubs of metabolic and cell signaling responsible for a large variety of biochemical processes, including oxidative stress, metabolite production, energy transduction, hormone synthesis, and apoptosis. Growing evidence highlights mitochondrial dysfunction as a major hallmark of environmental insults. Here, we present mitochondria as crucial organelles for healthy metabolic homeostasis and whose dysfunction induces critical adverse effects. Then, we review the multiple mechanisms of action of pollutants causing mitochondrial toxicity in link with chronic diseases. We propose the Aryl hydrocarbon Receptor (AhR) as a model of “exposome receptor”, whose activation by environmental pollutants leads to various toxic events through mitochondrial dysfunction. Finally, we provide some remarks related to mitotoxicity and risk assessment.
Collapse
Affiliation(s)
- Carolina Duarte-Hospital
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Arnaud Tête
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - François Brial
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
| | - Louise Benoit
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Meriem Koual
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Céline Tomkiewicz
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Min Ji Kim
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Université Sorbonne Paris Nord, F-93000 Bobigny, France
| | - Etienne B. Blanc
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Xavier Coumoul
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
- Correspondence: (X.C.); (S.B.); Tel.: +33-1-76-53-43-70 (S.B.)
| | - Sylvie Bortoli
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
- Correspondence: (X.C.); (S.B.); Tel.: +33-1-76-53-43-70 (S.B.)
| |
Collapse
|
10
|
Hadrava Vanova K, Kraus M, Neuzil J, Rohlena J. Mitochondrial complex II and reactive oxygen species in disease and therapy. Redox Rep 2021; 25:26-32. [PMID: 32290794 PMCID: PMC7178880 DOI: 10.1080/13510002.2020.1752002] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence points to the respiratory Complex II (CII) as a source and modulator of reactive oxygen species (ROS). Both functional loss of CII as well as its pharmacological inhibition can lead to ROS generation in cells, with a relevant impact on the development of pathophysiological conditions, i.e. cancer and neurodegenerative diseases. While the basic framework of CII involvement in ROS production has been defined, the fine details still await clarification. It is important to resolve these aspects to fully understand the role of CII in pathology and to explore its therapeutic potential in cancer and other diseases.
Collapse
Affiliation(s)
| | - Michal Kraus
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czech Republic.,School of Medical Science, Griffith University, Southport, Qld, Australia
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czech Republic
| |
Collapse
|
11
|
Markevich NI, Markevich LN, Hoek JB. Computational Modeling Analysis of Generation of Reactive Oxygen Species by Mitochondrial Assembled and Disintegrated Complex II. Front Physiol 2020; 11:557721. [PMID: 33178032 PMCID: PMC7596731 DOI: 10.3389/fphys.2020.557721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species (ROS) function as critical mediators in a broad range of cellular signaling processes. The mitochondrial electron transport chain is one of the major contributors to ROS formation in most cells. Increasing evidence indicates that the respiratory Complex II (CII) can be the predominant ROS generator under certain conditions. A computational, mechanistic model of electron transfer and ROS formation in CII was developed in the present study to facilitate quantitative analysis of mitochondrial ROS production. The model was calibrated by fitting the computer simulated results to experimental data obtained on submitochondrial particles (SMP) prepared from bovine and rat heart mitochondria upon inhibition of the ubiquinone (Q)-binding site by atpenin A5 (AA5) and Complex III by myxothiazol, respectively. The model predicts that only reduced flavin adenine dinucleotide (FADH2) in the unoccupied dicarboxylate state and flavin semiquinone radical (FADH•) feature the experimentally observed bell-shaped dependence of the rate of ROS production on the succinate concentration upon inhibition of respiratory Complex III (CIII) or Q-binding site of CII, i.e., suppression of succinate-Q reductase (SQR) activity. The other redox centers of CII such as Fe-S clusters and Q-binding site have a hyperbolic dependence of ROS formation on the succinate concentration with very small maximal rate under any condition and cannot be considered as substantial ROS generators in CII. Computer simulation results show that CII disintegration (which results in dissociation of the hydrophilic SDHA/SDHB subunits from the inner membrane to the mitochondrial matrix) causes crucial changes in the kinetics of ROS production by CII that are qualitatively and quantitatively close to changes in the kinetics of ROS production by assembled CII upon inhibition of CIII or Q-binding site of CII. Thus, the main conclusions from the present computational modeling study are the following: (i) the impairment of the SQR activity of CII resulting from inhibition of CIII or Q-binding site of CII and (ii) CII disintegration causes a transition in the succinate-dependence of ROS production from a small-amplitude sigmoid (hyperbolic) shape, determined by Q-binding site or [3Fe-4S] cluster to a high-amplitude bell-shaped kinetics with a shift to small subsaturated concentrations of succinate, determined by the flavin site.
Collapse
Affiliation(s)
| | | | - Jan B Hoek
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
12
|
Ferreira LM, Li AM, Serafim TL, Sobral MC, Alpoim MC, Urbano AM. Intermediary metabolism: An intricate network at the crossroads of cell fate and function. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165887. [DOI: 10.1016/j.bbadis.2020.165887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022]
|
13
|
Manhas N, Duong QV, Lee P, Richardson JD, Robertson JD, Moxley MA, Bazil JN. Computationally modeling mammalian succinate dehydrogenase kinetics identifies the origins and primary determinants of ROS production. J Biol Chem 2020; 295:15262-15279. [PMID: 32859750 DOI: 10.1074/jbc.ra120.014483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/25/2020] [Indexed: 01/01/2023] Open
Abstract
Succinate dehydrogenase (SDH) is an inner mitochondrial membrane protein complex that links the Krebs cycle to the electron transport system. It can produce significant amounts of superoxide ([Formula: see text]) and hydrogen peroxide (H2O2); however, the precise mechanisms are unknown. This fact hinders the development of next-generation antioxidant therapies targeting mitochondria. To help address this problem, we developed a computational model to analyze and identify the kinetic mechanism of [Formula: see text] and H2O2 production by SDH. Our model includes the major redox centers in the complex, namely FAD, three iron-sulfur clusters, and a transiently bound semiquinone. Oxidation state transitions involve a one- or two-electron redox reaction, each being thermodynamically constrained. Model parameters were simultaneously fit to many data sets using a variety of succinate oxidation and free radical production data. In the absence of respiratory chain inhibitors, model analysis revealed the 3Fe-4S iron-sulfur cluster as the primary [Formula: see text] source. However, when the quinone reductase site is inhibited or the quinone pool is highly reduced, [Formula: see text] is generated primarily by the FAD. In addition, H2O2 production is only significant when the enzyme is fully reduced, and fumarate is absent. Our simulations also reveal that the redox state of the quinone pool is the primary determinant of free radical production by SDH. In this study, we showed the importance of analyzing enzyme kinetics and associated side reactions in a consistent, quantitative, and biophysically detailed manner using a diverse set of experimental data to interpret and explain experimental observations from a unified perspective.
Collapse
Affiliation(s)
- Neeraj Manhas
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Quynh V Duong
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Pilhwa Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshua D Richardson
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - John D Robertson
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Michael A Moxley
- Department of Chemistry, University of Nebraska, Kearney, Nebraska, USA
| | - Jason N Bazil
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
14
|
Markevich NI, Galimova MH, Markevich LN. Hysteresis and bistability in the succinate-CoQ reductase activity and reactive oxygen species production in the mitochondrial respiratory complex II. Redox Biol 2020; 37:101630. [PMID: 32747163 PMCID: PMC7767736 DOI: 10.1016/j.redox.2020.101630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/14/2020] [Accepted: 06/28/2020] [Indexed: 11/25/2022] Open
Abstract
The mitochondrial respiratory Complex II (CII) is one of key enzymes of cell energy metabolism, linking the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC). CII reversibly oxidizes succinate to fumarate in the TCA cycle and transfers the electrons, produced by this reaction to the membrane quinone pool, providing ubiquinol QH2 to ETC. CII is also known as a generator of reactive oxygen species (ROS). It was shown experimentally that succinate can serve as not only a substrate in the forward succinate-quinone oxidoreductase (SQR) direction, but also an enzyme activator. Molecular and kinetic mechanisms of this property of CII are still unclear. In order to account for activation of CII by succinate in the forward SQR direction, we developed and analyzed a computational mechanistic model of electron transfer and ROS formation in CII. It was found that re-binding of succinate to the unoccupied dicarboxylate binding site when FAD is reduced with subsequent oxidation of FADH2 creates a positive feedback loop in the succinate oxidation. The model predicts that this positive feedback can result in hysteresis and bistable switches in SQR activity and ROS production in CII. This requires that the rate constant of re-binding of succinate has to be higher than the rate constant of the initial succinate binding to the active center when FAD is oxidized. Hysteresis and bistability in the SQR activity and ROS production in CII can play an important physiological role. In the presence of hysteresis with two stable branches with high and low SQR activity, high SQR activity is maintained even with a very strong drop in the succinate concentration, which may be necessary in the process of cell functioning in stressful situations. For the same reason, a high stationary rate of ROS production in CII can be maintained at low succinate concentrations. Computational model of electron flows in the respiratory Complex II was developed. The Complex II model predicts a positive feedback loop in the succinate oxidation. Complex II can operate as a bistable switch between two alternative stable states. ROS production in Complex II may have a hysteretic behaviour.
Collapse
Affiliation(s)
- Nikolay I Markevich
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow region, 142290, Russian Federation.
| | - Miliausha H Galimova
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow region, 142290, Russian Federation
| | - Lubov N Markevich
- Institute of Cell Biophysics of RAS, Pushchino, Moscow region, 142290, Russian Federation
| |
Collapse
|
15
|
Gabrovsek L, Collins KB, Aggarwal S, Saunders LM, Lau HT, Suh D, Sancak Y, Trapnell C, Ong SE, Smith FD, Scott JD. A-kinase-anchoring protein 1 (dAKAP1)-based signaling complexes coordinate local protein synthesis at the mitochondrial surface. J Biol Chem 2020; 295:10749-10765. [PMID: 32482893 PMCID: PMC7397098 DOI: 10.1074/jbc.ra120.013454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
Compartmentalization of macromolecules is a ubiquitous molecular mechanism that drives numerous cellular functions. The appropriate organization of enzymes in space and time enables the precise transmission and integration of intracellular signals. Molecular scaffolds constrain signaling enzymes to influence the regional modulation of these physiological processes. Mitochondrial targeting of protein kinases and protein phosphatases provides a means to locally control the phosphorylation status and action of proteins on the surface of this organelle. Dual-specificity protein kinase A anchoring protein 1 (dAKAP1) is a multivalent binding protein that targets protein kinase A (PKA), RNAs, and other signaling enzymes to the outer mitochondrial membrane. Many AKAPs recruit a diverse set of binding partners that coordinate a broad range of cellular processes. Here, results of MS and biochemical analyses reveal that dAKAP1 anchors additional components, including the ribonucleoprotein granule components La-related protein 4 (LARP4) and polyadenylate-binding protein 1 (PABPC1). Local translation of mRNAs at organelles is a means to spatially control the synthesis of proteins. RNA-Seq data demonstrate that dAKAP1 binds mRNAs encoding proteins required for mitochondrial metabolism, including succinate dehydrogenase. Functional studies suggest that the loss of dAKAP1-RNA interactions reduces mitochondrial electron transport chain activity. Hence, dAKAP1 plays a previously unappreciated role as a molecular interface between second messenger signaling and local protein synthesis machinery.
Collapse
Affiliation(s)
- Laura Gabrovsek
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
| | - Kerrie B Collins
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Stacey Aggarwal
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Lauren M Saunders
- Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Ho-Tak Lau
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Danny Suh
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - F Donelson Smith
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Dominic A, Banerjee P, Hamilton DJ, Le NT, Abe JI. Time-dependent replicative senescence vs. disturbed flow-induced pre-mature aging in atherosclerosis. Redox Biol 2020; 37:101614. [PMID: 32863187 PMCID: PMC7767754 DOI: 10.1016/j.redox.2020.101614] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/07/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Accumulation of senescent cells has a causative role in the pathology of age-related disorders including atherosclerosis (AS) and cardiovascular diseases (CVDs). However, the concept of senescence is now drastically changing, and the new concept of senescence-associated reprogramming/stemness has emerged, suggesting that senescence is not merely related to “cell cycle arrest” or halting various cellular functions. It is well known that disturbed flow (D-flow) accelerates pre-mature aging and plays a significant role in the development of AS. We will discuss in this review that pre-mature aging induced by D-flow is not comparable to time-dependent aging, particularly with a focus on the possible involvement of senescence-associated secretory phenotype (SASP) in senescence-associated reprogramming/stemness, or increasing cell numbers. We will also present our outlook of nicotinamide adenine dinucleotides (NAD)+ deficiency-induced mitochondrial reactive oxygen species (mtROS) in evoking SASP by activating DNA damage response (DDR). MtROS plays a key role in developing cross-talk between nuclear-mitochondria, SASP, and ultimately atherosclerosis formation. Although senescence induced by time and various stress factors is a classical concept, we wish that the readers will see the undergoing Copernican-like change in this concept, as well as to recognize the significant contrast between pre-mature aging induced by D-flow and time-dependent aging.
Collapse
Affiliation(s)
- Abishai Dominic
- Department of Molecular and Cellular Biology Texas A&M Health Science Center, USA; Department of Cardio-Vascular Regeneration, Houston Methodist Research Institute, Texas, USA
| | - Priyanka Banerjee
- Department of Cardio-Vascular Regeneration, Houston Methodist Research Institute, Texas, USA
| | - Dale J Hamilton
- Department of Medicine, Center for Bioenergetics Houston Methodist Research Institute, Texas, USA
| | - Nhat-Tu Le
- Department of Cardio-Vascular Regeneration, Houston Methodist Research Institute, Texas, USA.
| | - Jun-Ichi Abe
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
17
|
Moosavi B, Zhu XL, Yang WC, Yang GF. Genetic, epigenetic and biochemical regulation of succinate dehydrogenase function. Biol Chem 2020; 401:319-330. [DOI: 10.1515/hsz-2019-0264] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022]
Abstract
AbstractSuccinate dehydrogenase (SDH), complex II or succinate:quinone oxidoreductase (SQR) is a crucial enzyme involved in both the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS), the two primary metabolic pathways for generating ATP. Impaired function of SDH results in deleterious disorders from cancer to neurodegeneration. SDH function is tailored to meet the energy demands in different cell types. Thus, understanding how SDH function is regulated and how it operates in distinct cell types can support the development of therapeutic approaches against the diseases. In this article we discuss the molecular pathways which regulate SDH function and describe extra roles played by SDH in specific cell types.
Collapse
Affiliation(s)
- Behrooz Moosavi
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiao-lei Zhu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
18
|
Moosavi B, Zhu XL, Yang WC, Yang GF. Molecular pathogenesis of tumorigenesis caused by succinate dehydrogenase defect. Eur J Cell Biol 2020; 99:151057. [DOI: 10.1016/j.ejcb.2019.151057] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/19/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
|
19
|
Ralph SJ, Nozuhur S, ALHulais RA, Rodríguez‐Enríquez S, Moreno‐Sánchez R. Repurposing drugs as pro‐oxidant redox modifiers to eliminate cancer stem cells and improve the treatment of advanced stage cancers. Med Res Rev 2019; 39:2397-2426. [DOI: 10.1002/med.21589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/20/2019] [Accepted: 03/31/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Stephen J. Ralph
- School of Medical ScienceGriffith University Southport Australia
| | - Sam Nozuhur
- School of Medical ScienceGriffith University Southport Australia
| | | | | | | |
Collapse
|
20
|
Dalla Pozza E, Dando I, Pacchiana R, Liboi E, Scupoli MT, Donadelli M, Palmieri M. Regulation of succinate dehydrogenase and role of succinate in cancer. Semin Cell Dev Biol 2019; 98:4-14. [PMID: 31039394 DOI: 10.1016/j.semcdb.2019.04.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
Succinate dehydrogenase (SDH) has been classically considered a mitochondrial enzyme with the unique property to participate in both the citric acid cycle and the electron transport chain. However, in recent years, several studies have highlighted the role of the SDH substrate, i.e. succinate, in biological processes other than metabolism, tumorigenesis being the most remarkable. For this reason, SDH has now been defined a tumor suppressor and succinate an oncometabolite. In this review, we discuss recent findings regarding alterations in SDH activity leading to succinate accumulation, which include SDH mutations, regulation of mRNA expression, post-translational modifications and endogenous SDH inhibitors. Further, we report an extensive examination of the role of succinate in cancer development through the induction of epigenetic and metabolic alterations and the effects on epithelial to mesenchymal transition, cell migration and invasion, and angiogenesis. Finally, we have focused on succinate and SDH as diagnostic markers for cancers having altered SDH expression/activity.
Collapse
Affiliation(s)
- Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Elio Liboi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy; Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy.
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
| | - Marta Palmieri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
21
|
Pal S, Maurya SK, Chattopadhyay S, Pal China S, Porwal K, Kulkarni C, Sanyal S, Sinha RA, Chattopadhyay N. The osteogenic effect of liraglutide involves enhanced mitochondrial biogenesis in osteoblasts. Biochem Pharmacol 2019; 164:34-44. [PMID: 30885766 DOI: 10.1016/j.bcp.2019.03.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/14/2019] [Indexed: 12/31/2022]
Abstract
Liraglutide (Lira), a long-acting glucagon-like peptide 1 receptor (GLP1R) agonist reduces glycosylated hemoglobin in type 2 diabetes mellitus patients. Lira is reported to have bone conserving effect in ovariectomized (OVX) rats. Here, we investigated the osteoanabolic effect of Lira and studied the underlying mechanism. In established osteopenic OVX rats, Lira completely restored bone mass and strength comparable to parathyroid hormone (PTH 1-34). Body mass index normalized bone mineral density of Lira was higher than PTH. The serum levels of osteogenic surrogate pro-collagen type 1 N-terminal pro-peptide (P1NP) and surface referent bone formation parameters were comparable between Lira and PTH. GLP1R, adiponectin receptor 1 (AdipoR1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) levels in bones were downregulated in the OVX group but restored in the Lira group whereas PTH had no effect. In cultured osteoblasts, Lira time-dependently increased GLP1R, AdipoR1 and PGC1α expression. In osteoblasts, Lira rapidly phosphorylated AMP-dependent protein kinase (AMPK), the cellular energy sensor. Exendin 3, a selective GLP1R antagonist and PKA inhibitor H89 blocked Lira-induced increases in osteoblast differentiation, and expression levels of AdipoR1 and PGC1α. Furthermore, H89 inhibited Lira-induced phosphorylation of AMPK and dorsomorphin, an AMPK inhibitor blocked the Lira-induced increases in osteoblast differentiation and AdipoR1 and PGC1α levels. Lira increased mitochondrial number, respiratory proteins and respiration in osteoblasts in vitro and in vivo, and blocking mitochondrial respiration mitigated Lira-induced osteoblast differentiation. Taken together, our data show that Lira has a strong osteoanabolic effect which involves upregulation of mitochondrial function.
Collapse
Affiliation(s)
- Subhashis Pal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Shailendra K Maurya
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Sourav Chattopadhyay
- Division of Biochemistry, Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Shyamsundar Pal China
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Konica Porwal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Chirag Kulkarni
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India
| | - Sabyasachi Sanyal
- Division of Biochemistry, Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India.
| |
Collapse
|
22
|
Belyaeva EA. Respiratory complex II in mitochondrial dysfunction-mediated cytotoxicity: Insight from cadmium. J Trace Elem Med Biol 2018; 50:80-92. [PMID: 30262321 DOI: 10.1016/j.jtemb.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/23/2018] [Accepted: 06/13/2018] [Indexed: 02/05/2023]
Abstract
In the present work we studied action of several inhibitors of respiratory complex II (CII) of mitochondrial electron transport chain, namely malonate and thenoyltrifluoroacetone (TTFA) on Cd2+-induced toxicity and cell mortality, using two rat cell lines, pheochromocytoma PC12 and ascites hepatoma AS-30D and isolated rat liver mitochondria (RLM). It was shown that malonate, an endogenous competitive inhibitor of dicarboxylate-binding site of CII, restored in part RLM respiratory function disturbed by Cd2+. In particular, malonate increased both phosphorylating and maximally uncoupled respiration rates in KCl medium in the presence of CI substrates as well as palliated changes in basal and resting state respiration rates produced by the heavy metal on the mitochondria energized by CI or CII substrates. Notably, malonate enhanced Cd2+-induced swelling of the mitochondria energized by CI substrates in KCl and, in a much lesser extent and at higher [Cd2+], in sucrose media but did not influence on the Cd2+ effects in NaCl medium. Besides, malonate did not affect swelling in sucrose media of RLM energized by CIV substrates under using of Cd2+ or Ca2+ whereas it strongly increased the mitochondrial swelling produced by selenite. In addition, malonate produced some protection against Cd2+-promoted necrotic death of AS-30D and PC12 cells and reduced intracellular reactive oxygen species (ROS) formation evoked by Cd2+ in PC12 cells. Importantly, TTFA, an irreversible competitive inhibitor of Q-binding site of CII, per se induced apoptosis of AS-30D cells which was inhibited by co-treatment with Cd2+ as well as decreased the Cd2+-enhanced intracellular ROS formation. In turn, decylubiquinone (dUb) at low μM concentrations did not protect AS-30D cells against the Cd2+-induced necrosis and enhanced the Cd2+-induced apoptosis of the cells. High μM concentrations of dUb were highly toxic for the cells. As consequence, the findings give new evidence indicative of critical involvement of CII in mechanism(s) of Cd2+-produced cytotoxicity and support the notion on CII as a perspective pharmacological target in mitochondria dysfunction-mediated conditions and diseases.
Collapse
Affiliation(s)
- Elena A Belyaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Thorez pr. 44, 194223, St.-Petersburg, Russia.
| |
Collapse
|
23
|
Hirschler-Laszkiewicz I, Chen SJ, Bao L, Wang J, Zhang XQ, Shanmughapriya S, Keefer K, Madesh M, Cheung JY, Miller BA. The human ion channel TRPM2 modulates neuroblastoma cell survival and mitochondrial function through Pyk2, CREB, and MCU activation. Am J Physiol Cell Physiol 2018; 315:C571-C586. [PMID: 30020827 PMCID: PMC6230687 DOI: 10.1152/ajpcell.00098.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transient receptor potential melastatin channel subfamily member 2 (TRPM2) has an essential function in cell survival and is highly expressed in many cancers. Inhibition of TRPM2 in neuroblastoma by depletion with CRISPR technology or expression of dominant negative TRPM2-S has been shown to significantly reduce cell viability. Here, the role of proline-rich tyrosine kinase 2 (Pyk2) in TRPM2 modulation of neuroblastoma viability was explored. In TRPM2-depleted cells, phosphorylation and expression of Pyk2 and cAMP-responsive element-binding protein (CREB), a downstream target, were significantly reduced after application of the chemotherapeutic agent doxorubicin. Overexpression of wild-type Pyk2 rescued cell viability. Reduction of Pyk2 expression with shRNA decreased cell viability and CREB phosphorylation and expression, demonstrating Pyk2 modulates CREB activation. TRPM2 depletion impaired phosphorylation of Src, an activator of Pyk2, and this may be a mechanism to reduce Pyk2 phosphorylation. TRPM2 inhibition was previously demonstrated to decrease mitochondrial function. Here, CREB, Pyk2, and phosphorylated Src were reduced in mitochondria of TRPM2-depleted cells, consistent with their role in modulating expression and activation of mitochondrial proteins. Phosphorylated Src and phosphorylated and total CREB were reduced in TRPM2-depleted nuclei. Expression and function of mitochondrial calcium uniporter (MCU), a target of phosphorylated Pyk2 and CREB, were significantly reduced. Wild-type TRPM2 but not Ca2+-impermeable mutant E960D reconstituted phosphorylation and expression of Pyk2 and CREB in TRPM2-depleted cells exposed to doxorubicin. Results demonstrate that TRPM2 expression protects the viability of neuroblastoma through Src, Pyk2, CREB, and MCU activation, which play key roles in maintaining mitochondrial function and cellular bioenergetics.
Collapse
Affiliation(s)
| | - Shu-Jen Chen
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - Lei Bao
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - JuFang Wang
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Xue-Qian Zhang
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Santhanam Shanmughapriya
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania.,Department of Biochemistry, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Kerry Keefer
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - Muniswamy Madesh
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania.,Department of Biochemistry, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Joseph Y Cheung
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania.,Department of Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Barbara A Miller
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
24
|
Caino MC, Seo JH, Wang Y, Rivadeneira DB, Gabrilovich DI, Kim ET, Weeraratna AT, Languino LR, Altieri DC. Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. J Clin Invest 2017; 127:3755-3769. [PMID: 28891816 DOI: 10.1172/jci93172] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
Tumors adapt to an unfavorable microenvironment by controlling the balance between cell proliferation and cell motility, but the regulators of this process are largely unknown. Here, we show that an alternatively spliced isoform of syntaphilin (SNPH), a cytoskeletal regulator of mitochondrial movements in neurons, is directed to mitochondria of tumor cells. Mitochondrial SNPH buffers oxidative stress and maintains complex II-dependent bioenergetics, sustaining local tumor growth while restricting mitochondrial redistribution to the cortical cytoskeleton and tumor cell motility. Conversely, introduction of stress stimuli to the microenvironment, including hypoxia, acutely lowered SNPH levels, resulting in bioenergetics defects and increased superoxide production. In turn, this suppressed tumor cell proliferation but increased tumor cell invasion via greater mitochondrial trafficking to the cortical cytoskeleton. Loss of SNPH or expression of an SNPH mutant lacking the mitochondrial localization sequence resulted in increased metastatic dissemination in xenograft or syngeneic tumor models in vivo. Accordingly, tumor cells that acquired the ability to metastasize in vivo constitutively downregulated SNPH and exhibited higher oxidative stress, reduced cell proliferation, and increased cell motility. Therefore, SNPH is a stress-regulated mitochondrial switch of the cell proliferation-motility balance in cancer, and its pathway may represent a therapeutic target.
Collapse
Affiliation(s)
- M Cecilia Caino
- Prostate Cancer Discovery and Development Program.,Tumor Microenvironment and Metastasis Program, and
| | - Jae Ho Seo
- Prostate Cancer Discovery and Development Program.,Tumor Microenvironment and Metastasis Program, and
| | - Yuan Wang
- Prostate Cancer Discovery and Development Program.,Tumor Microenvironment and Metastasis Program, and
| | - Dayana B Rivadeneira
- Prostate Cancer Discovery and Development Program.,Tumor Microenvironment and Metastasis Program, and
| | - Dmitry I Gabrilovich
- Translational Tumor Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Eui Tae Kim
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Lucia R Languino
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Dario C Altieri
- Prostate Cancer Discovery and Development Program.,Tumor Microenvironment and Metastasis Program, and
| |
Collapse
|
25
|
Lahiri A, Hedl M, Yan J, Abraham C. Human LACC1 increases innate receptor-induced responses and a LACC1 disease-risk variant modulates these outcomes. Nat Commun 2017; 8:15614. [PMID: 28593945 PMCID: PMC5472760 DOI: 10.1038/ncomms15614] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Functional consequences for most inflammatory disease-associated loci are incompletely defined, including in the LACC1 (C13orf31) region. Here we show that human peripheral and intestinal myeloid-derived cells express laccase domain-containing 1 (LACC1); LACC1 is expressed in both the cytoplasm and mitochondria. Upon NOD2 stimulation of human macrophages, LACC1 associates with the NOD2-signalling complex, and is critical for optimal NOD2-induced signalling, mitochondrial ROS (mtROS) production, cytokine secretion and bacterial clearance. LACC1 constitutively associates with succinate dehydrogenase (SDH) subunit A, and amplifies pattern recognition receptor (PRR)-induced SDH activity, an important contributor to mtROS production. Relative to LACC1 Ile254, cells transfected with Crohn's disease-risk LACC1 Val254 or LACC1 with mutations of the nearby histidines (249,250) have reduced PRR-induced outcomes. Relative to LACC1 Ile254 carriers, Val254 disease-risk carrier macrophages demonstrate decreased PRR-induced mtROS, signalling, cytokine secretion and bacterial clearance. Therefore, LACC1 is critical for amplifying PRR-induced outcomes, an effect that is attenuated by the LACC1 disease-risk variant.
Collapse
Affiliation(s)
- Amit Lahiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut 06510, USA
| | - Matija Hedl
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut 06510, USA
| | - Jie Yan
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut 06510, USA
| | - Clara Abraham
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut 06510, USA
| |
Collapse
|
26
|
Mori MP, Costa RAP, Soltys DT, Freire TDS, Rossato FA, Amigo I, Kowaltowski AJ, Vercesi AE, de Souza-Pinto NC. Lack of XPC leads to a shift between respiratory complexes I and II but sensitizes cells to mitochondrial stress. Sci Rep 2017; 7:155. [PMID: 28273955 PMCID: PMC5427820 DOI: 10.1038/s41598-017-00130-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
Genomic instability drives tumorigenesis and DNA repair defects are associated with elevated cancer. Metabolic alterations are also observed during tumorigenesis, although a causal relationship between these has not been clearly established. Xeroderma pigmentosum (XP) is a DNA repair disease characterized by early cancer. Cells with reduced expression of the XPC protein display a metabolic shift from OXPHOS to glycolysis, which was linked to accumulation of nuclear DNA damage and oxidants generation via NOX-1. Using XP-C cells, we show that mitochondrial respiratory complex I (CI) is impaired in the absence of XPC, while complex II (CII) is upregulated in XP-C cells. The CI/CII metabolic shift was dependent on XPC, as XPC complementation reverted the phenotype. We demonstrate that mitochondria are the primary source of H2O2 and glutathione peroxidase activity is compromised. Moreover, mtDNA is irreversibly damaged and accumulates deletions. XP-C cells were more sensitive to the mitochondrial inhibitor antimycin A, an effect also prevented in XPC-corrected cells. Our results show that XPC deficiency leads to alterations in mitochondrial redox balance with a CI/CII shift as a possible adaptation to lower CI activity, but at the cost of sensitizing XP-C cells to mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Mateus P Mori
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Rute A P Costa
- Department of Clinical Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Daniela T Soltys
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Thiago de S Freire
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Franco A Rossato
- Department of Clinical Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ignácio Amigo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Aníbal E Vercesi
- Department of Clinical Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
27
|
Hardonnière K, Huc L, Sergent O, Holme JA, Lagadic-Gossmann D. Environmental carcinogenesis and pH homeostasis: Not only a matter of dysregulated metabolism. Semin Cancer Biol 2017; 43:49-65. [PMID: 28088583 DOI: 10.1016/j.semcancer.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/18/2022]
Abstract
According to the World Health Organization, around 20% of all cancers would be due to environmental factors. Among these factors, several chemicals are indeed well recognized carcinogens. The widespread contaminant benzo[a]pyrene (B[a]P), an often used model carcinogen of the polycyclic aromatic hydrocarbons' family, has been suggested to target most, if not all, cancer hallmarks described by Hanahan and Weinberg. It is classified as a group I carcinogen by the International Agency for Research on Cancer; however, the precise intracellular mechanisms underlying its carcinogenic properties remain yet to be thoroughly defined. Recently, the pH homeostasis, a well known regulator of carcinogenic processes, was suggested to be a key actor in both cell death and Warburg-like metabolic reprogramming induced upon B[a]P exposure. The present review will highlight those data with the aim of favoring research on the role of H+ dynamics in environmental carcinogenesis.
Collapse
Affiliation(s)
- Kévin Hardonnière
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France
| | - Laurence Huc
- INRA UMR 1331 ToxAlim (Research Center in Food Toxicology), University of Toulouse ENVT, INP, UPS, 180 Chemin de Tournefeuille, F-31027, France
| | - Odile Sergent
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France
| | - Jørn A Holme
- Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Dominique Lagadic-Gossmann
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France.
| |
Collapse
|
28
|
Aravamudan B, Thompson M, Sieck GC, Vassallo R, Pabelick CM, Prakash YS. Functional Effects of Cigarette Smoke-Induced Changes in Airway Smooth Muscle Mitochondrial Morphology. J Cell Physiol 2016; 232:1053-1068. [PMID: 27474898 DOI: 10.1002/jcp.25508] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/29/2016] [Indexed: 12/16/2022]
Abstract
Long-term exposure to cigarette smoke (CS) triggers airway hyperreactivity and remodeling, effects that involve airway smooth muscle (ASM). We previously showed that CS destabilizes the networked morphology of mitochondria in human ASM by regulating the expression of mitochondrial fission and fusion proteins via multiple signaling mechanisms. Emerging data link regulation of mitochondrial morphology to cellular structure and function. We hypothesized that CS-induced changes in ASM mitochondrial morphology detrimentally affect mitochondrial function, leading to CS effects on contractility and remodeling. Here, ASM cells were exposed to 1% cigarette smoke extract (CSE) for 48 h to alter mitochondrial fission/fusion, or by inhibiting the fission protein Drp1 or the fusion protein Mfn2. Mitochondrial function was assessed via changes in bioenergetics or altered rates of proliferation and apoptosis. Our results indicate that both exposure to CS and inhibition of mitochondrial fission/fusion proteins affect mitochondrial function (i.e., energy metabolism, proliferation, and apoptosis) in ASM cells. In vivo, the airways in mice chronically exposed to CS are thickened and fibrotic, and the expression of proteins involved in mitochondrial function is dramatically altered in the ASM of these mice. We conclude that CS-induced changes in mitochondrial morphology (fission/fusion balance) correlate with mitochondrial function, and thus may control ASM proliferation, which plays a central role in airway health. J. Cell. Physiol. 232: 1053-1068, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bharathi Aravamudan
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Michael Thompson
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Gary C Sieck
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Robert Vassallo
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
29
|
Gao JL, Wu M, Liu W, Feng ZJ, Zhang YZ, Jiang FL, Liu Y, Dai J. Dysfunction of Rice Mitochondrial Membrane Induced by Yb3+. J Membr Biol 2015; 248:1159-65. [PMID: 26305923 DOI: 10.1007/s00232-015-9833-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/06/2015] [Indexed: 02/08/2023]
Abstract
Ytterbium (Yb), a widely used rare earth element, is treated as highly toxic to human being and adverseness to plant. Mitochondria play a significant role in plant growth and development, and are proposed as a potential target for ytterbium toxicity. In this paper, the biological effect of Yb(3+) on isolated rice mitochondria was investigated. We found that Yb(3+) with high concentrations (200 ~ 600 μM) not only induced mitochondrial membrane permeability transition (mtMPT), but also disturbed the mitochondrial ultrastructure. Moreover, Yb(3+) caused the respiratory chain damage, ROS formation, membrane potential decrease, and mitochondrial complex II activity reverse. The results above suggested that Yb(3+) with high concentrations could induce mitochondrial membrane dysfunction. These findings will support some valuable information to the safe application of Yb-based agents.
Collapse
Affiliation(s)
- Jia-Ling Gao
- Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, Hubei, People's Republic of China
| | - Man Wu
- Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, Hubei, People's Republic of China
| | - Wen Liu
- Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, Hubei, People's Republic of China
| | - Zhi-Jiang Feng
- Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, Hubei, People's Republic of China
| | - Ye-Zhong Zhang
- Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, Hubei, People's Republic of China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yi Liu
- Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, Hubei, People's Republic of China
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jie Dai
- Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, Hubei, People's Republic of China.
| |
Collapse
|
30
|
Jochmanová I, Zhuang Z, Pacak K. Pheochromocytoma: Gasping for Air. Discov Oncol 2015; 6:191-205. [PMID: 26138106 DOI: 10.1007/s12672-015-0231-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
There has been increasing evidence that pseudohypoxia--a phenomenon that we refer to as "gasping for air"--along with mitochondrial enzyme dysregulation play a crucial role in tumorigenesis, particularly in several hereditary pheochromocytomas (PHEOs) and paragangliomas (PGLs). Alterations in key tricarboxylic acids (TCA) cycle enzymes (SDH, FH, MDH2) have been shown to induce pseudohypoxia via activation of the hypoxia-inducible transcription factor (HIF) signaling pathway that is involved in tumorigenesis, invasiveness, and metastatic spread, including an association with resistance to various cancer therapies and worse prognosis. This review outlines the ongoing story of the pathogenesis of hereditary PHEOs/PGLs, showing the unique and most updated evidence of TCA cycle dysregulation that is tightly linked to hypoxia signaling.
Collapse
Affiliation(s)
- Ivana Jochmanová
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver NICHD, National Institutes of Health, Building 10, CRC, 1-East, Room 1E-3140, 10 Center Drive, MSC-1109, Bethesda, MD, 20892-1109, USA.,1st Department of Internal Medicine, Medical Faculty, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Karel Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver NICHD, National Institutes of Health, Building 10, CRC, 1-East, Room 1E-3140, 10 Center Drive, MSC-1109, Bethesda, MD, 20892-1109, USA.
| |
Collapse
|
31
|
De Filippis B, Valenti D, de Bari L, De Rasmo D, Musto M, Fabbri A, Ricceri L, Fiorentini C, Laviola G, Vacca RA. Mitochondrial free radical overproduction due to respiratory chain impairment in the brain of a mouse model of Rett syndrome: protective effect of CNF1. Free Radic Biol Med 2015; 83:167-77. [PMID: 25708779 DOI: 10.1016/j.freeradbiomed.2015.02.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/19/2022]
Abstract
Rett syndrome (RTT) is a pervasive neurodevelopmental disorder mainly caused by mutations in the X-linked MECP2 gene associated with severe intellectual disability, movement disorders, and autistic-like behaviors. Its pathogenesis remains mostly not understood and no effective therapy is available. High circulating levels of oxidative stress markers in patients and the occurrence of oxidative brain damage in MeCP2-deficient mouse models suggest the involvement of oxidative stress in RTT pathogenesis. However, the molecular mechanism and the origin of the oxidative stress have not been elucidated. Here we demonstrate that a redox imbalance arises from aberrant mitochondrial functionality in the brain of MeCP2-308 heterozygous female mice, a condition that more closely recapitulates that of RTT patients. The marked increase in the rate of hydrogen peroxide generation in the brain of RTT mice seems mainly produced by the dysfunctional complex II of the mitochondrial respiratory chain. In addition, both membrane potential generation and mitochondrial ATP synthesis are decreased in RTT mouse brains when succinate, the complex II respiratory substrate, is used as an energy source. Respiratory chain impairment is brain area specific, owing to a decrease in either cAMP-dependent phosphorylation or protein levels of specific complex subunits. Further, we investigated whether the treatment of RTT mice with the bacterial protein CNF1, previously reported to ameliorate the neurobehavioral phenotype and brain bioenergetic markers in an RTT mouse model, exerts specific effects on brain mitochondrial function and consequently on hydrogen peroxide production. In RTT brains treated with CNF1, we observed the reactivation of respiratory chain complexes, the rescue of mitochondrial functionality, and the prevention of brain hydrogen peroxide overproduction. These results provide definitive evidence of mitochondrial reactive oxygen species overproduction in RTT mouse brain and highlight CNF1 efficacy in counteracting RTT-related mitochondrial defects.
Collapse
Affiliation(s)
- Bianca De Filippis
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy.
| | - Daniela Valenti
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy
| | - Lidia de Bari
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy
| | - Mattia Musto
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Alessia Fabbri
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Laura Ricceri
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Carla Fiorentini
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Giovanni Laviola
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy.
| |
Collapse
|
32
|
Kluckova K, Sticha M, Cerny J, Mracek T, Dong L, Drahota Z, Gottlieb E, Neuzil J, Rohlena J. Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation. Cell Death Dis 2015; 6:e1749. [PMID: 25950479 PMCID: PMC4669690 DOI: 10.1038/cddis.2015.110] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/22/2015] [Accepted: 02/19/2015] [Indexed: 12/13/2022]
Abstract
Respiratory complex II (CII, succinate dehydrogenase, SDH) inhibition can induce cell death, but the mechanistic details need clarification. To elucidate the role of reactive oxygen species (ROS) formation upon the ubiquinone-binding (Qp) site blockade, we substituted CII subunit C (SDHC) residues lining the Qp site by site-directed mutagenesis. Cell lines carrying these mutations were characterized on the bases of CII activity and exposed to Qp site inhibitors MitoVES, thenoyltrifluoroacetone (TTFA) and Atpenin A5. We found that I56F and S68A SDHC variants, which support succinate-mediated respiration and maintain low intracellular succinate, were less efficiently inhibited by MitoVES than the wild-type (WT) variant. Importantly, associated ROS generation and cell death induction was also impaired, and cell death in the WT cells was malonate and catalase sensitive. In contrast, the S68A variant was much more susceptible to TTFA inhibition than the I56F variant or the WT CII, which was again reflected by enhanced ROS formation and increased malonate- and catalase-sensitive cell death induction. The R72C variant that accumulates intracellular succinate due to compromised CII activity was resistant to MitoVES and TTFA treatment and did not increase ROS, even though TTFA efficiently generated ROS at low succinate in mitochondria isolated from R72C cells. Similarly, the high-affinity Qp site inhibitor Atpenin A5 rapidly increased intracellular succinate in WT cells but did not induce ROS or cell death, unlike MitoVES and TTFA that upregulated succinate only moderately. These results demonstrate that cell death initiation upon CII inhibition depends on ROS and that the extent of cell death correlates with the potency of inhibition at the Qp site unless intracellular succinate is high. In addition, this validates the Qp site of CII as a target for cell death induction with relevance to cancer therapy.
Collapse
Affiliation(s)
- K Kluckova
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - M Sticha
- Faculty of Sciences, Charles University, Prague, Czech Republic
| | - J Cerny
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - T Mracek
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - L Dong
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Z Drahota
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - E Gottlieb
- The Beatson Institute for Cancer Research, Glasgow, UK
| | - J Neuzil
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - J Rohlena
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
33
|
Ni Y, Seballos S, Ganapathi S, Gurin D, Fletcher B, Ngeow J, Nagy R, Kloos RT, Ringel MD, LaFramboise T, Eng C. Germline and somatic SDHx alterations in apparently sporadic differentiated thyroid cancer. Endocr Relat Cancer 2015; 22:121-30. [PMID: 25694510 PMCID: PMC4335266 DOI: 10.1530/erc-14-0537] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Along with breast and endometrial cancers, thyroid cancer is a major component cancer in Cowden syndrome (CS). Germline variants in SDHB/C/D (SDHx) genes account for subsets of CS/CS-like cases, conferring a higher risk of breast and thyroid cancers over those with only germline PTEN mutations. To investigate whether SDHx alterations at both germline and somatic levels occur in apparently sporadic breast cancer and differentiated thyroid cancer (DTC), we analyzed SDHx genes in the following four groups: i) 48 individuals with sporadic invasive breast adenocarcinoma for germline mutation; ii) 48 (expanded to 241) DTC for germline mutation; iii) 37 pairs DTC tumor-normal tissues for germline and somatic mutation and mRNA expression levels; and iv) data from 476 patients in the Cancer Genome Atlas thyroid carcinoma dataset for validation. No germline SDHx variant was found in a pilot series of 48 breast cancer cases. As germline SDHx variants were found in our pilot of 48 thyroid cancer cases, we expanded to three series of DTC comprising a total 754 cases, and found 48 (6%) with germline SDHx variants (P<0.001 compared with 0/350 controls). In 513 tumors, we found 27 (5%) with large somatic duplications within chromosome 1 encompassing SDHC. Both papillary and follicular thyroid tumors showed consistent loss of SDHC/D gene expression (P<0.001), which is associated with earlier disease onset and higher pathological-TNM stage. Therefore, we conclude that both germline and somatic SDHx mutations/variants occur in sporadic DTC but are very rare in sporadic breast cancer, and overall loss of SDHx gene expression is a signature of DTC.
Collapse
Affiliation(s)
- Ying Ni
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Clevland, Ohio, 44195, USA
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106, USA
- CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, 44116, USA
| | - Spencer Seballos
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Clevland, Ohio, 44195, USA
| | - Shireen Ganapathi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Clevland, Ohio, 44195, USA
| | - Danielle Gurin
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Clevland, Ohio, 44195, USA
| | - Benjamin Fletcher
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Clevland, Ohio, 44195, USA
| | - Joanne Ngeow
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Clevland, Ohio, 44195, USA
- Division of Medical Oncology, National Cancer Center, Singapore, 169610, Singapore
| | - Rebecca Nagy
- Division of Human Genetics, Department of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard G. Solove Research Institute,The Ohio State University, Columbus, Ohio, 43210, USA
| | - Richard T Kloos
- Division of Endocrinology and Metabolism, Department of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard G. Solove Research Institute,The Ohio State University, Columbus, Ohio, 43210, USA
| | - Matthew D Ringel
- Division of Endocrinology and Metabolism, Department of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard G. Solove Research Institute,The Ohio State University, Columbus, Ohio, 43210, USA
| | - Thomas LaFramboise
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Clevland, Ohio, 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106, USA
- CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, 44116, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Clevland, Ohio, 44195, USA
- Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio, 44195, USA
- Stanley Shalom Zielony Nursing Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio, 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106, USA
- CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, 44116, USA
- Correspondence should be addressed to C Eng
| |
Collapse
|