1
|
Ge Y, Janson V, Liu H. Comprehensive review on leucine-rich pentatricopeptide repeat-containing protein (LRPPRC, PPR protein): A burgeoning target for cancer therapy. Int J Biol Macromol 2024; 282:136820. [PMID: 39476900 DOI: 10.1016/j.ijbiomac.2024.136820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Leucine-rich pentatricopeptide repeat-containing (LRPPRC), known as the gene mutations that cause Leigh Syndrome French Canadian, encodes a high molecular weight PPR protein (157,905 Da), LRPPRC. LRPPRC binds to DNA, RNA, and proteins to regulate transcription and translation, leading to changes in cell fate. Increasing evidence indicates that LRPPRC plays a pivotal role in various human diseases, particularly cancer in recent years. Here, we review the structure, function, molecular mechanism, as well as inhibitors of LRPPRC. LRPPRC expression elevates in most cancer types and high expression of LRPPRC predicts the poor prognosis of cancer patients. Targeting LRPPRC suppresses tumor progression by affecting several cancer hallmarks, including signal transduction, cancer metabolism, and immune regulation. LRPPRC is a promising target in cancer research, serving as both a biomarker and therapeutic target. Further studies are required to extend the understanding of LRPPRC function and molecular mechanism, as well as to refine novel therapeutic strategies targeting LRPPRC in cancer therapy.
Collapse
Affiliation(s)
- Yunxiao Ge
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Victor Janson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China.
| |
Collapse
|
2
|
Qiao Y, Mei Y, Xia M, Luo D, Gao L. The role of m6A modification in the risk prediction and Notch1 pathway of Alzheimer's disease. iScience 2024; 27:110235. [PMID: 39040060 PMCID: PMC11261416 DOI: 10.1016/j.isci.2024.110235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/17/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024] Open
Abstract
N6-methyladenosine (m6A) methylation and abnormal immune responses are implicated in neurodegenerative diseases, yet their relationship in Alzheimer's disease (AD) remains unclear. We obtained AD datasets from GEO databases and used AD mouse and cell models, observing abnormal expression of m6A genes in the AD group, alongside disruptions in the immune microenvironment. Key m6A genes (YTHDF2, LRPPRC, and FTO) selected by machine learning were associated with the Notch pathway, with FTO and Notch1 displaying the strongest correlation. Specifically, FTO expression decreased and m6A methylation of Notch1 increased in AD mouse and cell models. We further silenced FTO expression in HT22 cells, resulting in upregulation of the Notch1 signaling pathway. Additionally, increased Notch1 expression in dendritic cells heightened inflammatory cytokine secretion in vitro. These results suggest that reduced FTO expression may contribute to the pathogenesis of AD by activating the Notch1 pathway to interfere with the immune response.
Collapse
Affiliation(s)
- Yingdan Qiao
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Yingna Mei
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Minqi Xia
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Deng Luo
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Ling Gao
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| |
Collapse
|
3
|
Wang C, Acosta D, McNutt M, Bian J, Ma A, Fu H, Ma Q. A single-cell and spatial RNA-seq database for Alzheimer's disease (ssREAD). Nat Commun 2024; 15:4710. [PMID: 38844475 PMCID: PMC11156951 DOI: 10.1038/s41467-024-49133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Alzheimer's Disease (AD) pathology has been increasingly explored through single-cell and single-nucleus RNA-sequencing (scRNA-seq & snRNA-seq) and spatial transcriptomics (ST). However, the surge in data demands a comprehensive, user-friendly repository. Addressing this, we introduce a single-cell and spatial RNA-seq database for Alzheimer's disease (ssREAD). It offers a broader spectrum of AD-related datasets, an optimized analytical pipeline, and improved usability. The database encompasses 1,053 samples (277 integrated datasets) from 67 AD-related scRNA-seq & snRNA-seq studies, totaling 7,332,202 cells. Additionally, it archives 381 ST datasets from 18 human and mouse brain studies. Each dataset is annotated with details such as species, gender, brain region, disease/control status, age, and AD Braak stages. ssREAD also provides an analysis suite for cell clustering, identification of differentially expressed and spatially variable genes, cell-type-specific marker genes and regulons, and spot deconvolution for integrative analysis. ssREAD is freely available at https://bmblx.bmi.osumc.edu/ssread/ .
Collapse
Affiliation(s)
- Cankun Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Diana Acosta
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
| | - Megan McNutt
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Jiang Bian
- Department of Health Outcomes & Biomedical Informatics, University of Florida, Gainesville, FL, 32606, USA
| | - Anjun Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Hongjun Fu
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, 43210, USA.
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Shi P, Wang B, Shi S, Chu X, Liu C, Kang M, Hui J, Gou Y, Zhou R, Liu Y, Jia Y, Zhang F, Wen Y. Assessing the joint effects of mitochondrial genes and physical activity on the psychiatric phenotype of subjective well-being based on the UK Biobank data. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01822-y. [PMID: 38767715 DOI: 10.1007/s00406-024-01822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Subjective well-being (SWB) is an important measure for mental health status. Previous research has shown that physical activity can affect an individual's well-being, yet the underlying molecular mechanism remains to be clarified. In this study, we aim to evaluate the potential interactions between mitochondrial genes and physical activity (PA) as well as their combined effects on individual well-being. SWB phenotype data in UK Biobank were enrolled for this study including nine aspects such as work/job satisfaction, health satisfaction, family relationship satisfaction, friendships satisfaction, financial situation satisfaction, ever depressed for a whole week, general happiness, general happiness with own health and belief that own life is meaningful. We made analysis for each aspects separately. Firstly, mitochondria-wide association studies (MiWAS) was conducted to assess the association of mitochondrial Single Nucleotide Polymorphisms SNP with each aspect of SWB. Then an interaction analysis of mitochondrial DNA (mtDNA) mutation and PA was performed to evaluate their joint effect on SWB status. Meanwhile, these two analysis were made for female and male group separately as well as the total samples, all under the control of possible confounding factors including gender, age, Townsend Deprivation Index (TDI), education, alcohol consumption, smoking habits, and 10 principal components. MiWAS analysis identified 45 mtSNPs associated with 9 phenotypes of SWB. For example, m.15218A > G on MT-CYB in the health satisfaction phenotype of the total subjects. Gender-specific analyses found 30 mtSNPs in females and 58 in males, involving 13 mtGenes. In mtDNA-PA interaction analysis, we also identified 10 significant mtDNA-PA interaction sets for SWB. For instance, m.13020 T > C (MT-ND5) was associated with the SWB financial situation satisfaction phenotype in all subjects (P = 0.00577). In addition, MiWAS analysis identified 12 mtGene variants associated with SWB, as MT-ND1 and MT-ND2. However, in mtDNA-PA interactions we detected 7 mtDNA affecting psychiatric disorders occurring, as in the friendships satisfaction phenotype (m.3394 T > C on MT-ND1). Our study results suggest an implication of the interaction between mitochondrial function and physical activity in the risk of psychiatric disorder development.
Collapse
Affiliation(s)
- Panxing Shi
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bingyi Wang
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Sirong Shi
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoge Chu
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chen Liu
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Meijuan Kang
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jingni Hui
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yifan Gou
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruixue Zhou
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ye Liu
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yumeng Jia
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Feng Zhang
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yan Wen
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
5
|
Wang C, Acosta D, McNutt M, Bian J, Ma A, Fu H, Ma Q. A Single-cell and Spatial RNA-seq Database for Alzheimer's Disease (ssREAD). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.08.556944. [PMID: 37745592 PMCID: PMC10515769 DOI: 10.1101/2023.09.08.556944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Alzheimer's Disease (AD) pathology has been increasingly explored through single-cell and single-nucleus RNA-sequencing (scRNA-seq & snRNA-seq) and spatial transcriptomics (ST). However, the surge in data demands a comprehensive, user-friendly repository. Addressing this, we introduce a single-cell and spatial RNA-seq database for Alzheimer's disease (ssREAD). It offers a broader spectrum of AD-related datasets, an optimized analytical pipeline, and improved usability. The database encompasses 1,053 samples (277 integrated datasets) from 67 AD-related scRNA-seq & snRNA-seq studies, totaling 7,332,202 cells. Additionally, it archives 381 ST datasets from 18 human and mouse brain studies. Each dataset is annotated with details such as species, gender, brain region, disease/control status, age, and AD Braak stages. ssREAD also provides an analysis suite for cell clustering, identification of differentially expressed and spatially variable genes, cell-type-specific marker genes and regulons, and spot deconvolution for integrative analysis. ssREAD is freely available at https://bmblx.bmi.osumc.edu/ssread/.
Collapse
Affiliation(s)
- Cankun Wang
- Department of Biomedical Informatics, The Ohio State University, OH 43210, USA
| | - Diana Acosta
- Department of Neuroscience, The Ohio State University, OH 43210, USA
| | - Megan McNutt
- Department of Biomedical Informatics, The Ohio State University, OH 43210, USA
| | - Jiang Bian
- Department of Health Outcomes & Biomedical Informatics, University of Florida, FL 32606, USA
| | - Anjun Ma
- Department of Biomedical Informatics, The Ohio State University, OH 43210, USA
| | - Hongjun Fu
- Department of Neuroscience, The Ohio State University, OH 43210, USA
- Chronic Brain Injury Program, The Ohio State University, OH 43210, USA
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, OH 43210, USA
| |
Collapse
|
6
|
Braunstein PW, Horovitz DJ, Hampton AM, Hollis F, Newman LA, Enos RT, McQuail JA. Daily fluctuations in blood glucose with normal aging are inversely related to hippocampal synaptic mitochondrial proteins. AGING BRAIN 2024; 5:100116. [PMID: 38596458 PMCID: PMC11002859 DOI: 10.1016/j.nbas.2024.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
Defective brain glucose utilization is a hallmark of Alzheimer's disease (AD) while Type II diabetes and elevated blood glucose escalate the risk for AD in later life. Isolating contributions of normal aging from coincident metabolic or brain diseases could lead to refined approaches to manage specific health risks and optimize treatments targeted to susceptible older individuals. We evaluated metabolic, neuroendocrine, and neurobiological differences between young adult (6 months) and aged (24 months) male rats. Compared to young adults, blood glucose was significantly greater in aged rats at the start of the dark phase of the day but not during the light phase. When challenged with physical restraint, a potent stressor, aged rats effected no change in blood glucose whereas blood glucose increased in young adults. Tissues were evaluated for markers of oxidative phosphorylation (OXPHOS), neuronal glucose transport, and synapses. Outright differences in protein levels between age groups were not evident, but circadian blood glucose was inversely related to OXPHOS proteins in hippocampal synaptosomes, independent of age. The neuronal glucose transporter, GLUT3, was positively associated with circadian blood glucose in young adults whereas aged rats tended to show the opposite trend. Our data demonstrate aging increases daily fluctuations in blood glucose and, at the level of individual differences, negatively associates with proteins related to synaptic OXPHOS. Our findings imply that glucose dyshomeostasis may exacerbate metabolic aspects of synaptic dysfunction that contribute to risk for age-related brain disorders.
Collapse
Affiliation(s)
- Paul W. Braunstein
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - David J. Horovitz
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | - Fiona Hollis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Lori A. Newman
- Department of Psychological Science, Vassar College, Poughkeepsie, NY, USA
| | - Reilly T. Enos
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Joseph A. McQuail
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Morello G, Guarnaccia M, La Cognata V, Latina V, Calissano P, Amadoro G, Cavallaro S. Transcriptomic Analysis in the Hippocampus and Retina of Tg2576 AD Mice Reveals Defective Mitochondrial Oxidative Phosphorylation and Recovery by Tau 12A12mAb Treatment. Cells 2023; 12:2254. [PMID: 37759477 PMCID: PMC10527038 DOI: 10.3390/cells12182254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Increasing evidence implicates decreased energy metabolism and mitochondrial dysfunctions among the earliest pathogenic events of Alzheimer's disease (AD). However, the molecular mechanisms underlying bioenergetic dysfunctions in AD remain, to date, largely unknown. In this work, we analyzed transcriptomic changes occurring in the hippocampus and retina of a Tg2576 AD mouse model and wild-type controls, evaluating their functional implications by gene set enrichment analysis. The results revealed that oxidative phosphorylation and mitochondrial-related pathways are significantly down-regulated in both tissues of Tg2576 mice, supporting the role of these processes in the pathogenesis of AD. In addition, we also analyzed transcriptomic changes occurring in Tg2576 mice treated with the 12A12 monoclonal antibody that neutralizes an AD-relevant tau-derived neurotoxic peptide in vivo. Our analysis showed that the mitochondrial alterations observed in AD mice were significantly reverted by treatment with 12A12mAb, supporting bioenergetic pathways as key mediators of its in vivo neuroprotective and anti-amyloidogenic effects. This study provides, for the first time, a comprehensive characterization of molecular events underlying the disrupted mitochondrial bioenergetics in AD pathology, laying the foundation for the future development of diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), Via Paolo Gaifami, 18, 95126 Catania, Italy; (G.M.); (M.G.); (V.L.C.)
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), Via Paolo Gaifami, 18, 95126 Catania, Italy; (G.M.); (M.G.); (V.L.C.)
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), Via Paolo Gaifami, 18, 95126 Catania, Italy; (G.M.); (M.G.); (V.L.C.)
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; (V.L.); (P.C.); (G.A.)
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; (V.L.); (P.C.); (G.A.)
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; (V.L.); (P.C.); (G.A.)
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), Via Paolo Gaifami, 18, 95126 Catania, Italy; (G.M.); (M.G.); (V.L.C.)
| |
Collapse
|
8
|
Kuhn MK, Fleeman RM, Beidler LM, Snyder AM, Chan DC, Proctor EA. Amyloid-β Pathology-Specific Cytokine Secretion Suppresses Neuronal Mitochondrial Metabolism. Cell Mol Bioeng 2023; 16:405-421. [PMID: 37811007 PMCID: PMC10550897 DOI: 10.1007/s12195-023-00782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Neuroinflammation and metabolic dysfunction are early alterations in Alzheimer's disease (AD) brain that are thought to contribute to disease onset and progression. Glial activation due to protein deposition results in cytokine secretion and shifts in brain metabolism, which have been observed in AD patients. However, the mechanism by which this immunometabolic feedback loop can injure neurons and cause neurodegeneration remains unclear. Methods We used Luminex XMAP technology to quantify hippocampal cytokine concentrations in the 5xFAD mouse model of AD at milestone timepoints in disease development. We used partial least squares regression to build cytokine signatures predictive of disease progression, as compared to healthy aging in wild-type littermates. We applied the disease-defining cytokine signature to wild-type primary neuron cultures and measured downstream changes in gene expression using the NanoString nCounter system and mitochondrial function using the Seahorse Extracellular Flux live-cell analyzer. Results We identified a pattern of up-regulated IFNγ, IP-10/CXCL10, and IL-9 as predictive of advanced disease. When healthy neurons were exposed to these cytokines in proportions found in diseased brain, gene expression of mitochondrial electron transport chain complexes, including ATP synthase, was suppressed. In live cells, basal and maximal mitochondrial respiration were impaired following cytokine stimulation. Conclusions We identify a pattern of cytokine secretion predictive of progressing amyloid-β pathology in the 5xFAD mouse model of AD that reduces expression of mitochondrial electron transport complexes and impairs mitochondrial respiration in healthy neurons. We establish a mechanistic link between disease-specific immune cues and impaired neuronal metabolism, potentially causing neuronal vulnerability and susceptibility to degeneration in AD. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00782-y.
Collapse
Affiliation(s)
- Madison K. Kuhn
- Department of Neurosurgery, Penn State College of Medicine, Hershey, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA USA
| | - Rebecca M. Fleeman
- Department of Neurosurgery, Penn State College of Medicine, Hershey, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA
| | - Lynne M. Beidler
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, PA USA
| | - Amanda M. Snyder
- Department of Neurology, Penn State College of Medicine, Hershey, PA USA
| | - Dennis C. Chan
- Department of Neurosurgery, Penn State College of Medicine, Hershey, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA USA
| | - Elizabeth A. Proctor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA USA
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA USA
| |
Collapse
|
9
|
Liu L, Cheng S, Qi X, Meng P, Yang X, Pan C, Chen Y, Zhang H, Zhang Z, Zhang J, Li C, Wen Y, Jia Y, Cheng B, Zhang F. Mitochondria-wide association study observed significant interactions of mitochondrial respiratory and the inflammatory in the development of anxiety and depression. Transl Psychiatry 2023; 13:216. [PMID: 37344456 DOI: 10.1038/s41398-023-02518-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
The aim of this study was to investigate the possible interaction of mitochondrial dysfunction and inflammatory cytokines in the risk of anxiety and depression. We utilized the UK Biobank for the sample of this study. A mitochondria-wide association(MiWAS) and interaction analysis was performed to investigate the interaction effects of mitochondrial DNA (mtDNA)×C-reactive protein (CRP) on the risks of self-reported anxiety (N = 72,476), general anxiety disorder (GAD-7) scores (N = 80,853), self-reported depression (N = 80,778), Patient Health Questionnaire (PHQ-9) scores (N = 80,520) in total samples, females and males, respectively, adjusting for sex, age, Townsend deprivation index (TDI), education score, alcohol intake, smoking and 10 principal components. In all, 25 mtSNPs and 10 mtSNPs showed significant level of association with self-reported anxiety and GAD-7 score respectively. A total of seven significant mtDNA × CRP interactions were found for anxiety, such as m.3915G>A(MT-ND1) for self-reported anxiety in total subjects (P = 6.59 × 10-3), m.4561T>C(MT-ND2) (P = 3.04 × 10-3) for GAD-7 score in total subjects. For depression, MiWAS identified 17 significant mtSNPs for self-reported depression and 14 significant mtSNPs for PHQ-9 scores. 17 significant mtDNA associations (2 for self-reported depression and 15 for PHQ-9 score) was identified, such as m.14869G>A(MT-CYB; P = 2.22 × 10-3) associated with self-reported depression and m.4561T>C (MT-ND2; P value = 3.02 × 10-8) associated with PHQ-9 score in all subjects. In addition, 5 common mtDNA shared with anxiety and depression were found in MiWAS, and 4 common mtDNA variants were detected to interact with CRP for anxiety and depression, such as m.9899T>C(MT-CO3). Our study suggests the important interaction effects of mitochondrial function and CRP on the risks of anxiety and depression.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xin Qi
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Chune Li
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
10
|
Moradi Vastegani S, Nasrolahi A, Ghaderi S, Belali R, Rashno M, Farzaneh M, Khoshnam SE. Mitochondrial Dysfunction and Parkinson's Disease: Pathogenesis and Therapeutic Strategies. Neurochem Res 2023:10.1007/s11064-023-03904-0. [PMID: 36943668 DOI: 10.1007/s11064-023-03904-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder whose pathogenesis is not completely understood. Mitochondrial dysfunction and increased oxidative stress have been considered as major causes and central events responsible for the progressive degeneration of dopaminergic (DA) neurons in PD. Therefore, investigating mitochondrial disorders plays a role in understanding the pathogenesis of PD and can be an important therapeutic target for this disease. This study discusses the effect of environmental, genetic and biological factors on mitochondrial dysfunction and also focuses on the mitochondrial molecular mechanisms underlying neurodegeneration, and its possible therapeutic targets in PD, including reactive oxygen species generation, calcium overload, inflammasome activation, apoptosis, mitophagy, mitochondrial biogenesis, and mitochondrial dynamics. Other potential therapeutic strategies such as mitochondrial transfer/transplantation, targeting microRNAs, using stem cells, photobiomodulation, diet, and exercise were also discussed in this review, which may provide valuable insights into clinical aspects. A better understanding of the roles of mitochondria in the pathophysiology of PD may provide a rationale for designing novel therapeutic interventions in our fight against PD.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rafie Belali
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran
- Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
11
|
Parkinson's Disease, Parkinsonisms, and Mitochondria: the Role of Nuclear and Mitochondrial DNA. Curr Neurol Neurosci Rep 2023; 23:131-147. [PMID: 36881253 DOI: 10.1007/s11910-023-01260-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Overwhelming evidence indicates that mitochondrial dysfunction is a central factor in Parkinson's disease (PD) pathophysiology. This paper aims to review the latest literature published, focusing on genetic defects and expression alterations affecting mitochondria-associated genes, in support of their key role in PD pathogenesis. RECENT FINDINGS Thanks to the use of new omics approaches, a growing number of studies are discovering alterations affecting genes with mitochondrial functions in patients with PD and parkinsonisms. These genetic alterations include pathogenic single-nucleotide variants, polymorphisms acting as risk factors, and transcriptome modifications, affecting both nuclear and mitochondrial genes. We will focus on alterations of mitochondria-associated genes described by studies conducted on patients or on animal/cellular models of PD or parkinsonisms. We will comment how these findings can be taken into consideration for improving the diagnostic procedures or for deepening our knowledge on the role of mitochondrial dysfunctions in PD.
Collapse
|
12
|
Harerimana NV, Paliwali D, Romero-Molina C, Bennett DA, Pa J, Goate A, Swerdlow RH, Andrews SJ. The role of mitochondrial genome abundance in Alzheimer's disease. Alzheimers Dement 2022; 19:2069-2083. [PMID: 36224040 DOI: 10.1002/alz.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/1912] [Revised: 12/12/1912] [Accepted: 12/12/1912] [Indexed: 11/05/2022]
Abstract
Mitochondrial dysfunction is an early and prominent feature of Alzheimer's disease (AD), with impaired energy metabolism preceding the onset of clinical symptoms. Here we propose an update to the mitochondrial dysfunction hypothesis of AD based on recent results examining the role of mitochondrial genome abundance in AD. In a large post mortem study, we show that lower brain mitochondrial genome abundance is associated with a greater odds of AD neuropathological change and worse cognitive performance. We hypothesize that lower mitochondrial genome abundance impairs mitochondrial function by reducing mitochondrial bioenergetics, thereby impacting neuronal and glial cell function. However, it remains to be determined if mitochondrial dysfunction causes, mediates, or is a by-product of AD pathogenesis. Additional support for this hypothesis will be generated by linking peripheral blood mitochondrial genome abundance to AD and establishing clinical trials of compounds that upregulate total mitochondrial genome abundance or boost mitochondrial mass.
Collapse
Affiliation(s)
- Nadia V Harerimana
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Devashi Paliwali
- Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Carmen Romero-Molina
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Judy Pa
- Department of Neurosciences, Alzheimer's Disease Cooperative Study (ADCS), University of California, San Diego, California, USA
| | - Alison Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
| | - Shea J Andrews
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
13
|
Pinto M, Diaz F, Nissanka N, Guastucci CS, Illiano P, Brambilla R, Moraes CT. Adult-Onset Deficiency of Mitochondrial Complex III in a Mouse Model of Alzheimer's Disease Decreases Amyloid Beta Plaque Formation. Mol Neurobiol 2022; 59:6552-6566. [PMID: 35969330 PMCID: PMC9464722 DOI: 10.1007/s12035-022-02992-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022]
Abstract
For decades, mitochondrial dysfunctions and the generation of reactive oxygen species have been proposed to promote the development and progression of the amyloid pathology in Alzheimer's disease, but this association is still debated. It is unclear whether different mitochondrial dysfunctions, such as oxidative phosphorylation deficiency and oxidative stress, are triggers or rather consequences of the formation of amyloid aggregates. Likewise, the role of the different mitochondrial oxidative phosphorylation complexes in Alzheimer's patients' brain remains poorly understood. Previous studies showed that genetic ablation of oxidative phosphorylation enzymes from early age decreased amyloid pathology, which were unexpected results. To better model oxidative phosphorylation defects in aging, we induced the ablation of mitochondrial Complex III (CIIIKO) in forebrain neurons of adult mice with amyloid pathology. We found that mitochondrial Complex III dysfunction in adult neurons induced mild oxidative stress but did not increase amyloid beta accumulation. On the contrary, CIIIKO-AD mice showed decreased plaque number, decreased Aβ42 toxic fragment, and altered amyloid precursor protein clearance pathway. Our results support the hypothesis that mitochondrial dysfunctions alone, caused by oxidative phosphorylation deficiency, is not the cause of amyloid accumulation.
Collapse
Affiliation(s)
- Milena Pinto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nadee Nissanka
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chelsey S Guastucci
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Placido Illiano
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
14
|
Targeting Mitochondria as a Therapeutic Approach for Parkinson's Disease. Cell Mol Neurobiol 2022; 43:1499-1518. [PMID: 35951210 DOI: 10.1007/s10571-022-01265-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
Neurodegeneration is among the most critical challenges that involve modern societies and annually influences millions of patients worldwide. While the pathophysiology of Parkinson's disease (PD) is complicated, the role of mitochondrial is demonstrated. The in vitro and in vivo models and genome-wide association studies in human cases proved that specific genes, including PINK1, Parkin, DJ-1, SNCA, and LRRK2, linked mitochondrial dysfunction with PD. Also, mitochondrial DNA (mtDNA) plays an essential role in the pathophysiology of PD. Targeting mitochondria as a therapeutic approach to inhibit or slow down PD formation and progression seems to be an exciting issue. The current review summarized known mutations associated with both mitochondrial dysfunction and PD. The significance of mtDNA in Parkinson's disease pathogenesis and potential PD therapeutic approaches targeting mitochondrial dysfunction was then discussed.
Collapse
|
15
|
González LF, Bevilacqua LE, Naves R. Nanotechnology-Based Drug Delivery Strategies to Repair the Mitochondrial Function in Neuroinflammatory and Neurodegenerative Diseases. Pharmaceutics 2021; 13:2055. [PMID: 34959337 PMCID: PMC8707316 DOI: 10.3390/pharmaceutics13122055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are vital organelles in eukaryotic cells that control diverse physiological processes related to energy production, calcium homeostasis, the generation of reactive oxygen species, and cell death. Several studies have demonstrated that structural and functional mitochondrial disturbances are involved in the development of different neuroinflammatory (NI) and neurodegenerative (ND) diseases (NI&NDDs) such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Remarkably, counteracting mitochondrial impairment by genetic or pharmacologic treatment ameliorates neurodegeneration and clinical disability in animal models of these diseases. Therefore, the development of nanosystems enabling the sustained and selective delivery of mitochondria-targeted drugs is a novel and effective strategy to tackle NI&NDDs. In this review, we outline the impact of mitochondrial dysfunction associated with unbalanced mitochondrial dynamics, altered mitophagy, oxidative stress, energy deficit, and proteinopathies in NI&NDDs. In addition, we review different strategies for selective mitochondria-specific ligand targeting and discuss novel nanomaterials, nanozymes, and drug-loaded nanosystems developed to repair mitochondrial function and their therapeutic benefits protecting against oxidative stress, restoring cell energy production, preventing cell death, inhibiting protein aggregates, and improving motor and cognitive disability in cellular and animal models of different NI&NDDs.
Collapse
Affiliation(s)
| | | | - Rodrigo Naves
- Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Av. Independencia 1027, Santiago 8380453, Chile; (L.F.G.); (L.E.B.)
| |
Collapse
|
16
|
Zhou R, Guo F, Xiang C, Zhang Y, Yang H, Zhang J. Systematic Study of Crucial Transcription Factors of Coptidis rhizoma Alkaloids against Cerebral Ischemia-Reperfusion Injury. ACS Chem Neurosci 2021; 12:2308-2319. [PMID: 34114461 DOI: 10.1021/acschemneuro.0c00730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Coptidis rhizoma alkaloids (CRAs), extracted from Coptidis rhizoma, have been indicated to play important neuroprotective roles, but the mechanism underlying has not been determined, especially from the perspective of transcription factors (TFs). In this study, crucial TFs involved in the protective activity of CRA were revealed based on RNA-Seq technology, proteomics, and network pharmacological analysis of the effects of CRA on middle cerebral artery occlusion-mediated cerebral ischemia-reperfusion (I/R) injury. Importantly, CRA significantly reduced the infarction rate and neurological deficiency score. Moreover, CRA significantly decreased the levels of TNF-α, MCP-1, and IL-1β. In addition, seven TFs, including Ncor1, Smad1, Bhlhe41, Stat3, Sp100, Satb2, and Lrpprc, were found to be crucial TFs, and five of these TFs were associated with inflammation. Furthermore, eight compounds in CRA were associated with the identified TFs through network pharmacological analysis. The alteration of Lrpprc and Sabt2 was further confirmed by measuring their downstream genes, including Pigg, Hhatl, Wdr77, Mpped1, Arpp21, Ppfia3, Rims1, and Cacna2d1 by reverse transcriptase polymerase chain reaction. Thus, these seven TFs may be important targets in CRA-mediated protection against I/R injury. This research provides a new view of the protective effect of CRA against cerebral I/R injury and reveals new therapeutic targets for treating cerebral ischemia.
Collapse
Affiliation(s)
- Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changpei Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
17
|
Prasuhn J, Davis RL, Kumar KR. Targeting Mitochondrial Impairment in Parkinson's Disease: Challenges and Opportunities. Front Cell Dev Biol 2021; 8:615461. [PMID: 33469539 PMCID: PMC7813753 DOI: 10.3389/fcell.2020.615461] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The underlying pathophysiology of Parkinson's disease is complex, but mitochondrial dysfunction has an established and prominent role. This is supported by an already large and rapidly growing body of evidence showing that the role of mitochondrial (dys)function is central and multifaceted. However, there are clear gaps in knowledge, including the dilemma of explaining why inherited mitochondriopathies do not usually present with parkinsonian symptoms. Many aspects of mitochondrial function are potential therapeutic targets, including reactive oxygen species production, mitophagy, mitochondrial biogenesis, mitochondrial dynamics and trafficking, mitochondrial metal ion homeostasis, sirtuins, and endoplasmic reticulum links with mitochondria. Potential therapeutic strategies may also incorporate exercise, microRNAs, mitochondrial transplantation, stem cell therapies, and photobiomodulation. Despite multiple studies adopting numerous treatment strategies, clinical trials to date have generally failed to show benefit. To overcome this hurdle, more accurate biomarkers of mitochondrial dysfunction are required to detect subtle beneficial effects. Furthermore, selecting study participants early in the disease course, studying them for suitable durations, and stratifying them according to genetic and neuroimaging findings may increase the likelihood of successful clinical trials. Moreover, treatments involving combined approaches will likely better address the complexity of mitochondrial dysfunction in Parkinson's disease. Therefore, selecting the right patients, at the right time, and using targeted combination treatments, may offer the best chance for development of an effective novel therapy targeting mitochondrial dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Ryan L Davis
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, Sydney, NSW, Australia.,Department of Neurogenetics, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
18
|
Basu U, Bostwick AM, Das K, Dittenhafer-Reed KE, Patel SS. Structure, mechanism, and regulation of mitochondrial DNA transcription initiation. J Biol Chem 2020; 295:18406-18425. [PMID: 33127643 PMCID: PMC7939475 DOI: 10.1074/jbc.rev120.011202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are specialized compartments that produce requisite ATP to fuel cellular functions and serve as centers of metabolite processing, cellular signaling, and apoptosis. To accomplish these roles, mitochondria rely on the genetic information in their small genome (mitochondrial DNA) and the nucleus. A growing appreciation for mitochondria's role in a myriad of human diseases, including inherited genetic disorders, degenerative diseases, inflammation, and cancer, has fueled the study of biochemical mechanisms that control mitochondrial function. The mitochondrial transcriptional machinery is different from nuclear machinery. The in vitro re-constituted transcriptional complexes of Saccharomyces cerevisiae (yeast) and humans, aided with high-resolution structures and biochemical characterizations, have provided a deeper understanding of the mechanism and regulation of mitochondrial DNA transcription. In this review, we will discuss recent advances in the structure and mechanism of mitochondrial transcription initiation. We will follow up with recent discoveries and formative findings regarding the regulatory events that control mitochondrial DNA transcription, focusing on those involved in cross-talk between the mitochondria and nucleus.
Collapse
Affiliation(s)
- Urmimala Basu
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | - Kalyan Das
- Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.
| |
Collapse
|