1
|
Mondéjar-Parreño G, Moreno-Manuel AI, Ruiz-Robles JM, Jalife J. Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome. Cell Discov 2025; 11:3. [PMID: 39788950 PMCID: PMC11717978 DOI: 10.1038/s41421-024-00738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 01/12/2025] Open
Abstract
A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential. Disruption of ion channel trafficking is one of the main sources of LQTS. We review some molecular pathways and mechanisms involved in cardiac ion channel trafficking. We highlight the importance of channelosomes and other macromolecular complexes in helping to maintain normal cardiac electrical function, and the defects that prolong the QT interval as a consequence of variants or the effect of drugs. We examine the concept of "interactome mapping" and illustrate by example the multiple protein-protein interactions an ion channel may undergo throughout its lifetime. We also comment on how mapping the interactomes of the different cardiac ion channels may help advance research into LQTS and other cardiac diseases. Finally, we discuss how using human induced pluripotent stem cell technology to model ion channel trafficking and its defects may help accelerate drug discovery toward preventing life-threatening arrhythmias. Advancements in understanding ion channel trafficking and channelosome complexities are needed to find novel therapeutic targets, predict drug interactions, and enhance the overall management and treatment of LQTS patients.
Collapse
Affiliation(s)
| | | | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Di Stolfo G, Mastroianno S, Soldato N, Massaro RS, De Luca G, Seripa D, Urbano M, Gravina C, Greco A, Siena P, Ciccone MM, Guaricci AI, Forleo C, Carella M, Potenza DR. The Role of TOMM40 in Cardiovascular Mortality and Conduction Disorders: An Observational Study. J Clin Med 2024; 13:3177. [PMID: 38892888 PMCID: PMC11172937 DOI: 10.3390/jcm13113177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Aims: TOMM40 single nucleotide polymorphism (SNP) rs2075650 consists of allelic variation c.275-31A > G and it has been linked to Alzheimer disease, apolipoprotein and cholesterol levels and other risk factors. However, data on its role in cardiovascular disorders are lacking. The first aim of the study is to evaluate mortality according to TOMM40 genotype in a cohort of selected patients affected by advanced atherosclerosis. Second aim was to investigate the relationship between Xg and AA alleles and the presence of conduction disorders and implantation of defibrillator (ICD) or pacemaker (PM) in our cohort. Materials and Methods: We enrolled 276 patients (mean age 70.16 ± 7.96 years) affected by hemodynamic significant carotid stenosis and/or ischemia of the lower limbs of II or III stadium Fontaine. We divided the population into two groups according to the genotype (Xg and AA carriers). We evaluated several electrocardiographic and echocardiographic parameters, including heart rate, rhythm, presence of right and left bundle branch block (LBBB and RBBB), PR interval, QRS duration and morphology, QTc interval, and left ventricular ejection fraction (LVEF). We clinically followed these patients for 82.53 ± 30.02 months and we evaluated the incidence of cardiovascular events, number of deaths and PM/ICD implantations. Results: We did not find a difference in total mortality between Xg and AA carriers (16.3 % vs. 19.4%; p = 0.62). However, we found a higher mortality for fatal cardiovascular events in Xg carriers (8.2% vs. 4.4%; HR = 4.53, 95% CI 1.179-17.367; p = 0.04) with respect to AA carriers. We noted a higher percentage of LBBB in Xg carriers (10.2% vs. 3.1%, p = 0.027), which was statistically significant. Presence of right bundle branch block (RBBB) was also higher in Xg (10.2% vs. 4.4%, p = 0.10), but without reaching statistically significant difference compared to AA patients. We did not observe significant differences in heart rate, presence of sinus rhythm, number of device implantations, PR and QTc intervals, QRS duration and LVEF between the two groups. At the time of enrolment, we observed a tendency for device implant in Xg carriers at a younger age compared to AA carriers (58.50 ± 0.71 y vs. 72.14 ± 11.11 y, p = 0.10). During the follow-up, we noted no statistical difference for new device implantations in Xg respect to AA carriers (8.2% vs. 3.5%; HR = 2.384, 95% CI 0.718-7.922; p = 0.156). The tendency to implant Xg at a younger age compared to AA patients was confirmed during follow-up, but without reaching a significant difference(69.50 ± 2.89 y vs. 75.63 ± 8.35 y, p = 0.074). Finally, we pointed out that Xg carriers underwent device implantation 7.27 ± 4.43 years before AA (65.83 ± 6.11 years vs. 73.10 ± 10.39 years) and that difference reached a statistically significant difference (p = 0.049) when we considered all patients, from enrollment to follow-up. Conclusions: In our study we observed that TOMM40 Xg patients affected by advanced atherosclerosis have a higher incidence of developing fatal cardiovascular events, higher incidence of LBBB and an earlier age of PM or ICD implantations, as compared to AA carriers. Further studies will be needed to evaluate the genomic contribution of TOMM40 SNPs to cardiovascular deaths and cardiac conduction diseases.
Collapse
Affiliation(s)
- Giuseppe Di Stolfo
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (S.M.); (R.S.M.); (G.D.L.); (D.R.P.)
| | - Sandra Mastroianno
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (S.M.); (R.S.M.); (G.D.L.); (D.R.P.)
| | - Nicolò Soldato
- University Cardiology Unit, Department of Interdisciplinary Medicine, Policlinic University Hospital, 70124 Bari, BA, Italy; (N.S.); (P.S.); (M.M.C.); (A.I.G.); (C.F.)
| | - Raimondo Salvatore Massaro
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (S.M.); (R.S.M.); (G.D.L.); (D.R.P.)
| | - Giovanni De Luca
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (S.M.); (R.S.M.); (G.D.L.); (D.R.P.)
| | - Davide Seripa
- Complex Structure of Geriatrics, Medical Sciences Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (D.S.); (M.U.); (C.G.); (A.G.)
| | - Maria Urbano
- Complex Structure of Geriatrics, Medical Sciences Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (D.S.); (M.U.); (C.G.); (A.G.)
| | - Carolina Gravina
- Complex Structure of Geriatrics, Medical Sciences Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (D.S.); (M.U.); (C.G.); (A.G.)
| | - Antonio Greco
- Complex Structure of Geriatrics, Medical Sciences Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (D.S.); (M.U.); (C.G.); (A.G.)
| | - Paola Siena
- University Cardiology Unit, Department of Interdisciplinary Medicine, Policlinic University Hospital, 70124 Bari, BA, Italy; (N.S.); (P.S.); (M.M.C.); (A.I.G.); (C.F.)
| | - Marco Matteo Ciccone
- University Cardiology Unit, Department of Interdisciplinary Medicine, Policlinic University Hospital, 70124 Bari, BA, Italy; (N.S.); (P.S.); (M.M.C.); (A.I.G.); (C.F.)
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Department of Interdisciplinary Medicine, Policlinic University Hospital, 70124 Bari, BA, Italy; (N.S.); (P.S.); (M.M.C.); (A.I.G.); (C.F.)
| | - Cinzia Forleo
- University Cardiology Unit, Department of Interdisciplinary Medicine, Policlinic University Hospital, 70124 Bari, BA, Italy; (N.S.); (P.S.); (M.M.C.); (A.I.G.); (C.F.)
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy;
| | - Domenico Rosario Potenza
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (S.M.); (R.S.M.); (G.D.L.); (D.R.P.)
| |
Collapse
|
3
|
Lewandowska J, Kalenik B, Wrzosek A, Szewczyk A. Redox Regulation of Mitochondrial Potassium Channels Activity. Antioxidants (Basel) 2024; 13:434. [PMID: 38671882 PMCID: PMC11047711 DOI: 10.3390/antiox13040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Redox reactions exert a profound influence on numerous cellular functions with mitochondria playing a central role in orchestrating these processes. This pivotal involvement arises from three primary factors: (1) the synthesis of reactive oxygen species (ROS) by mitochondria, (2) the presence of a substantial array of redox enzymes such as respiratory chain, and (3) the responsiveness of mitochondria to the cellular redox state. Within the inner mitochondrial membrane, a group of potassium channels, including ATP-regulated, large conductance calcium-activated, and voltage-regulated channels, is present. These channels play a crucial role in conditions such as cytoprotection, ischemia/reperfusion injury, and inflammation. Notably, the activity of mitochondrial potassium channels is intricately governed by redox reactions. Furthermore, the regulatory influence extends to other proteins, such as kinases, which undergo redox modifications. This review aims to offer a comprehensive exploration of the modulation of mitochondrial potassium channels through diverse redox reactions with a specific focus on the involvement of ROS.
Collapse
Affiliation(s)
| | | | | | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (J.L.); (B.K.); (A.W.)
| |
Collapse
|
4
|
Kulawiak B, Żochowska M, Bednarczyk P, Galuba A, Stroud DA, Szewczyk A. Loss of the large conductance calcium-activated potassium channel causes an increase in mitochondrial reactive oxygen species in glioblastoma cells. Pflugers Arch 2023; 475:1045-1060. [PMID: 37401985 PMCID: PMC10409681 DOI: 10.1007/s00424-023-02833-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Mitochondrial potassium (mitoK) channels play an important role in cellular physiology. These channels are expressed in healthy tissues and cancer cells. Activation of mitoK channels can protect neurons and cardiac tissue against injury induced by ischemia-reperfusion. In cancer cells, inhibition of mitoK channels leads to an increase in mitochondrial reactive oxygen species, which leads to cell death. In glioma cell activity of the mitochondrial, large conductance calcium-activated potassium (mitoBKCa) channel is regulated by the mitochondrial respiratory chain. In our project, we used CRISPR/Cas9 technology in human glioblastoma U-87 MG cells to generate knockout cell lines lacking the α-subunit of the BKCa channel encoded by the KCNMA1 gene, which also encodes cardiac mitoBKCa. Mitochondrial patch-clamp experiments showed the absence of an active mitoBKCa channel in knockout cells. Additionally, the absence of this channel resulted in increased levels of mitochondrial reactive oxygen species. However, analysis of the mitochondrial respiration rate did not show significant changes in oxygen consumption in the cell lines lacking BKCa channels compared to the wild-type U-87 MG cell line. These observations were reflected in the expression levels of selected mitochondrial genes, organization of the respiratory chain, and mitochondrial morphology, which did not show significant differences between the analyzed cell lines. In conclusion, we show that in U-87 MG cells, the pore-forming subunit of the mitoBKCa channel is encoded by the KCNMA1 gene. Additionally, the presence of this channel is important for the regulation of reactive oxygen species levels in mitochondria.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093, Warsaw, Poland.
| | - Monika Żochowska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093, Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Andrzej Galuba
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093, Warsaw, Poland
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093, Warsaw, Poland
| |
Collapse
|
5
|
Chapa-Dubocq XR, Rodríguez-Graciani KM, Escobales N, Javadov S. Mitochondrial Volume Regulation and Swelling Mechanisms in Cardiomyocytes. Antioxidants (Basel) 2023; 12:1517. [PMID: 37627512 PMCID: PMC10451443 DOI: 10.3390/antiox12081517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrion, known as the "powerhouse" of the cell, regulates ion homeostasis, redox state, cell proliferation and differentiation, and lipid synthesis. The inner mitochondrial membrane (IMM) controls mitochondrial metabolism and function. It possesses high levels of proteins that account for ~70% of the membrane mass and are involved in the electron transport chain, oxidative phosphorylation, energy transfer, and ion transport, among others. The mitochondrial matrix volume plays a crucial role in IMM remodeling. Several ion transport mechanisms, particularly K+ and Ca2+, regulate matrix volume. Small increases in matrix volume through IMM alterations can activate mitochondrial respiration, whereas excessive swelling can impair the IMM topology and initiates mitochondria-mediated cell death. The opening of mitochondrial permeability transition pores, the well-characterized phenomenon with unknown molecular identity, in low- and high-conductance modes are involved in physiological and pathological increases of matrix volume. Despite extensive studies, the precise mechanisms underlying changes in matrix volume and IMM structural remodeling in response to energy and oxidative stressors remain unknown. This review summarizes and discusses previous studies on the mechanisms involved in regulating mitochondrial matrix volume, IMM remodeling, and the crosstalk between these processes.
Collapse
Affiliation(s)
| | | | | | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA; (X.R.C.-D.); (K.M.R.-G.); (N.E.)
| |
Collapse
|
6
|
Szabo I, Szewczyk A. Mitochondrial Ion Channels. Annu Rev Biophys 2023; 52:229-254. [PMID: 37159294 DOI: 10.1146/annurev-biophys-092622-094853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mitochondria are involved in multiple cellular tasks, such as ATP synthesis, metabolism, metabolite and ion transport, regulation of apoptosis, inflammation, signaling, and inheritance of mitochondrial DNA. The majority of the correct functioning of mitochondria is based on the large electrochemical proton gradient, whose component, the inner mitochondrial membrane potential, is strictly controlled by ion transport through mitochondrial membranes. Consequently, mitochondrial function is critically dependent on ion homeostasis, the disturbance of which leads to abnormal cell functions. Therefore, the discovery of mitochondrial ion channels influencing ion permeability through the membrane has defined a new dimension of the function of ion channels in different cell types, mainly linked to the important tasks that mitochondrial ion channels perform in cell life and death. This review summarizes studies on animal mitochondrial ion channels with special focus on their biophysical properties, molecular identity, and regulation. Additionally, the potential of mitochondrial ion channels as therapeutic targets for several diseases is briefly discussed.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy;
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland;
| |
Collapse
|
7
|
Jiang L, Li J, Reilly S, Xin H, Guo N, Zhang X. Role of organellar Ca2+-activated K+ channels in disease development. Life Sci 2023; 316:121433. [PMID: 36708987 DOI: 10.1016/j.lfs.2023.121433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
The organellar Ca2+-activated K+ channels share a similar ability to transfer the alteration of Ca2+ concentration to membrane conductance of potassium. Multiple effects of Ca2+-activated K+ channels on cell metabolism and complex signaling pathways during organ development have been explored. The organellar Ca2+-activated K+ channels are able to control the ionic equilibrium and are always associated with oxidative stress in different organelles and the whole cells. Some drugs targeting Ca2+-activated K+ channels have been tested for various diseases in clinical trials. In this review, the known roles of organellar Ca2+-activated K+ channels were described, and their effects on different diseases, particularly on diabetes, cardiovascular diseases, and neurological diseases were discussed. It was attempted to summarize the currently known operational modes with the involvement of organellar Ca2+-activated K+ channels. This review may assist scholars to more comprehensively understand organellar Ca2+-activated K+ channels and related diseases.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiawei Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Nan Guo
- Department of Pharmacy, Minhang hospital, Fudan University, Shanghai, China.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Imaizumi Y. Reciprocal Relationship between Ca 2+ Signaling and Ca 2+-Gated Ion Channels as a Potential Target for Drug Discovery. Biol Pharm Bull 2022; 45:1-18. [PMID: 34980771 DOI: 10.1248/bpb.b21-00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular Ca2+ signaling functions as one of the most common second messengers of various signal transduction pathways in cells and mediates a number of physiological roles in a cell-type dependent manner. Ca2+ signaling also regulates more general and fundamental cellular activities, including cell proliferation and apoptosis. Among ion channels, Ca2+-permeable channels in the plasma membrane as well as endo- and sarcoplasmic reticulum membranes play important roles in Ca2+ signaling by directly contributing to the influx of Ca2+ from extracellular spaces or its release from storage sites, respectively. Furthermore, Ca2+-gated ion channels in the plasma membrane often crosstalk reciprocally with Ca2+ signals and are central to the regulation of cellular functions. This review focuses on the physiological and pharmacological impact of i) Ca2+-gated ion channels as an apparatus for the conversion of cellular Ca2+ signals to intercellularly propagative electrical signals and ii) the opposite feedback regulation of Ca2+ signaling by Ca2+-gated ion channel activities in excitable and non-excitable cells.
Collapse
Affiliation(s)
- Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
9
|
González-Cota AL, Santana-Calvo C, Servín-Vences R, Orta G, Balderas E. Regulatory mechanisms of mitochondrial BK Ca channels. Channels (Austin) 2021; 15:424-437. [PMID: 33955332 PMCID: PMC8117780 DOI: 10.1080/19336950.2021.1919463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial BKCa channel (mitoBKCa) is a splice variant of plasma membrane BKCa (Maxi-K, BKCa, Slo1, KCa1.1). While a high-resolution structure of mitoBKCa is not available yet, functional and structural studies of the plasma membrane BKCa have provided important clues on the gating of the channel by voltage and Ca2+, as well as the interaction with auxiliary subunits. To date, we know that the control of expression of mitoBKCa, targeting and voltage-sensitivity strongly depends on its association with its regulatory β1-subunit, which overall participate in the control of mitochondrial Ca2+-overload in cardiac myocytes. Moreover, novel regulatory mechanisms of mitoBKCa such as β-subunits and amyloid-β have recently been proposed. However, major basic questions including how the regulatory BKCa-β1-subunit reaches mitochondria and the mechanism through which amyloid-β impairs mitoBKCa channel function remain to be addressed.
Collapse
Affiliation(s)
- Ana L. González-Cota
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM. Av. Universidad 2001, Cuernavaca, Morelos, México
| | - Carmen Santana-Calvo
- Instituto Gulbenkian de Ciência. Rua da Quinta Grande 6, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universida de Nova de Lisboa. Av. da República, Oeiras, Portugal
| | - Rocío Servín-Vences
- Department of Neuroscience, The Scripps Research Institute. 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Gerardo Orta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM. Av. Universidad 2001, Cuernavaca, Morelos, México
| | - Enrique Balderas
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Zhao F, Zou MH. Role of the Mitochondrial Protein Import Machinery and Protein Processing in Heart Disease. Front Cardiovasc Med 2021; 8:749756. [PMID: 34651031 PMCID: PMC8505727 DOI: 10.3389/fcvm.2021.749756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential organelles for cellular energy production, metabolic homeostasis, calcium homeostasis, cell proliferation, and apoptosis. About 99% of mammalian mitochondrial proteins are encoded by the nuclear genome, synthesized as precursors in the cytosol, and imported into mitochondria by mitochondrial protein import machinery. Mitochondrial protein import systems function not only as independent units for protein translocation, but also are deeply integrated into a functional network of mitochondrial bioenergetics, protein quality control, mitochondrial dynamics and morphology, and interaction with other organelles. Mitochondrial protein import deficiency is linked to various diseases, including cardiovascular disease. In this review, we describe an emerging class of protein or genetic variations of components of the mitochondrial import machinery involved in heart disease. The major protein import pathways, including the presequence pathway (TIM23 pathway), the carrier pathway (TIM22 pathway), and the mitochondrial intermembrane space import and assembly machinery, related translocases, proteinases, and chaperones, are discussed here. This review highlights the importance of mitochondrial import machinery in heart disease, which deserves considerable attention, and further studies are urgently needed. Ultimately, this knowledge may be critical for the development of therapeutic strategies in heart disease.
Collapse
Affiliation(s)
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
11
|
Balaji S. The transferred translocases: An old wine in a new bottle. Biotechnol Appl Biochem 2021; 69:1587-1610. [PMID: 34324237 DOI: 10.1002/bab.2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022]
Abstract
The role of translocases was underappreciated and was not included as a separate class in the enzyme commission until August 2018. The recent research interests in proteomics of orphan enzymes, ionomics, and metallomics along with high-throughput sequencing technologies generated overwhelming data and revamped this enzyme into a separate class. This offers a great opportunity to understand the role of new or orphan enzymes in general and specifically translocases. The enzymes belonging to translocases regulate/permeate the transfer of ions or molecules across the membranes. These enzyme entries were previously associated with other enzyme classes, which are now transferred to a new enzyme class 7 (EC 7). The entries that are reclassified are important to extend the enzyme list, and it is the need of the hour. Accordingly, there is an upgradation of entries of this class of enzymes in several databases. This review is a concise compilation of translocases with reference to the number of entries currently available in the databases. This review also focuses on function as well as dysfunction of translocases during normal and disordered states, respectively.
Collapse
Affiliation(s)
- S Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| |
Collapse
|
12
|
Kulawiak B, Bednarczyk P, Szewczyk A. Multidimensional Regulation of Cardiac Mitochondrial Potassium Channels. Cells 2021; 10:1554. [PMID: 34205420 PMCID: PMC8235349 DOI: 10.3390/cells10061554] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria play a fundamental role in the energetics of cardiac cells. Moreover, mitochondria are involved in cardiac ischemia/reperfusion injury by opening the mitochondrial permeability transition pore which is the major cause of cell death. The preservation of mitochondrial function is an essential component of the cardioprotective mechanism. The involvement of mitochondrial K+ transport in this complex phenomenon seems to be well established. Several mitochondrial K+ channels in the inner mitochondrial membrane, such as ATP-sensitive, voltage-regulated, calcium-activated and Na+-activated channels, have been discovered. This obliges us to ask the following question: why is the simple potassium ion influx process carried out by several different mitochondrial potassium channels? In this review, we summarize the current knowledge of both the properties of mitochondrial potassium channels in cardiac mitochondria and the current understanding of their multidimensional functional role. We also critically summarize the pharmacological modulation of these proteins within the context of cardiac ischemia/reperfusion injury and cardioprotection.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland;
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland;
| |
Collapse
|
13
|
Gałecka S, Kulawiak B, Bednarczyk P, Singh H, Szewczyk A. Single channel properties of mitochondrial large conductance potassium channel formed by BK-VEDEC splice variant. Sci Rep 2021; 11:10925. [PMID: 34035423 PMCID: PMC8149700 DOI: 10.1038/s41598-021-90465-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/10/2021] [Indexed: 01/15/2023] Open
Abstract
The activation of mitochondrial large conductance calcium-activated potassium (mitoBKCa) channels increases cell survival during ischemia/reperfusion injury of cardiac cells. The basic biophysical and pharmacological properties of mitoBKCa correspond to the properties of the BKCa channels from the plasma membrane. It has been suggested that the VEDEC splice variant of the KCNMA1 gene product encoding plasma membrane BKCa is targeted toward mitochondria. However there has been no direct evidence that this protein forms a functional channel in mitochondria. In our study, we used HEK293T cells to express the VEDEC splice variant and observed channel activity in mitochondria using the mitoplast patch-clamp technique. For the first time, we found that transient expression with the VEDEC isoform resulted in channel activity with the conductance of 290 ± 3 pS. The channel was voltage-dependent and activated by calcium ions. Moreover, the activity of the channel was stimulated by the potassium channel opener NS11021 and inhibited by hemin and paxilline, which are known BKCa channel blockers. Immunofluorescence experiments confirmed the partial colocalization of the channel within the mitochondria. From these results, we conclude that the VEDEC isoform of the BKCa channel forms a functional channel in the inner mitochondrial membrane. Additionally, our data show that HEK293T cells are a promising experimental model for expression and electrophysiological studies of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Shur Gałecka
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw, University of Life Sciences-SGGW, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| |
Collapse
|
14
|
Pitt AS, Buchanan SK. A Biochemical and Structural Understanding of TOM Complex Interactions and Implications for Human Health and Disease. Cells 2021; 10:cells10051164. [PMID: 34064787 PMCID: PMC8150904 DOI: 10.3390/cells10051164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
The central role mitochondria play in cellular homeostasis has made its study critical to our understanding of various aspects of human health and disease. Mitochondria rely on the translocase of the outer membrane (TOM) complex for the bulk of mitochondrial protein import. In addition to its role as the major entry point for mitochondrial proteins, the TOM complex serves as an entry pathway for viral proteins. TOM complex subunits also participate in a host of interactions that have been studied extensively for their function in neurodegenerative diseases, cardiovascular diseases, innate immunity, cancer, metabolism, mitophagy and autophagy. Recent advances in our structural understanding of the TOM complex and the protein import machinery of the outer mitochondrial membrane have made structure-based therapeutics targeting outer mitochondrial membrane proteins during mitochondrial dysfunction an exciting prospect. Here, we describe advances in understanding the TOM complex, the interactome of the TOM complex subunits, the implications for the development of therapeutics, and our understanding of the structure/function relationship between components of the TOM complex and mitochondrial homeostasis.
Collapse
|
15
|
Torabi N, Noursadeghi E, Shayanfar F, Nazari M, Fahanik-Babaei J, Saghiri R, Khodagholi F, Eliassi A. Intranasal insulin improves the structure-function of the brain mitochondrial ATP-sensitive Ca 2+ activated potassium channel and respiratory chain activities under diabetic conditions. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166075. [PMID: 33444710 DOI: 10.1016/j.bbadis.2021.166075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/06/2020] [Accepted: 12/30/2020] [Indexed: 11/21/2022]
Abstract
Although it is well established that diabetes impairs mitochondrial respiratory chain activity, little is known of the effects of intranasal insulin (INI) on the mitochondrial respiratory chain and structure-function of mitoBKCa channel in diabetes. We have investigated this mechanism in an STZ-induced early type 2 diabetic model. Single ATP-sensitive mitoBKCa channel activity was considered in diabetic and INI-treated rats using a channel incorporated into the bilayer lipid membrane. Because mitoBKCa channels have been involved in mitochondrial respiratory chain activity, a study was undertaken to investigate whether the NADH, complexes I and IV, mitochondrial ROS production, and ΔΨm are altered in an early diabetic model. In this work, we provide evidence for a significant decrease in channel open probability and conductance in diabetic rats. Evidence has been shown that BKCa channel β2 subunits induce a left shift in the BKCa channel voltage dependent curve in low Ca2+ conditions,; our results indicated a significant decrease in mitoBKCa β2 subunits using Western blot analysis. Importantly, INI treatment improved mitoBKCa channel behaviors and β2 subunits expression up to ~70%. We found that early diabetes decreased activities of complex I and IV and increased NADH, ROS production, and ΔΨm. Surprisingly, INI modified the mitochondrial respiratory chain, ROS production, and ΔΨm up to ~70%. Our results thus demonstrate an INI improvement in respiratory chain activity and ROS production in brain mitochondrial preparations coming from the STZ early diabetic rat model, an effect potentially linked to INI improvement in mitoBKCa channel activity and channel β2 subunit expression.
Collapse
Affiliation(s)
- Nihad Torabi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Noursadeghi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Shayanfar
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nazari
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Saghiri
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| | - Afsaneh Eliassi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Signaling pathways targeting mitochondrial potassium channels. Int J Biochem Cell Biol 2020; 125:105792. [PMID: 32574707 DOI: 10.1016/j.biocel.2020.105792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
In this review, we describe key signaling pathways regulating potassium channels present in the inner mitochondrial membrane. The signaling cascades covered here include phosphorylation, redox reactions, modulation by calcium ions and nucleotides. The following types of potassium channels have been identified in the inner mitochondrial membrane of various tissues: ATP-sensitive, Ca2+-activated, voltage-gated and two-pore domain potassium channels. The direct roles of these channels involve regulation of mitochondrial respiration, membrane potential and synthesis of reactive oxygen species (ROS). Changes in channel activity lead to diverse pro-life and pro-death responses in different cell types. Hence, characterizing the signaling pathways regulating mitochondrial potassium channels will facilitate understanding the physiological role of these proteins. Additionally, we describe in this paper certain regulatory mechanisms, which are unique to mitochondrial potassium channels.
Collapse
|
17
|
Belyaeva EA, Sokolova TV. Mitigating effect of paxilline against injury produced by Cd 2+ in rat pheochromocytoma PC12 and ascites hepatoma AS-30D cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110519. [PMID: 32244116 DOI: 10.1016/j.ecoenv.2020.110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023]
Abstract
On two rat cell lines, pheochromocytoma PC12 and ascites hepatoma AS-30D, and on rat liver mitochondria we studied action of paxilline (lipophilic mycotoxin from fungus Penicillium paxilli which is blocker of large-conductance potassium channels) against harmful effects of Cd(II) - one of the most dangerous toxic metals and environmental pollutants. We investigated an influence of paxilline on cell viability and mitochondrial function in the presence and in the absence of Cd2+. As found, paxilline protected partially from the Cd2+-induced cytotoxicity, namely taken in concentration of 1 μM it decreased the Cd2+-induced cell necrosis in average by 10-14 or 13-23% for AS-30D and PC12 cells, respectively. Nevertheless, paxilline did not affect the Cd2+-induced apoptosis of AS-30D cells. The alleviating concentration of paxilline reduced an intracellular production of reactive oxygen species (ROS) in PC12 cells intoxicated by Cd2+ and enhanced the ROS production in control AS-30D cells; however, it weakly affected mitochondrial membrane potential of the cells in the absence and in the presence of Cd2+. The ameliorative concentration of paxilline decreased the maximal respiration rates of control cells of both types after short-term (3-5 h) treatment with it while the rates reached their control levels after long-term (24-48 h) incubation with the drug. Paxilline was not protective against the Cd2+-induced membrane permeability and respiration rate changes in isolated rat liver mitochondria. As result, the mitochondrial electron transport chain was concluded to contribute in the mitigating effect of paxilline against the Cd2+-produced cell injury.
Collapse
Affiliation(s)
- Elena A Belyaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Thorez Pr. 44, 194223, St.-Petersburg, Russia.
| | - Tatyana V Sokolova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Thorez Pr. 44, 194223, St.-Petersburg, Russia
| |
Collapse
|
18
|
Ponnalagu D, Hussain AT, Thanawala R, Meka J, Bednarczyk P, Feng Y, Szewczyk A, GururajaRao S, Bopassa JC, Khan M, Singh H. Chloride channel blocker IAA-94 increases myocardial infarction by reducing calcium retention capacity of the cardiac mitochondria. Life Sci 2019; 235:116841. [PMID: 31494173 PMCID: PMC7664129 DOI: 10.1016/j.lfs.2019.116841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 01/14/2023]
Abstract
Indanyloxyacetic acid-94 (IAA-94), an intracellular chloride channel blocker, is shown to ablate cardioprotection rendered by ischemic preconditioning (IPC), N (6)-2-(4-aminophenyl) ethyladenosine or the PKC activator phorbol 12-myristate 13-acetate and cyclosporin A (CsA) in both ex-vivo and in-vivo ischemia-reperfusion (IR) injury. Thus signifying the role of the IAA-94 sensitive chloride channels in mediating cardio-protection upon IR injury. Although IAA-94 sensitive chloride currents are recorded in cardiac mitoplast, there is still a lack of understanding of the mechanism by which IAA-94 increases myocardial infarction (MI) by IR injury. Mitochondria are the key arbitrators of cell life and death pathways. Both oxidative stress and calcium overload in the mitochondria, elicit pathways resulting in the opening of mitochondrial permeability transition pore (mPTP) leading to cell death. Therefore, in this study we explored the role of IAA-94 in MI and in maintaining calcium retention capacity (CRC) of cardiac mitochondria after IR. IAA-94 inhibited the CRC of the isolated cardiac mitochondria in a concentration-dependent manner as measured spectrofluorimetrically using calcium green-5 N. Interestingly, IAA-94 did not change the mitochondrial membrane potential. Further, CsA a blocker of mPTP opening could not override the effect of IAA-94. We also showed for the first time that IAA-94 perfusion after ischemic event augments MI by reducing the CRC of mitochondria. To conclude, our results demonstrate that the mechanism of IAA-94 mediated cardio-deleterious effects is via modulating the mitochondria CRC, thereby playing a role in mPTP opening. These findings highlight new pharmacological targets, which can mediate cardioprotection from IR injury.
Collapse
Affiliation(s)
- Devasena Ponnalagu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, United States of America.
| | - Ahmed Tafsirul Hussain
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America
| | - Rushi Thanawala
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America
| | - Jahnavi Meka
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America
| | - Piotr Bednarczyk
- Department of Biophysics, Warsaw University of Life Sciences - SGGW, Poland
| | - Yansheng Feng
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX 78229, United States of America
| | - Adam Szewczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Poland
| | - Shubha GururajaRao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, United States of America
| | - Jean C Bopassa
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX 78229, United States of America
| | - Mahmood Khan
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, United States of America; Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, United States of America
| | - Harpreet Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, United States of America.
| |
Collapse
|
19
|
Balderas E, Torres NS, Rosa-Garrido M, Chaudhuri D, Toro L, Stefani E, Olcese R. MitoBK Ca channel is functionally associated with its regulatory β1 subunit in cardiac mitochondria. J Physiol 2019; 597:3817-3832. [PMID: 31173379 DOI: 10.1113/jp277769] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/03/2019] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Association of plasma membrane BKCa channels with BK-β subunits shapes their biophysical properties and physiological roles; however, functional modulation of the mitochondrial BKCa channel (mitoBKCa ) by BK-β subunits is not established. MitoBKCa -α and the regulatory BK-β1 subunit associate in mouse cardiac mitochondria. A large fraction of mitoBKCa display properties similar to that of plasma membrane BKCa when associated with BK-β1 (left-shifted voltage dependence of activation, V1/2 = -55 mV, 12 µm matrix Ca2+ ). In BK-β1 knockout mice, cardiac mitoBKCa displayed a low Po and a depolarized V1/2 of activation (+47 mV at 12 µm matrix Ca2+ ) Co-expression of BKCa with the BK-β1 subunit in HeLa cells doubled the density of BKCa in mitochondria. The present study supports the view that the cardiac mitoBKCa channel is functionally modulated by the BK-β1 subunit; proper targeting and activation of mitoBKCa shapes mitochondrial Ca2+ handling. ABSTRACT Association of the plasma membrane BKCa channel with auxiliary BK-β1-4 subunits profoundly affects the regulatory mechanisms and physiological processes in which this channel participates. However, functional association of mitochondrial BK (mitoBKCa ) with regulatory subunits is unknown. We report that mitoBKCa functionally associates with its regulatory subunit BK-β1 in adult rodent cardiomyocytes. Cardiac mitoBKCa is a calcium- and voltage-activated channel that is sensitive to paxilline with a large conductance for K+ of 300 pS. Additionally, mitoBKCa displays a high open probability (Po ) and voltage half-activation (V1/2 = -55 mV, n = 7) resembling that of plasma membrane BKCa when associated with its regulatory BK-β1 subunit. Immunochemistry assays demonstrated an interaction between mitochondrial BKCa -α and its BK-β1 subunit. Mitochondria from the BK-β1 knockout (KO) mice showed sparse mitoBKCa currents (five patches with mitoBKCa activity out of 28 total patches from n = 5 different hearts), displaying a depolarized V1/2 of activation (+47 mV in 12 µm matrix Ca2+ ). The reduced activity of mitoBKCa was accompanied by a high expression of BKCa transcript in the BK-β1 KO, suggesting a lower abundance of mitoBKCa channels in this genotype. Accordingly, BK-β1subunit increased the localization of BKDEC (i.e. the splice variant of BKCa that specifically targets mitochondria) into mitochondria by two-fold. Importantly, both paxilline-treated and BK-β1 KO mitochondria displayed a more rapid Ca2+ overload, featuring an early opening of the mitochondrial transition pore. We provide strong evidence that mitoBKCa associates with its regulatory BK-β1 subunit in cardiac mitochondria, ensuring proper targeting and activation of the mitoBKCa channel that helps to maintain mitochondrial Ca2+ homeostasis.
Collapse
Affiliation(s)
- Enrique Balderas
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Natalia S Torres
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Manuel Rosa-Garrido
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine.,Department of Physiology
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Ligia Toro
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine.,Cardiovascular Research Laboratories.,Department of Molecular and Medical Pharmacology.,Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Enrico Stefani
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine.,Department of Physiology.,Cardiovascular Research Laboratories.,Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine.,Department of Physiology.,Cardiovascular Research Laboratories.,Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
20
|
Heinemeyer T, Stemmet M, Bardien S, Neethling A. Underappreciated Roles of the Translocase of the Outer and Inner Mitochondrial Membrane Protein Complexes in Human Disease. DNA Cell Biol 2018; 38:23-40. [PMID: 30481057 DOI: 10.1089/dna.2018.4292] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are critical for cellular survival, and for their proper functioning, translocation of ∼1500 proteins across the mitochondrial membranes is required. The translocase of the outer (TOMM) and inner mitochondrial membrane (TIMM) complexes are major components of this translocation machinery. Through specific processes, preproteins and other molecules are imported, translocated, and directed to specific mitochondrial compartments for their function. In this study, we review the association of subunits of these complexes with human disease. Pathogenic mutations have been identified in the TIMM8A (DDP) and DNAJC19 (TIMM14) genes and are linked to Mohr-Tranebjærg syndrome and dilated cardiomyopathy syndrome (with and without ataxia), respectively. Polymorphisms in TOMM40 have been associated with Alzheimer's disease, frontotemporal lobar degeneration, Parkinson's disease with dementia, dementia with Lewy bodies, nonpathological cognitive aging, and various cardiovascular-related traits. Furthermore, reduced protein expression levels of several complex subunits have been associated with Parkinson's disease, Meniere's disease, and cardiovascular disorders. However, increased mRNA and protein levels of complex subunits are found in cancers. This review highlights the importance of the mitochondrial import machinery in human disease and stresses the need for further studies. Ultimately, this knowledge may prove to be critical for the development of therapeutic modalities for these conditions.
Collapse
Affiliation(s)
- Thea Heinemeyer
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| | - Monique Stemmet
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| | - Annika Neethling
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| |
Collapse
|
21
|
Walewska A, Kulawiak B, Szewczyk A, Koprowski P. Mechanosensitivity of mitochondrial large-conductance calcium-activated potassium channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:797-805. [PMID: 29775559 DOI: 10.1016/j.bbabio.2018.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/29/2018] [Accepted: 05/10/2018] [Indexed: 12/01/2022]
Abstract
Potassium channels have been discovered in the inner mitochondrial membrane of various cells. These channels can regulate the mitochondrial membrane potential, the matrix volume, respiration and reactive species generation. Therefore, it is believed that their activation is cytoprotective in various tissues. In our study, the single-channel activity of a large-conductance calcium-activated potassium channel (mitoBKCa) was measured by the patch-clamp technique on mitoplasts derived from mitochondria isolated from human glioma U-87 MG cells. Here, we show for the first time that mechanical stimulation of mitoBKCa channels results in an increased probability of channel opening. However, the mechanosensitivity of mitoBKCa channels was variable with some channels exhibiting no mechanosensitivity. We detected the expression of mechanosensitive BKCa-STREX exon in U-87 MG cells and hypotesize, based on previous studies demonstrating the presence of multiple BKCa splice variants that variable mechanosensitivity of mitoBKCa could be the result of the presence of diverse BKCa isoforms in mitochondria of U-87 MG cells. Our findings indicate the possible involvement of the mitoBKCa channel in mitochondria activities in which changes in membrane tension and shape play a crucial role, such as fusion/fission and cristae remodeling.
Collapse
Affiliation(s)
- Agnieszka Walewska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
22
|
Wang Y, Deng GG, Davies KP. Urothelial MaxiK-activity regulates mucosal and detrusor metabolism. PLoS One 2017; 12:e0189387. [PMID: 29281667 PMCID: PMC5744919 DOI: 10.1371/journal.pone.0189387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/26/2017] [Indexed: 01/07/2023] Open
Abstract
There is increasing evidence for a role of MaxiK potassium channel-activity in regulating the metabolism and intracellular signaling of non-contractile bladder mucosal tissues. At present however no studies have determined the impact of urothelial MaxiK-activity on overall bladder metabolism. To address this we have investigated the effect of bladder lumen instillation of the MaxiK inhibitor, iberiotoxin (IBTX), on mucosal and detrusor metabolism using metabolomics. Since IBTX does not cross plasma membranes, when instilled into the bladder lumen it would only effect urothelially expressed MaxiK-activity. Surprisingly IBTX treatment caused more effect on the metabolome of the detrusor than mucosa (the levels of 17% of detected detrusor metabolites were changed in comparison to 6% of metabolites in mucosal tissue following IBTX treatment). In mucosal tissues, the major effects can be linked to mitochondrial-associated metabolism whereas in detrusor there were additional changes in energy generating pathways (such as glycolysis and the TCA cycle). In the detrusor, changes in metabolism are potentially a result of IBTX effecting MaxiK-linked signaling pathways between the mucosa and detrusor, secondary to changes in physiological activity or a combination of both. Overall we demonstrate that urothelial MaxiK-activity plays a significant role in determining mitochondrially-associated metabolism in mucosal tissues, which effects the metabolism of detrusor tissue. Our work adds further evidence that the urothelium plays a major role in determining overall bladder physiology. Since decreased MaxiK-activity is associated with several bladder pathophysiology's, the changes in mucosal metabolism reported here may represent novel downstream targets for therapeutic interventions.
Collapse
Affiliation(s)
- Yi Wang
- Department of Urology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gary G. Deng
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Kelvin P. Davies
- Department of Urology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|