1
|
Kambali M, Li Y, Unichenko P, Feria Pliego JA, Yadav R, Liu J, McGuinness P, Cobb JG, Wang M, Nagarajan R, Lyu J, Vongsouthi V, Jackson CJ, Engin E, Coyle JT, Shin J, Hodgson NW, Hensch TK, Talkowski ME, Homanics GE, Bolshakov VY, Henneberger C, Rudolph U. An increased copy number of glycine decarboxylase (GLDC) associated with psychosis reduces extracellular glycine and impairs NMDA receptor function. Mol Psychiatry 2024:10.1038/s41380-024-02711-5. [PMID: 39210012 DOI: 10.1038/s41380-024-02711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Glycine is an obligatory co-agonist at excitatory NMDA receptors in the brain, especially in the dentate gyrus, which has been postulated to be crucial for the development of psychotic associations and memories with psychotic content. Drugs modulating glycine levels are in clinical development for improving cognition in schizophrenia. However, the functional relevance of the regulation of glycine metabolism by endogenous enzymes is unclear. Using a chromosome-engineered allelic series in mice, we report that a triplication of the gene encoding the glycine-catabolizing enzyme glycine decarboxylase (GLDC) - as found on a small supernumerary marker chromosome in patients with psychosis - reduces extracellular glycine levels as determined by optical fluorescence resonance energy transfer (FRET) in dentate gyrus (DG) and suppresses long-term potentiation (LTP) in mPP-DG synapses but not in CA3-CA1 synapses, reduces the activity of biochemical pathways implicated in schizophrenia and mitochondrial bioenergetics, and displays deficits in schizophrenia-like behaviors which are in part known to be dependent on the activity of the dentate gyrus, e.g., prepulse inhibition, startle habituation, latent inhibition, working memory, sociability and social preference. Our results demonstrate that Gldc negatively regulates long-term synaptic plasticity in the dentate gyrus in mice, suggesting that an increase in GLDC copy number possibly contributes to the development of psychosis in humans.
Collapse
Affiliation(s)
- Maltesh Kambali
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yan Li
- Cellular Neurobiology Laboratory, McLean Hospital Belmont, Belmont, MA, USA
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Petr Unichenko
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jing Liu
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Patrick McGuinness
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Johanna G Cobb
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Muxiao Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rajasekar Nagarajan
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jinrui Lyu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Vanessa Vongsouthi
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Elif Engin
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Joseph T Coyle
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jaeweon Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nathaniel W Hodgson
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Takao K Hensch
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregg E Homanics
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vadim Y Bolshakov
- Cellular Neurobiology Laboratory, McLean Hospital Belmont, Belmont, MA, USA
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA.
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
2
|
Li C, Yang S, Zhang M, Yang Y, Li Z, Peng L. SntB Affects Growth to Regulate Infecting Potential in Penicillium italicum. J Fungi (Basel) 2024; 10:368. [PMID: 38921355 PMCID: PMC11204802 DOI: 10.3390/jof10060368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024] Open
Abstract
Penicillium italicum, a major postharvest pathogen, causes blue mold rot in citrus fruits through the deployment of various virulence factors. Recent studies highlight the role of the epigenetic reader, SntB, in modulating the pathogenicity of phytopathogenic fungi. Our research revealed that the deletion of the SntB gene in P. italicum led to significant phenotypic alterations, including delayed mycelial growth, reduced spore production, and decreased utilization of sucrose. Additionally, the mutant strain exhibited increased sensitivity to pH fluctuations and elevated iron and calcium ion stress, culminating in reduced virulence on Gannan Novel oranges. Ultrastructural analyses disclosed notable disruptions in cell membrane integrity, disorganization within the cellular matrix, and signs of autophagy. Transcriptomic data further indicated a pronounced upregulation of hydrolytic enzymes, oxidoreductases, and transport proteins, suggesting a heightened energy demand. The observed phenomena were consistent with a carbon starvation response potentially triggering apoptotic pathways, including iron-dependent cell death. These findings collectively underscored the pivotal role of SntB in maintaining the pathogenic traits of P. italicum, proposing that targeting PiSntB could offer a new avenue for controlling citrus fungal infections and subsequent fruit decay.
Collapse
Affiliation(s)
| | | | | | | | | | - Litao Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.L.); (S.Y.)
| |
Collapse
|
3
|
Zhang Z, Bi F, Huang Y, Guo W. Construction of dental pulp decellularized matrix by cyclic lavation combined with mechanical stirring and its proteomic analysis. Biomed Mater 2024; 19:045002. [PMID: 38653259 DOI: 10.1088/1748-605x/ad4245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
The decellularized matrix has a great potential for tissue remodeling and regeneration; however, decellularization could induce host immune rejection due to incomplete cell removal or detergent residues, thereby posing significant challenges for its clinical application. Therefore, the selection of an appropriate detergent concentration, further optimization of tissue decellularization technique, increased of biosafety in decellularized tissues, and reduction of tissue damage during the decellularization procedures are pivotal issues that need to be investigated. In this study, we tested several conditions and determined that 0.1% Sodium dodecyl sulfate and three decellularization cycles were the optimal conditions for decellularization of pulp tissue. Decellularization efficiency was calculated and the preparation protocol for dental pulp decellularization matrix (DPDM) was further optimized. To characterize the optimized DPDM, the microstructure, odontogenesis-related protein and fiber content were evaluated. Our results showed that the properties of optimized DPDM were superior to those of the non-optimized matrix. We also performed the 4D-Label-free quantitative proteomic analysis of DPDM and demonstrated the preservation of proteins from the natural pulp. This study provides a optimized protocol for the potential application of DPDM in pulp regeneration.
Collapse
Affiliation(s)
- Zhijun Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Fei Bi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yibing Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Yunnan Key Laboratory of Stomatology, The Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming 650500, People's Republic of China
| |
Collapse
|
4
|
Kühnisch J, Theisen S, Dartsch J, Fritsche-Guenther R, Kirchner M, Obermayer B, Bauer A, Kahlert AK, Rothe M, Beule D, Heuser A, Mertins P, Kirwan JA, Berndt N, MacRae CA, Hubner N, Klaassen S. Prdm16 mutation determines sex-specific cardiac metabolism and identifies two novel cardiac metabolic regulators. Cardiovasc Res 2024; 119:2902-2916. [PMID: 37842925 PMCID: PMC10874277 DOI: 10.1093/cvr/cvad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 10/17/2023] Open
Abstract
AIMS Mutation of the PRDM16 gene causes human dilated and non-compaction cardiomyopathy. The PRDM16 protein is a transcriptional regulator that affects cardiac development via Tbx5 and Hand1, thus regulating myocardial structure. The biallelic inactivation of Prdm16 induces severe cardiac dysfunction with post-natal lethality and hypertrophy in mice. The early pathological events that occur upon Prdm16 inactivation have not been explored. METHODS AND RESULTS This study performed in-depth pathophysiological and molecular analyses of male and female Prdm16csp1/wt mice that carry systemic, monoallelic Prdm16 gene inactivation. We systematically assessed early molecular changes through transcriptomics, proteomics, and metabolomics. Kinetic modelling of cardiac metabolism was performed in silico with CARDIOKIN. Prdm16csp1/wt mice are viable up to 8 months, develop hypoplastic hearts, and diminished systolic performance that is more pronounced in female mice. Prdm16csp1/wt cardiac tissue of both sexes showed reductions in metabolites associated with amino acid as well as glycerol metabolism, glycolysis, and the tricarboxylic acid cycle. Prdm16csp1/wt cardiac tissue revealed diminished glutathione (GSH) and increased inosine monophosphate (IMP) levels indicating oxidative stress and a dysregulated energetics, respectively. An accumulation of triacylglycerides exclusively in male Prdm16csp1/wt hearts suggests a sex-specific metabolic adaptation. Metabolic modelling using CARDIOKIN identified a reduction in fatty acid utilization in males as well as lower glucose utilization in female Prdm16csp1/wt cardiac tissue. On the level of transcripts and protein expression, Prdm16csp1/wt hearts demonstrate an up-regulation of pyridine nucleotide-disulphide oxidoreductase domain 2 (Pyroxd2) and the transcriptional regulator pre-B-cell leukaemia transcription factor interacting protein 1 (Pbxip1). The strongest concordant transcriptional up-regulation was detected for Prdm16 itself, probably through an autoregulatory mechanism. CONCLUSIONS Monoallelic, global Prdm16 mutation diminishes cardiac performance in Prdm16csp1/wt mice. Metabolic alterations and transcriptional dysregulation in Prdm16csp1/wt affect cardiac tissue. Female Prdm16csp1/wt mice develop a more pronounced phenotype, indicating sexual dimorphism at this early pathological window. This study suggests that metabolic dysregulation is an early event in the PRDM16 associated cardiac pathology.
Collapse
Affiliation(s)
- Jirko Kühnisch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Simon Theisen
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Josephine Dartsch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Raphaela Fritsche-Guenther
- BIH Metabolomics Platform, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marieluise Kirchner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Proteomics Platform, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Bauer
- BIH Metabolomics Platform, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anne-Karin Kahlert
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital of Schleswig-Holstein, Kiel, Germany
- DZHK German Center for Cardiovascular Research, partner site Hamburg/Kiel/Lübeck, Germany
- Institute of Immunology and Genetics, Kaiserslautern, Germany
| | | | - Dieter Beule
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arnd Heuser
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Philipp Mertins
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Proteomics Platform, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jennifer A Kirwan
- BIH Metabolomics Platform, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nikolaus Berndt
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam—Rehbruecke (DIfE), Nuthetal, Germany
| | - Calum A MacRae
- Harvard Medical School and Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, USA
| | - Norbert Hubner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Sabine Klaassen
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Pediatric Cardiology, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| |
Collapse
|
5
|
Liu X, Bao X, Li Z, Zhang Q. Investigation of Gene Networks in Three Components of Immune System Provides Novel Insights into Immune Response Mechanisms against Edwardsiella tarda Infection in Paralichthys olivaceus. Animals (Basel) 2023; 13:2542. [PMID: 37570350 PMCID: PMC10417057 DOI: 10.3390/ani13152542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
As a quintessential marine teleost, Paralichthys olivaceus demonstrates vulnerability to a range of pathogens. Long-term infection with Edwardsiella tarda significantly inhibits fish growth and even induces death. Gills, blood, and kidneys, pivotal components of the immune system in teleosts, elicit vital regulatory roles in immune response processes including immune cell differentiation, diseased cell clearance, and other immunity-related mechanisms. This study entailed infecting P. olivaceus with E. tarda for 48 h and examining transcriptome data from the three components at 0, 8, and 48 h post-infection employing weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network analysis. Network analyses revealed a series of immune response processes after infection and identified multiple key modules and key, core, and hub genes including xpo1, src, tlr13, stat1, and mefv. By innovatively amalgamating WGCNA and PPI network methodologies, our investigation facilitated an in-depth examination of immune response mechanisms within three significant P. olivaceus components post-E. tarda infection. Our results provided valuable genetic resources for understanding immunity in P. olivaceus immune-related components and assisted us in further exploring the molecular mechanisms of E. tarda infection in teleosts.
Collapse
Affiliation(s)
- Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Quanqi Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
6
|
Li C, Zhang K, Jin X, Gao X, Lv J, Shen J, Gao X, Zhang H, Sun J. A transcriptomics and network pharmacology approach to elucidate the mechanism of action of geniposide on carbon tetrachloride-induced liver injury in rats. Int Immunopharmacol 2023; 120:110391. [PMID: 37262958 DOI: 10.1016/j.intimp.2023.110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Geniposide, the main active component of Fructus Gardeniae (FG), is known to confer protection against liver diseases. Herein we explored the hepatoprotective effects of geniposide and elucidated its molecular mechanism by transcriptome RNA-seq and network pharmacology. Liver injury was modeled by intraperitoneally injecting CCl4 (0.15% prepared with refined peanut oil) at a dose of 1.5 mL/kg thrice a week; from the second week, rats were administered geniposide (20 mg/kg or 40 mg/kg) by gavage for 6 weeks. Serum and liver samples were then collected to assess liver function indicators and inflammatory factors and to observe pathological changes in the liver. The Illumina HiSeq 4000 platform was used to obtain transcriptome data from the liver tissue of rats after geniposide administration. Core targets and pathways related to the liver protection mechanism of geniposide were further analyzed by integrating transcriptomics and network pharmacology. Differentially expressed genes (DEGs), core targets, and signaling pathways were identified by methods such as q-PCR, molecular docking, and Western blotting. We found that after geniposide administration, the levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and inflammatory factors decreased in the model group, and liver injury cells be effectively repaired. RNA-seq data analysis showed that compared to control group, the model group reversed 1,451 DEGs; further, compared to model group, geniposide reversed 511 DEGs. Eight key targets, including PIK3R1, ACOX3, and EGF, were found through further analyses. Geniposide was determined to mainly regulate the PPAR signaling pathway, apoptosis signaling pathway, and MAPK signaling pathway in liver tissues. To summarize, the protective and restorative effects of geniposide on rat liver may seem to be related to its efficacy in inhibiting the activation of inflammatory pathways, thereby reducing cell apoptosis. Our findings should serve as the basis for the development of functional foods or drugs to prevent and treat liver diseases.
Collapse
Affiliation(s)
- Chunnan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.
| | - Kaiyue Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.
| | - Xin Jin
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.
| | - Xiaochen Gao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.
| | - Jingwei Lv
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.
| | - Jiaming Shen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.
| | - Xu Gao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.
| | - Hui Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.
| | - Jiaming Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
7
|
Kambali M, Li Y, Unichenko P, Pliego JF, Yadav R, Liu J, McGuinness P, Cobb JG, Wang M, Nagarajan R, Lyu J, Vongsouthi V, Jackson CJ, Engin E, Coyle JT, Shin J, Talkowski ME, Homanics GE, Bolshakov VY, Henneberger C, Rudolph U. A marker chromosome in psychosis identifies glycine decarboxylase (GLDC) as a novel regulator of neuronal and synaptic function in the hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542745. [PMID: 37398055 PMCID: PMC10312439 DOI: 10.1101/2023.05.29.542745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The biological significance of a small supernumerary marker chromosome that results in dosage alterations to chromosome 9p24.1, including triplication of the GLDC gene encoding glycine decarboxylase, in two patients with psychosis is unclear. In an allelic series of copy number variant mouse models, we identify that triplication of Gldc reduces extracellular glycine levels as determined by optical fluorescence resonance energy transfer (FRET) in dentate gyrus (DG) but not in CA1, suppresses long-term potentiation (LTP) in mPP-DG synapses but not in CA3-CA1 synapses, reduces the activity of biochemical pathways implicated in schizophrenia and mitochondrial bioenergetics, and displays deficits in prepulse inhibition, startle habituation, latent inhibition, working memory, sociability and social preference. Our results thus provide a link between a genomic copy number variation, biochemical, cellular and behavioral phenotypes, and further demonstrate that GLDC negatively regulates long-term synaptic plasticity at specific hippocampal synapses, possibly contributing to the development of neuropsychiatric disorders.
Collapse
|
8
|
Senabouth A, Daniszewski M, Lidgerwood GE, Liang HH, Hernández D, Mirzaei M, Keenan SN, Zhang R, Han X, Neavin D, Rooney L, Lopez Sanchez MIG, Gulluyan L, Paulo JA, Clarke L, Kearns LS, Gnanasambandapillai V, Chan CL, Nguyen U, Steinmann AM, McCloy RA, Farbehi N, Gupta VK, Mackey DA, Bylsma G, Verma N, MacGregor S, Watt MJ, Guymer RH, Powell JE, Hewitt AW, Pébay A. Transcriptomic and proteomic retinal pigment epithelium signatures of age-related macular degeneration. Nat Commun 2022; 13:4233. [PMID: 35882847 PMCID: PMC9325891 DOI: 10.1038/s41467-022-31707-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 06/29/2022] [Indexed: 11/08/2022] Open
Abstract
There are currently no treatments for geographic atrophy, the advanced form of age-related macular degeneration. Hence, innovative studies are needed to model this condition and prevent or delay its progression. Induced pluripotent stem cells generated from patients with geographic atrophy and healthy individuals were differentiated to retinal pigment epithelium. Integrating transcriptional profiles of 127,659 retinal pigment epithelium cells generated from 43 individuals with geographic atrophy and 36 controls with genotype data, we identify 445 expression quantitative trait loci in cis that are asssociated with disease status and specific to retinal pigment epithelium subpopulations. Transcriptomics and proteomics approaches identify molecular pathways significantly upregulated in geographic atrophy, including in mitochondrial functions, metabolic pathways and extracellular cellular matrix reorganization. Five significant protein quantitative trait loci that regulate protein expression in the retinal pigment epithelium and in geographic atrophy are identified - two of which share variants with cis- expression quantitative trait loci, including proteins involved in mitochondrial biology and neurodegeneration. Investigation of mitochondrial metabolism confirms mitochondrial dysfunction as a core constitutive difference of the retinal pigment epithelium from patients with geographic atrophy. This study uncovers important differences in retinal pigment epithelium homeostasis associated with geographic atrophy.
Collapse
Affiliation(s)
- Anne Senabouth
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Maciej Daniszewski
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Grace E Lidgerwood
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Helena H Liang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Damián Hernández
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Stacey N Keenan
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ran Zhang
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Xikun Han
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Drew Neavin
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Louise Rooney
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Lerna Gulluyan
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Linda Clarke
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Lisa S Kearns
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | | | - Chia-Ling Chan
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Uyen Nguyen
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Angela M Steinmann
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Rachael A McCloy
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Nona Farbehi
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Vivek K Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - David A Mackey
- Lions Eye Institute, Centre for Vision Sciences, University of Western Australia, Perth, WA, 6009, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Guy Bylsma
- Lions Eye Institute, Centre for Vision Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Nitin Verma
- School of Medicine, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Department of Surgery, Ophthalmology, Royal Victorian Eye and Ear Hospital, The University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia.
- School of Medicine, University of Tasmania, Hobart, TAS, 7005, Australia.
- Department of Surgery, Ophthalmology, Royal Victorian Eye and Ear Hospital, The University of Melbourne, East Melbourne, VIC, 3002, Australia.
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia.
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia.
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
9
|
Rius FE, Papaiz DD, Azevedo HFZ, Ayub ALP, Pessoa DO, Oliveira TF, Loureiro APM, Andrade F, Fujita A, Reis EM, Mason CE, Jasiulionis MG. Genome-wide promoter methylation profiling in a cellular model of melanoma progression reveals markers of malignancy and metastasis that predict melanoma survival. Clin Epigenetics 2022; 14:68. [PMID: 35606887 PMCID: PMC9128240 DOI: 10.1186/s13148-022-01291-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
The epigenetic changes associated with melanoma progression to advanced and metastatic stages are still poorly understood. To shed light on the CpG methylation dynamics during melanoma development, we analyzed the methylome profiles of a four-stage cell line model of melanoma progression: non-tumorigenic melanocytes (melan-a), premalignant melanocytes (4C), non-metastatic melanoma cells (4C11−), and metastatic melanoma cells (4C11+). We identified 540 hypo- and 37 hypermethylated gene promoters that together characterized a malignancy signature, and 646 hypo- and 520 hypermethylated promoters that distinguished a metastasis signature. Differentially methylated genes from these signatures were correlated with overall survival using TCGA-SKCM methylation data. Moreover, multivariate Cox analyses with LASSO regularization identified panels of 33 and 31 CpGs, respectively, from the malignancy and metastasis signatures that predicted poor survival. We found a concordant relationship between DNA methylation and transcriptional levels for genes from the malignancy (Pyroxd2 and Ptgfrn) and metastasis (Arnt2, Igfbp4 and Ptprf) signatures, which were both also correlated with melanoma prognosis. Altogether, this study reveals novel CpGs methylation markers associated with malignancy and metastasis that collectively could improve the survival prediction of melanoma patients.
Collapse
Affiliation(s)
- Flávia E Rius
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Debora D Papaiz
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Hatylas F Z Azevedo
- Divisão de Urologia, Departamento de Cirurgia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Luísa P Ayub
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Diogo O Pessoa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Tiago F Oliveira
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, São Paulo, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula M Loureiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando Andrade
- Bioinformatics Graduate Program, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil.,Department of Biology, Loyola University Chicago, Chicago, USA
| | - André Fujita
- Departamento de Ciências da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo M Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, USA
| | - Miriam G Jasiulionis
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil.
| |
Collapse
|
10
|
Data mining of key genes expression in hepatocellular carcinoma: novel potential biomarkers of diagnosis prognosis or progression. Clin Exp Metastasis 2022; 39:589-602. [PMID: 35429302 PMCID: PMC9338913 DOI: 10.1007/s10585-022-10164-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the main cancer-related causes of death worldwide. The study aimed to perform a data mining analysis of the expression and regulatory role of key genes in HCC to reveal novel potential biomarkers of diagnosis prognosis, or progression since their availability is still almost lacking. Starting from data of our cohort of patients (HCV-positive HCC pts undergoing liver transplantation (LR, n = 10) and donors (LD, n = 14), deeply analyzed previously, in which apelin, osteopontin, osteoprotegerin, NOTCH-1, CASP-3, Bcl-2, BAX, PTX3, and NPTX2 were analyzed, we applied statistical analysis and in-silico tools (Gene Expression Profiling Interactive Analysis, HCCDB database and GeneMania, UALCAN) to screen and identify the key genes. Firstly, we performed a stepwise regression analysis using our mRNA-datasets which revealed that higher expression levels of apelin and osteopontin were positively associated with the HCC and identified that the most consistently differentially expressed gene across multiple HCC expression datasets was only OPN. This comprehensive strategy of data mining evidenced that OPN might have a potential function as an important tumor marker-driven oncogenesis being associated with poor prognosis of HCC patients.
Collapse
|
11
|
Rhee EP, Surapaneni A, Zheng Z, Zhou L, Dutta D, Arking DE, Zhang J, Duong T, Chatterjee N, Luo S, Schlosser P, Mehta R, Waikar SS, Saraf SL, Kelly TN, Hamm LL, Rao PS, Mathew AV, Hsu CY, Parsa A, Vasan RS, Kimmel PL, Clish CB, Coresh J, Feldman HI, Grams ME. Trans-ethnic genome-wide association study of blood metabolites in the Chronic Renal Insufficiency Cohort (CRIC) study. Kidney Int 2022; 101:814-823. [PMID: 35120996 PMCID: PMC8940669 DOI: 10.1016/j.kint.2022.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/06/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022]
Abstract
Metabolomics genome wide association study (GWAS) help outline the genetic contribution to human metabolism. However, studies to date have focused on relatively healthy, population-based samples of White individuals. Here, we conducted a GWAS of 537 blood metabolites measured in the Chronic Renal Insufficiency Cohort (CRIC) Study, with separate analyses in 822 White and 687 Black study participants. Trans-ethnic meta-analysis was then applied to improve fine-mapping of potential causal variants. Mean estimated glomerular filtration rate was 44.4 and 41.5 mL/min/1.73m2 in the White and Black participants, respectively. There were 45 significant metabolite associations at 19 loci, including novel associations at PYROXD2, PHYHD1, FADS1-3, ACOT2, MYRF, FAAH, and LIPC. The strength of associations was unchanged in models additionally adjusted for estimated glomerular filtration rate and proteinuria, consistent with a direct biochemical effect of gene products on associated metabolites. At several loci, trans-ethnic meta-analysis, which leverages differences in linkage disequilibrium across populations, reduced the number and/or genomic interval spanned by potentially causal single nucleotide polymorphisms compared to fine-mapping in the White participant cohort alone. Across all validated associations, we found strong concordance in effect sizes of the potentially causal single nucleotide polymorphisms between White and Black study participants. Thus, our study identifies novel genetic determinants of blood metabolites in chronic kidney disease, demonstrates the value of diverse cohorts to improve causal inference in metabolomics GWAS, and underscores the shared genetic basis of metabolism across race.
Collapse
Affiliation(s)
- Eugene P Rhee
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Boston, Massachussetts, USA.
| | - Aditya Surapaneni
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zihe Zheng
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Linda Zhou
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Diptavo Dutta
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jingning Zhang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - ThuyVy Duong
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Shengyuan Luo
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Pascal Schlosser
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Rupal Mehta
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sushrut S Waikar
- Section of Nephrology, Boston University School of Medicine, Boston Medical Center, Boston, Massachussetts, USA
| | - Santosh L Saraf
- Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Lee L Hamm
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Panduranga S Rao
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anna V Mathew
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Chi-Yuan Hsu
- Division of Nephrology, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Afshin Parsa
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ramachandran S Vasan
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, Massachussetts, USA; Section of Cardiology, Department of Medicine, Boston University School of Medicine, Boston, Massachussetts, USA; Department of Epidemiology, Boston University School of Public Health, Boston, Massachussetts, USA
| | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachussetts, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Harold I Feldman
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Morgan E Grams
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA; Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
12
|
Vyas B, Bhowmik R, Akhter M, Ahmad FJ. Identification, analysis of deleterious SNPs of the human GSR gene and their effects on the structure and functions of associated proteins and other diseases. Sci Rep 2022; 12:5474. [PMID: 35361806 PMCID: PMC8971378 DOI: 10.1038/s41598-022-09295-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/08/2022] [Indexed: 11/27/2022] Open
Abstract
Hereditary glutathione reductase deficiency, caused by mutations of the GSR gene, is an autosomal recessive disorder characterized by decreased glutathione disulfide (GSSG) reduction activity and increased thermal instability. This study implemented computational analysis to screen the most likely mutation that might be associated with hereditary glutathione reductase deficiency and other diseases. Using ten online computational tools, the study revealed four nsSNPs among the 17 nsSNPs identified as most deleterious and disease associated. Structural analyses and evolutionary confirmation study of native and mutant GSR proteins using the HOPE project and ConSruf. HOPE revealed more flexibility in the native GSR structure than in the mutant structure. The mutation in GSR might be responsible for changes in the structural conformation and function of the GSR protein and might also play a significant role in inducing hereditary glutathione reductase deficiency. LD and haplotype studies of the gene revealed that the identified variations rs2978663 and rs8190955 may be responsible for obstructive heart defects (OHDs) and hereditary anemia, respectively. These interethnic differences in the frequencies of SNPs and haplotypes might help explain the unpredictability that has been reported in association studies and can contribute to predicting the pharmacokinetics and pharmacodynamics of drugs that make use of GSR.
Collapse
Affiliation(s)
- Bharti Vyas
- School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India
| | - Ratul Bhowmik
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Farhan Jalees Ahmad
- School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India.,Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
13
|
Wang Y, Gao X, Ru X, Sun P, Wang J. A hybrid feature selection algorithm and its application in bioinformatics. PeerJ Comput Sci 2022; 8:e933. [PMID: 35494789 PMCID: PMC9044222 DOI: 10.7717/peerj-cs.933] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Feature selection is an independent technology for high-dimensional datasets that has been widely applied in a variety of fields. With the vast expansion of information, such as bioinformatics data, there has been an urgent need to investigate more effective and accurate methods involving feature selection in recent decades. Here, we proposed the hybrid MMPSO method, by combining the feature ranking method and the heuristic search method, to obtain an optimal subset that can be used for higher classification accuracy. In this study, ten datasets obtained from the UCI Machine Learning Repository were analyzed to demonstrate the superiority of our method. The MMPSO algorithm outperformed other algorithms in terms of classification accuracy while utilizing the same number of features. Then we applied the method to a biological dataset containing gene expression information about liver hepatocellular carcinoma (LIHC) samples obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). On the basis of the MMPSO algorithm, we identified a 18-gene signature that performed well in distinguishing normal samples from tumours. Nine of the 18 differentially expressed genes were significantly up-regulated in LIHC tumour samples, and the area under curves (AUC) of the combination seven genes (ADRA2B, ERAP2, NPC1L1, PLVAP, POMC, PYROXD2, TRIM29) in classifying tumours with normal samples was greater than 0.99. Six genes (ADRA2B, PYROXD2, CACHD1, FKBP1B, PRKD1 and RPL7AP6) were significantly correlated with survival time. The MMPSO algorithm can be used to effectively extract features from a high-dimensional dataset, which will provide new clues for identifying biomarkers or therapeutic targets from biological data and more perspectives in tumor research.
Collapse
Affiliation(s)
- Yangyang Wang
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xiaoguang Gao
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xinxin Ru
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Pengzhan Sun
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
14
|
Wang X, Qu M, Liu Y, Schneider RF, Song Y, Chen Z, Zhang H, Zhang Y, Yu H, Zhang S, Li D, Qin G, Ma S, Zhong J, Yin J, Liu S, Fan G, Meyer A, Wang D, Lin Q. Genomic basis of evolutionary adaptation in a warm-blooded fish. Innovation (N Y) 2022; 3:100185. [PMID: 34984407 PMCID: PMC8693259 DOI: 10.1016/j.xinn.2021.100185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
Few fishes have evolved elevated body temperatures compared with ambient temperatures, and only in opah (Lampris spp) is the entire body affected. To understand the molecular basis of endothermy, we analyzed the opah genome and identified 23 genes with convergent amino acid substitutions across fish, birds, and mammals, including slc8b1, which encodes the mitochondrial Na+/Ca2+ exchanger and is essential for heart function and metabolic heat production. Among endothermic fishes, 44 convergent genes with suggestive metabolic functions were identified, such as glrx3, encoding a crucial protein for hemoglobin maturation. Numerous genes involved in the production and retention of metabolic heat were also found to be under positive selection. Analyses of opah's unique inner-heat-producing pectoral muscle layer (PMI), an evolutionary key innovation, revealed that many proteins were co-opted from dorsal swimming muscles for thermogenesis and oxidative phosphorylation. Thus, the opah genome provides valuable resources and opportunities to uncover the genetic basis of thermal adaptations in fish.
Collapse
Affiliation(s)
- Xin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Meng Qu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yali Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Ralf F Schneider
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
| | - Yue Song
- BGI-Qingdao, Qingdao 266555, China
| | - Zelin Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hao Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.,State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yanhong Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Haiyan Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | | | - Dongxu Li
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Shaobo Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jia Zhong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianping Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Shuaishuai Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Guangyi Fan
- BGI-Qingdao, Qingdao 266555, China.,BGI-Shenzhen, Shenzhen 518083, China
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.,University of the Chinese Academy of Sciences, Beijing 100101, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
15
|
Van Bergen NJ, Hock DH, Spencer L, Massey S, Stait T, Stark Z, Lunke S, Roesley A, Peters H, Lee JY, Le Fevre A, Heath O, Mignone C, Yang JYM, Ryan MM, D’Arcy C, Nash M, Smith S, Caruana NJ, Thorburn DR, Stroud DA, White SM, Christodoulou J, Brown NJ. Biallelic Variants in PYROXD2 Cause a Severe Infantile Metabolic Disorder Affecting Mitochondrial Function. Int J Mol Sci 2022; 23:ijms23020986. [PMID: 35055180 PMCID: PMC8777681 DOI: 10.3390/ijms23020986] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/04/2022] Open
Abstract
Pyridine Nucleotide-Disulfide Oxidoreductase Domain 2 (PYROXD2; previously called YueF) is a mitochondrial inner membrane/matrix-residing protein and is reported to regulate mitochondrial function. The clinical importance of PYROXD2 has been unclear, and little is known of the protein’s precise biological function. In the present paper, we report biallelic variants in PYROXD2 identified by genome sequencing in a patient with suspected mitochondrial disease. The child presented with acute neurological deterioration, unresponsive episodes, and extreme metabolic acidosis, and received rapid genomic testing. He died shortly after. Magnetic resonance imaging (MRI) brain imaging showed changes resembling Leigh syndrome, one of the more common childhood mitochondrial neurological diseases. Functional studies in patient fibroblasts showed a heightened sensitivity to mitochondrial metabolic stress and increased mitochondrial superoxide levels. Quantitative proteomic analysis demonstrated decreased levels of subunits of the mitochondrial respiratory chain complex I, and both the small and large subunits of the mitochondrial ribosome, suggesting a mitoribosomal defect. Our findings support the critical role of PYROXD2 in human cells, and suggest that the biallelic PYROXD2 variants are associated with mitochondrial dysfunction, and can plausibly explain the child’s clinical presentation.
Collapse
Affiliation(s)
- Nicole J. Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (L.S.); (S.M.); (T.S.); (D.R.T.); (D.A.S.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia; (Z.S.); (S.L.); (J.Y.L.); (J.Y.-M.Y.); (S.M.W.)
- Correspondence: (N.J.V.B.); (J.C.); (N.J.B.)
| | - Daniella H. Hock
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia; (D.H.H.); (N.J.C.)
| | - Lucy Spencer
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (L.S.); (S.M.); (T.S.); (D.R.T.); (D.A.S.)
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (L.S.); (S.M.); (T.S.); (D.R.T.); (D.A.S.)
| | - Tegan Stait
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (L.S.); (S.M.); (T.S.); (D.R.T.); (D.A.S.)
| | - Zornitza Stark
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia; (Z.S.); (S.L.); (J.Y.L.); (J.Y.-M.Y.); (S.M.W.)
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (A.R.); (A.L.F.)
- Australian Genomics Health Alliance, Parkville, VIC 3052, Australia
| | - Sebastian Lunke
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia; (Z.S.); (S.L.); (J.Y.L.); (J.Y.-M.Y.); (S.M.W.)
- Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ain Roesley
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (A.R.); (A.L.F.)
| | - Heidi Peters
- Department of Metabolic Medicine, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (H.P.); (O.H.)
| | - Joy Yaplito Lee
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia; (Z.S.); (S.L.); (J.Y.L.); (J.Y.-M.Y.); (S.M.W.)
- Department of Metabolic Medicine, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (H.P.); (O.H.)
| | - Anna Le Fevre
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (A.R.); (A.L.F.)
| | - Oliver Heath
- Department of Metabolic Medicine, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (H.P.); (O.H.)
| | - Cristina Mignone
- Medical Imaging Department, Royal Children’s Hospital, Parkville, VIC 3052, Australia;
| | - Joseph Yuan-Mou Yang
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia; (Z.S.); (S.L.); (J.Y.L.); (J.Y.-M.Y.); (S.M.W.)
- Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Service (NACIS), The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Developmental Imaging, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Neuroscience Research, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Monique M. Ryan
- Neurology Department, Royal Children’s Hospital, Parkville, VIC 3052, Australia;
| | - Colleen D’Arcy
- Anatomical Pathology Department, Royal Children’s Hospital, Parkville, VIC 3052, Australia;
| | - Margot Nash
- General Medicine, Royal Children’s Hospital, Parkville, VIC 3052, Australia;
| | - Sile Smith
- Paediatric Intensive Care Unit, Royal Children’s Hospital, Parkville, VIC 3052, Australia;
| | - Nikeisha J. Caruana
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia; (D.H.H.); (N.J.C.)
- Institute for Health and Sport (iHeS), Victoria University, Footscray, VIC 3011, Australia
| | - David R. Thorburn
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (L.S.); (S.M.); (T.S.); (D.R.T.); (D.A.S.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia; (Z.S.); (S.L.); (J.Y.L.); (J.Y.-M.Y.); (S.M.W.)
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (A.R.); (A.L.F.)
| | - David A. Stroud
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (L.S.); (S.M.); (T.S.); (D.R.T.); (D.A.S.)
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia; (D.H.H.); (N.J.C.)
| | - Susan M. White
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia; (Z.S.); (S.L.); (J.Y.L.); (J.Y.-M.Y.); (S.M.W.)
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (A.R.); (A.L.F.)
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (L.S.); (S.M.); (T.S.); (D.R.T.); (D.A.S.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia; (Z.S.); (S.L.); (J.Y.L.); (J.Y.-M.Y.); (S.M.W.)
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (A.R.); (A.L.F.)
- Discipline of Child and Adolescent Health, University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence: (N.J.V.B.); (J.C.); (N.J.B.)
| | - Natasha J. Brown
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia; (Z.S.); (S.L.); (J.Y.L.); (J.Y.-M.Y.); (S.M.W.)
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (A.R.); (A.L.F.)
- Correspondence: (N.J.V.B.); (J.C.); (N.J.B.)
| |
Collapse
|
16
|
Daimagüler HS, Akpulat U, Özdemir Ö, Yis U, Güngör S, Talim B, Diniz G, Baydan F, Thiele H, Altmüller J, Nürnberg P, Cirak S. Clinical and genetic characterization of PYROXD1-related myopathy patients from Turkey. Am J Med Genet A 2021; 185:1678-1690. [PMID: 33694278 DOI: 10.1002/ajmg.a.62148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/07/2021] [Accepted: 02/07/2021] [Indexed: 11/08/2022]
Abstract
Congenital myopathies (CMs) are a heterogeneous group of inherited muscle disorders characterized by muscle weakness at birth, while limb-girdle muscular dystrophies (LGMD) have a later onset and slower disease progression. Thus, detailed clinical phenotyping of genetically defined disease entities are required for the full understanding of genotype-phenotype correlations. A recently defined myopathic genetic disease entity is caused by bi-allelic variants in a gene coding for pyridine nucleotide-disulfide oxidoreductase domain 1 (PYROXD1) with unknown substrates. Here, we present three patients from two consanguineous Turkish families with mild LGMD, facial weakness, normal CK levels, and slow progress. Genomic analyses revealed a homozygous known pathogenic missense variant (c.464A>G, p.Asn155Ser) in family 1 with two affected females. In the affected male of family 2, we found this variant in a compound heterozygous state together with a novel frameshift variant (c.329_332delTCTG, p.Leu112Valfs*8), which is the second frameshift variant known so far in PYROXD1. We have been able to define a large homozygous region in family 1 sharing a common haplotype with family 2 in the critical region. Our data suggest that c.464A>G is a Turkish founder mutation. To gain deeper insights, we performed a systematic review of all published PYROXD1-related myopathy cases. Our analysis showed that the c.464A > G variant was found in 87% (20/23) of the patients and that it may cause either a childhood- or adult-onset phenotype, irrespective of its presence in a homozygous or compound heterozygous state. Interestingly, only four patients had elevated CK levels (up to 1000 U/L), and cardiac involvement was found in few compound heterozygous cases.
Collapse
Affiliation(s)
- Hülya-Sevcan Daimagüler
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ugur Akpulat
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department of Medical Biology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Özkan Özdemir
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Uluc Yis
- Faculty of Medicine, Department of Pediatric Neurology Izmir, Dokuz Eylül University, Izmir, Turkey
| | - Serdal Güngör
- Faculty of Medicine, Turgut Ozal Research Center, Department of Paediatric Neurology, Inönü University Malatya, Malatya, Turkey
| | - Beril Talim
- Pediatric Pathology Unit, Department of Pediatrics, Hacettepe University Ankara, Ankara, Turkey
| | - Gülden Diniz
- Department of Pathology, Izmir Democracy University, Izmir, Turkey
| | - Figen Baydan
- Division of Child Neurology, Tepecik Training and Research Hospital, İzmir, Turkey.,Neuromuscular Disease Center, Tepecik Training and Research Hospital, İzmir, Turkey
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Center for Genomics (CCG), University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Sebahattin Cirak
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|