1
|
Yang F, Gao Y, Xie S, Yang W, Wang Q, Ye W, Sun L, Zhou J, Feng X. Dietary phytosterol supplementation mitigates renal fibrosis via activating mitophagy and modulating the gut microbiota. Food Funct 2025. [PMID: 39989003 DOI: 10.1039/d4fo06043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Chronic kidney disease (CKD) poses a significant global health challenge, primarily driven by renal fibrosis, with limited treatment options. Addressing this condition necessitates either targeted medical treatments or dietary interventions. Phytosterols (PS) are cholesterol-like bioactive compounds in various plant-based foods with antioxidant and anti-inflammatory effects. A CKD mouse model was established using folic acid (FA) and treated with dietary supplements of two PS, stigmasterol (Stig) and β-sitosterol (β-Sito). The effects and mechanisms of PS were investigated through biochemical indices, pathology, transcriptomics, and 16S rDNA sequencing. The results indicated that high-dose PS are more effective than low-dose PS and Losartan potassium (LP) in reducing renal fibrosis, restoring function, and modulating oxidative stress and inflammation, with no significant differences between high-dose Stig and β-Sito treatments. Gene Ontology (GO) enrichment analysis revealed that PS were significantly enriched in pathways related to the mitochondrial outer membrane, ubiquitin-protein ligase binding, and other cellular components and molecular processes. PS reduced the expression of TGF-β/Smad and cGAS/Sting1/TBK1 and activated PINK1/Parkin pathway proteins, thereby mitigating renal fibrosis in mice. CKD is often associated with imbalanced gut microbiota and compromised intestinal barriers. Our observations indicated that PS restored the intestinal barrier, altered the composition of the gut microbiota, and improved renal function in CKD mice. The present findings indicate that both Stig and β-Sito activate mitophagy via the PINK1/Parkin pathway and modulate the gut microbiota, thereby alleviating renal fibrosis. The findings provide solid and significant implications for developing effective application of PS supplementation in the management of CKD, presenting novel concepts and approaches for research and clinical treatment.
Collapse
Affiliation(s)
- Fan Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi province, China
| | - Yingjie Gao
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Siyi Xie
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Wenjing Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Qiyan Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi province, China
| | - Wenqian Ye
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Lu Sun
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Jiangtao Zhou
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - XiuE Feng
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| |
Collapse
|
2
|
Dagar N, Jadhav HR, Gaikwad AB. Network pharmacology combined with molecular docking and dynamics to assess the synergism of esculetin and phloretin against acute kidney injury-diabetes comorbidity. Mol Divers 2025; 29:1-19. [PMID: 38578376 DOI: 10.1007/s11030-024-10829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024]
Abstract
Acute kidney injury (AKI) is a global health concern with high incidence and mortality, where diabetes further worsens the condition. The available treatment options are not uniformly effective against the complex pathogenesis of AKI-diabetes comorbidity. Hence, combination therapies based on the multicomponent, multitarget approach can tackle more than one pathomechanism and can aid in AKI-diabetes comorbidity management. This study aimed to investigate the therapeutic potential of esculetin and phloretin combination against AKI-diabetes comorbidity by network pharmacology followed by validation by molecular docking and dynamics. The curative targets for diabetes, AKI, esculetin, and phloretin were obtained from DisGeNET, GeneCards, SwissTargetPrediction database. Further, the protein-protein interaction of the potential targets of esculetin and phloretin against AKI-diabetes comorbidity was investigated using the STRING database. Gene ontology and pathway enrichment analysis were performed with the help of the DAVID and KEGG databases, followed by network construction and analysis via Cytoscape. Molecular docking and dynamic simulations were performed to validate the targets of esculetin and phloretin against AKI-diabetes comorbidity. We obtained 6341 targets for AKI-diabetes comorbidity. Further, a total of 54 and 44 targets of esculetin and phloretin against AKI-diabetes comorbidity were retrieved. The top 10 targets for esculetin selected based on the degree value were AKR1B1, DAO, ESR1, PLK1, CA3, CA2, CCNE1, PRKN, HDAC2, and MAOA. Similarly, phloretin's 10 key targets were ACHE, CDK1, MAPK14, APP, CDK5R1, CCNE1, MAOA, MAOB, HDAC6, and PRKN. These targets were enriched in 58 pathways involved in the pathophysiology of AKI-diabetes comorbidity. Further, esculetin and phloretin showed an excellent binding affinity for these critical targets. The findings of this study suggest that esculetin and phloretin combination as a multicomponent multitarget therapy has the potential to prevent AKI-diabetes comorbidity.
Collapse
Affiliation(s)
- Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
3
|
Behera BP, Mishra SR, Patra S, Mahapatra KK, Bhol CS, Panigrahi DP, Praharaj PP, Klionsky DJ, Bhutia SK. Molecular regulation of mitophagy signaling in tumor microenvironment and its targeting for cancer therapy. Cytokine Growth Factor Rev 2025:S1359-6101(25)00004-8. [PMID: 39880721 DOI: 10.1016/j.cytogfr.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Aberrations emerging in mitochondrial homeostasis are restrained by mitophagy to control mitochondrial integrity, bioenergetics signaling, metabolism, oxidative stress, and apoptosis. The mitophagy-accompanied mitochondrial processes that occur in a dysregulated condition act as drivers for cancer occurrence. In addition, the enigmatic nature of mitophagy in cancer cells modulates the cellular proteome, creating challenges for therapeutic interventions. Several reports found the role of cellular signaling pathways in cancer to modulate mitophagy to mitigate stress, immune checkpoints, energy demand, and cell death. Thus, targeting mitophagy to hinder oncogenic intracellular signaling by promoting apoptosis, in hindsight, might have an edge against cancer. This review highlights the receptors and adaptors, and the involvement of many proteins in mitophagy and their role in oncogenesis. It also provides insight into using mitophagy as a potential target for therapeutic intervention in various cancer types.
Collapse
Affiliation(s)
- Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India.
| |
Collapse
|
4
|
Yao C, Li Z, Sun K, Zhang Y, Shou S, Jin H. Mitochondrial dysfunction in acute kidney injury. Ren Fail 2024; 46:2393262. [PMID: 39192578 PMCID: PMC11360640 DOI: 10.1080/0886022x.2024.2393262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Acute kidney injury (AKI) is a systemic clinical syndrome increasing morbidity and mortality worldwide in recent years. Renal tubular epithelial cells (TECs) death caused by mitochondrial dysfunction is one of the pathogeneses. The imbalance of mitochondrial quality control is the main cause of mitochondrial dysfunction. Mitochondrial quality control plays a crucial role in AKI. Mitochondrial quality control mechanisms are involved in regulating mitochondrial integrity and function, including antioxidant defense, mitochondrial quality control, mitochondrial DNA (mtDNA) repair, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis. Currently, many studies have used mitochondrial dysfunction as a targeted therapeutic strategy for AKI. Therefore, this review aims to present the latest research advancements on mitochondrial dysfunction in AKI, providing a valuable reference and theoretical foundation for clinical prevention and treatment of this condition, ultimately enhancing patient prognosis.
Collapse
Affiliation(s)
- Congcong Yao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ziwei Li
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Keke Sun
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zhang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Wang X, Luo T, Yang Y, Yang L, Liu M, Zou Q, Wang D, Yang C, Xue Q, Liu S, Wan J, He G, Zeng A, Hou J, Ma S, Wang P. TRPA1 protects against contrast-induced renal tubular injury by preserving mitochondrial dynamics via the AMPK/DRP1 pathway. Free Radic Biol Med 2024; 224:521-539. [PMID: 39278575 DOI: 10.1016/j.freeradbiomed.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Mitochondrial dysfunction and oxidative stress are involved in the development of contrast-induced acute kidney injury (CI-AKI). The present study aimed to reveal the role of transient receptor potential ankyrin 1 (TRPA1), an oxidative sensor, in CI-AKI. Trpa1PT-/- mice with Trpa1 conditionally knocked out in renal proximal tubular (PT) cells, Trpa1 overexpression mice (Trpa1-OE), and TRPA1 agonists and antagonists were used to study its function in a mouse model of iohexol-induced CI-AKI. We found that TRPA1 was functionally expressed in PT cells. Activation of TRPA1 with cinnamaldehyde or overexpression of Trpa1 remarkably ameliorated renal tubular injury and dysfunction in a mouse model of CI-AKI, while CI-AKI was significantly exacerbated in Trpa1PT-/- mice. Proteomics demonstrated that mouse kidneys with CI-AKI had downregulated proteins involved in mitochondrial dynamics and upregulated mitophagy-associated proteins. The beneficial effects of TRPA1 activation/overexpression on CI-AKI were associated with improved mitochondrial function, decreased mitochondrial fission and oxidative stress, enhanced mitophagy, and less apoptosis of renal tubular cells. TRPA1-induced decreases in mitochondrial fission were linked to upregulated fusion-related proteins (mitofusin 1, mitofusin 2 and optic atrophy 1) and downregulated fission mediator, phosphorylated dynamin-related protein 1 (Drp1). Importantly, inhibition of Drp1 with mitochondrial division inhibitor 1 improved CI-AKI. In addition, the decreased mitochondrial fission was also mediated by inactivation of AMP-activated protein kinase which mediates mitochondrial biogenesis. The findings suggest that TRPA1 plays a protective role in CI-AKI through regulating mitochondrial fission/fusion, biogenesis, and dysfunction. Activating TRPA1 may become novel therapeutic strategies for the prevention of CI-AKI.
Collapse
Affiliation(s)
- Xinquan Wang
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Tao Luo
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Yi Yang
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Lun Yang
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Min Liu
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Qingliang Zou
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Dan Wang
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Changqiang Yang
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Qiang Xue
- Department of Cardiology, Yanan Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China
| | - Sen Liu
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Jindong Wan
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Gaomin He
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Anping Zeng
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Jixin Hou
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China
| | - Shuangtao Ma
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Peijian Wang
- Department of Cardiology, Department of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China; Key Laboratory of Aging and Vascular Homeostasis at Chengdu Medical College of Sichuan Province, Chengdu, Sichuan, 610500, China; Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, Sichuan, 610500, China.
| |
Collapse
|
6
|
Xue JL, Ji JL, Zhou Y, Zhang Y, Liu BC, Ma RX, Li ZL. The multifaceted effects of mitochondria in kidney diseases. Mitochondrion 2024; 79:101957. [PMID: 39270830 DOI: 10.1016/j.mito.2024.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria serve as the primary site for aerobic respiration within cells, playing a crucial role in maintaining cellular homeostasis. To maintain homeostasis and meet the diverse demands of the cells, mitochondria have evolved intricate systems of quality control, mainly including mitochondrial dynamics, mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. The kidney, characterized by its high energy requirements, is particularly abundant in mitochondria. Interestingly, the mitochondria display complex behaviors and functions. When the kidney is suffered from obstructive, ischemic, hypoxic, oxidative, or metabolic insults, the dysfunctional mitochondrial derived from the defects in the mitochondrial quality control system contribute to cellular inflammation, cellular senescence, and cell death, posing a threat to the kidney. However, in addition to causing injury to the kidney in several cases, mitochondria also exhibit protective effect on the kidney. In recent years, accumulating evidence indicated that mitochondria play a crucial role in adaptive repair following kidney diseases caused by various etiologies. In this article, we comprehensively reviewed the current understanding about the multifaceted effects of mitochondria on kidney diseases and their therapeutic potential.
Collapse
Affiliation(s)
- Jia-Le Xue
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jia-Ling Ji
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Zhou
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yao Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Rui-Xia Ma
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Shelke V, Dagar N, Lech M, Gaikwad AB. Management of inflammaging in kidney diseases: focusing on the current investigational drugs. Expert Opin Investig Drugs 2024; 33:1153-1166. [PMID: 39403841 DOI: 10.1080/13543784.2024.2417755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024]
Abstract
INTRODUCTION To improve kidney disease treatments, it is crucial to understand how inflammaging affects patients´ longevity. We could potentially slow down kidney disease progression and enhance longevity by targeting specific pathways involved in inflammaging with potential drugs. AREAS OF COVERED This review offers an updated overview of 'anti-inflammaging' drugs currently in the kidney disease research pipeline, as well as those with potential for future therapeutic use. Furthermore, these drugs are categorized according to their mechanisms, including targeting inflammation, immune and metabolic regulation, oxidative stress, senescence, and autophagy, as demonstrated in preclinical and early clinical trials. Additionally, the review provides insights into key challenges and opinions for future advancements in this field. EXPERT OPINION We reviewed recent advancements in applying different therapies to mitigate inflammaging in kidney diseases. We underscore the need for continued research to elucidate the complex pathways underlying inflammaging, which will be essential for the development of more precise and effective treatments. As research in this field advances, several emerging drugs appear promising for future investigation. While current findings are encouraging, further clinical studies are required to validate the therapeutic potential of these agents in kidney diseases, ultimately paving the way for more targeted and efficacious interventions.
Collapse
Affiliation(s)
- Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Maciej Lech
- Division of Nephrology, Department of Medicine IV, LMU University Hospital, Ludwig Maximilians University Munich, LMU, Munich, Germany
| | | |
Collapse
|
8
|
Brogyanyi T, Kejík Z, Veselá K, Dytrych P, Hoskovec D, Masařik M, Babula P, Kaplánek R, Přibyl T, Zelenka J, Ruml T, Vokurka M, Martásek P, Jakubek M. Iron chelators as mitophagy agents: Potential and limitations. Biomed Pharmacother 2024; 179:117407. [PMID: 39265234 DOI: 10.1016/j.biopha.2024.117407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Mitochondrial autophagy (mitophagy) is very important process for the maintenance of cellular homeostasis, functionality and survival. Its dysregulation is associated with high risk and progression numerous serious diseases (e.g., oncological, neurodegenerative and cardiovascular ones). Therefore, targeting mitophagy mechanisms is very hot topic in the biological and medicinal research. The interrelationships between the regulation of mitophagy and iron homeostasis are now becoming apparent. In short, mitochondria are central point for the regulation of iron homeostasis, but change in intracellular cheatable iron level can induce/repress mitophagy. In this review, relationships between iron homeostasis and mitophagy are thoroughly discussed and described. Also, therapeutic applicability of mitophagy chelators in the context of individual diseases is comprehensively and critically evaluated.
Collapse
Affiliation(s)
- Tereza Brogyanyi
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - Michal Masařik
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Petr Babula
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Tomáš Přibyl
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic.
| |
Collapse
|
9
|
Li Y, Dong B, Wang Y, Bi H, Zhang J, Ding C, Wang C, Ding X, Xue W. Inhibition of Usp14 ameliorates renal ischemia-reperfusion injury by reducing Tfap2a stabilization and facilitating mitophagy. Transl Res 2024; 270:94-103. [PMID: 38643868 DOI: 10.1016/j.trsl.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
Mitochondrial dysfunction is recognized as a pivotal contributor to the pathogenesis of renal ischemia-reperfusion (IR) injury. Mitophagy, the process responsible for removing damaged protein aggregates, stands as a critical mechanism safeguarding cells against IR injury. Currently, the role of deubiquitination in regulating mitophagy still needs to be completely elucidated. This study aimed to evaluate the impact of ubiquitin-specific peptidase 14 (Usp14), a deubiquitinase, in IR injury by influencing mitophagy. Utilizing a murine model of renal IR injury, Usp14 silencing was found to ameliorate kidney injury, leading to decreased levels of serum creatinine and blood urea nitrogen, alongside diminished oxidative stress and inflammation. In renal epithelial cells subjected to hypoxia/reoxygenation (H/R), Usp14 knockdown increased cell viability and reduced apoptosis. Further mechanistic studies revealed that Usp14 interacted with and deubiquitinated transcription factor AP-2 alpha (Tfap2a), thereby suppressing its downstream target gene, TANK binding kinase 1 (Tbk1), to influence mitophagy. Tfap2a overexpression or Tbk1 inhibition reversed the protective effects of Usp14 silencing on renal tubular cell injury and its facilitation of mitophagy. In summary, our study demonstrated the renoprotective role of Usp14 knockdown in mitigating renal IR injury by promoting Tfap2a-mediated Tbk1 upregulation and mitophagy. These findings advocate for exploring Usp14 inhibition as a promising therapeutic avenue for mitigating IR injury, primarily by enhancing the clearance of damaged mitochondria through augmented mitophagy.
Collapse
Affiliation(s)
- Yang Li
- Department of renal transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an China.
| | - Boqing Dong
- Department of renal transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an China
| | - Ying Wang
- Department of renal transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an China
| | - Huanjing Bi
- Department of renal transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an China
| | - Jing Zhang
- Department of renal transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an China
| | - Chenguang Ding
- Department of renal transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an China
| | - Chenge Wang
- Department of renal transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an China
| | - Xiaoming Ding
- Department of renal transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an China
| | - Wujun Xue
- Department of renal transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an China
| |
Collapse
|
10
|
Jia X, Zhu L, Zhu Q, Zhang J. The role of mitochondrial dysfunction in kidney injury and disease. Autoimmun Rev 2024; 23:103576. [PMID: 38909720 DOI: 10.1016/j.autrev.2024.103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Mitochondria are the main sites of aerobic respiration in the cell and mainly provide energy for the organism, and play key roles in adenosine triphosphate (ATP) synthesis, metabolic regulation, and cell differentiation and death. Mitochondrial dysfunction has been identified as a contributing factor to a variety of diseases. The kidney is rich in mitochondria to meet energy needs, and stable mitochondrial structure and function are essential for normal kidney function. Recently, many studies have shown a link between mitochondrial dysfunction and kidney disease, maintaining mitochondrial homeostasis has become an important target for kidney therapy. In this review, we integrate the role of mitochondrial dysfunction in different kidney diseases, and specifically elaborate the mechanism of mitochondrial reactive oxygen species (mtROS), autophagy and ferroptosis involved in the occurrence and development of kidney diseases, providing insights for improved treatment of kidney diseases.
Collapse
Affiliation(s)
- Xueqian Jia
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Lifu Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Qixing Zhu
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; The Center for Scientific Research, Anhui Medical University, Hefei, PR China.
| |
Collapse
|
11
|
Dagar N, Habshi T, Shelke V, Jadhav HR, Gaikwad AB. Renoprotective effect of esculetin against ischemic acute kidney injury-diabetic comorbidity. Free Radic Res 2024; 58:69-87. [PMID: 38323807 DOI: 10.1080/10715762.2024.2313738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Mitophagy maintains cellular homeostasis by eliminating damaged mitochondria. Accumulated damaged mitochondria can lead to oxidative stress and cell death. Induction of the PINK1/Parkin-mediated mitophagy is reported to be renoprotective in acute kidney injury (AKI). Esculetin, a naturally available coumarin, has shown protective action against diabetic complications. However, its effect on AKI-diabetes comorbidity has not been explored yet. Therefore, we aimed to investigate the renoprotective effect of esculetin against AKI under diabetic conditions via regulating PINK1/Parkin-mediated mitophagy. For this, type 1 diabetic male Wistar rats were treated with two doses of esculetin (50 and 100 mg/kg/day orally) for five days followed by AKI induction by bilateral ischemic-reperfusion injury (IRI). NRK-52E cells grown in high glucose were exposed to sodium azide (10 mM) for induction of hypoxia/reperfusion injury (HRI) in-vitro. Esculetin (50 µM) treatment for 24 h was given to the cells before HRI. The in-vitro samples were utilized for cell viability and ΔΨm assay, immunoblotting, and immunofluorescence. Rats' plasma, urine, and kidney samples were collected for biochemical analysis, histopathology, and western blotting. Our results showed a significant decrease in kidney injury-specific markers and increased expression of mitophagy markers (PINK1 and Parkin) with esculetin treatment. Moreover, esculetin prevented the HRI and hyperglycemia-induced decrease in ΔΨm and autophagosome marker. Also, esculetin therapy reduced oxidative stress via increased Nrf2 and Keap1 expression. Esculetin attenuated AKI under diabetic condition by preventing mitochondrial dysfunction via inducing PINK1/Parkin-mediated mitophagy, suggesting its potential as an effective therapy for preventing AKI-diabetes comorbidity.
Collapse
Affiliation(s)
- Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Tahib Habshi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | | |
Collapse
|
12
|
Su X, Song C, He Z, Song Q, Meng L, Dong C, Zhou J, Ke H, Xiong Y, Liu J, Liao W, Yang S. Ambra1 in exosomes secreted by HK-2 cells damaged by supersaturated oxalate induce mitophagy and autophagy-ferroptosis in normal HK-2 cells to participate in the occurrence of kidney stones. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119604. [PMID: 37806389 DOI: 10.1016/j.bbamcr.2023.119604] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Injury to the renal tubular epithelium has emerged as a leading factor underlying the formation of kidney stones. Indeed, epithelial cell damage contributes to the adherence and aggregation of crystals, thereby accelerating the formation of renal stones. Meanwhile, exosomes play an instrumental role in cellular communication, including DNA, RNA, mRNA, etc. In this study, homogenous cells were treated with exosomes derived from damaged cells in an attempt to establish "positive feedback" of cell damage, and the desired results were achieved. To begin, a serum-free medium and supersaturated concentrations of oxalate were added to the HK-2 cell line, and then exosomes were isolated from the two groups for analysis and comparison, and the autophagy-related gene Ambra1 (autophagy and beclin-1 regulator 1) was detected. Subsequently, normal HK-2 cells were treated with exosomes, and the related indexes of autophagy, ferroptosis and mitophagy were determined. Thereafter, Ambra1 was knocked down in exosome-derived HK-2 cells, resulting in the down-regulation of Ambra1 expression in exosomes produced by HK-2 cells following oxalate intervention. Thereafter, the ability of exosomes to stimulate autophagy, mitophagy and ferroptosis was re-evaluated in HK-2 cells after Ambra1 knockdown. The results corroborated that exosomes secreted by oxalate-treated HK-2 can directly elevate autophagy, ferroptosis and mitophagy levels in normal cells, and this effect was significantly mitigated following Ambra1 knockdown within exosomes. Meanwhile, exosomes-induced autophagy and ferroptosis were alleviated after knockdown of beclin-1 in recipient HK-2 cells. These results further suggest that beclin-1 plays a critical role in the process of exosome-induced autophagy-ferroptosis.
Collapse
Affiliation(s)
- Xiaozhe Su
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianlin Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lingchao Meng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Caitao Dong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiawei Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hu Ke
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunhe Xiong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junwei Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenbiao Liao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
13
|
Wei W, Jiang Y, Hu G, He Y, Chen H. Recent Advances of Mitochondrial Alterations in Alzheimer's Disease: A Perspective of Mitochondrial Basic Events. J Alzheimers Dis 2024; 101:379-396. [PMID: 39213063 DOI: 10.3233/jad-240092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders and is characterized by a decrease in learning capacity, memory loss and behavioral changes. In addition to the well-recognized amyloid-β cascade hypothesis and hyperphosphorylated Tau hypothesis, accumulating evidence has led to the proposal of the mitochondrial dysfunction hypothesis as the primary etiology of AD. However, the predominant molecular mechanisms underlying the development and progression of AD have not been fully elucidated. Mitochondrial dysfunction is not only considered an early event in AD pathogenesis but is also involved in the whole course of the disease, with numerous pathophysiological processes, including disordered energy metabolism, Ca2+ homeostasis dysfunction and hyperactive oxidative stress. In the current review, we have integrated emerging evidence to summarize the main mitochondrial alterations- bioenergetic metabolism, mitochondrial inheritance, mitobiogenesis, fission- fusion dynamics, mitochondrial degradation, and mitochondrial movement- underlying AD pathogenesis; precisely identified the mitochondrial regulators; discussed the potential mechanisms and primary processes; highlighted the leading players; and noted additional incidental signaling pathway changes. This review may help to stimulate research exploring mitochondrial metabolically-oriented neuroprotection strategies in AD therapies, leading to a better understanding of the link between the mitochondrial dysfunction hypothesis and AD pathogenesis.
Collapse
Affiliation(s)
- Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Ying Jiang
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Guizhen Hu
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Yanfang He
- Department of Blood Transfusion, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Huiyi Chen
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| |
Collapse
|
14
|
Titus AS, Sung EA, Zablocki D, Sadoshima J. Mitophagy for cardioprotection. Basic Res Cardiol 2023; 118:42. [PMID: 37798455 PMCID: PMC10556134 DOI: 10.1007/s00395-023-01009-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Mitochondrial function is maintained by several strictly coordinated mechanisms, collectively termed mitochondrial quality control mechanisms, including fusion and fission, degradation, and biogenesis. As the primary source of energy in cardiomyocytes, mitochondria are the central organelle for maintaining cardiac function. Since adult cardiomyocytes in humans rarely divide, the number of dysfunctional mitochondria cannot easily be diluted through cell division. Thus, efficient degradation of dysfunctional mitochondria is crucial to maintaining cellular function. Mitophagy, a mitochondria specific form of autophagy, is a major mechanism by which damaged or unnecessary mitochondria are targeted and eliminated. Mitophagy is active in cardiomyocytes at baseline and in response to stress, and plays an essential role in maintaining the quality of mitochondria in cardiomyocytes. Mitophagy is mediated through multiple mechanisms in the heart, and each of these mechanisms can partially compensate for the loss of another mechanism. However, insufficient levels of mitophagy eventually lead to mitochondrial dysfunction and the development of heart failure. In this review, we discuss the molecular mechanisms of mitophagy in the heart and the role of mitophagy in cardiac pathophysiology, with the focus on recent findings in the field.
Collapse
Affiliation(s)
- Allen Sam Titus
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Eun-Ah Sung
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA.
| |
Collapse
|
15
|
Ho HJ, Aoki N, Wu YJ, Gao MC, Sekine K, Sakurai T, Chiba H, Watanabe H, Watanabe M, Hui SP. A Pacific Oyster-Derived Antioxidant, DHMBA, Protects Renal Tubular HK-2 Cells against Oxidative Stress via Reduction of Mitochondrial ROS Production and Fragmentation. Int J Mol Sci 2023; 24:10061. [PMID: 37373208 DOI: 10.3390/ijms241210061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
The kidney contains numerous mitochondria in proximal tubular cells that provide energy for tubular secretion and reabsorption. Mitochondrial injury and consequent excessive reactive oxygen species (ROS) production can cause tubular damage and play a major role in the pathogenesis of kidney diseases, including diabetic nephropathy. Accordingly, bioactive compounds that protect the renal tubular mitochondria from ROS are desirable. Here, we aimed to report 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA), isolated from the Pacific oyster (Crassostrea gigas) as a potentially useful compound. In human renal tubular HK-2 cells, DHMBA significantly mitigated the cytotoxicity induced by the ROS inducer L-buthionine-(S, R)-sulfoximine (BSO). DHMBA reduced the mitochondrial ROS production and subsequently regulated mitochondrial homeostasis, including mitochondrial biogenesis, fusion/fission balance, and mitophagy; DHMBA also enhanced mitochondrial respiration in BSO-treated cells. These findings highlight the potential of DHMBA to protect renal tubular mitochondrial function against oxidative stress.
Collapse
Affiliation(s)
- Hsin-Jung Ho
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Natsumi Aoki
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yi-Jou Wu
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Ming-Chen Gao
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Karin Sekine
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Toshihiro Sakurai
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo 007-0894, Japan
| | | | - Mitsugu Watanabe
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Watanabe Oyster Laboratory, Co., Ltd., Tokyo 192-0154, Japan
- Graduate School of Science and Engineering, Soka University, Tokyo 192-8577, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
16
|
Huang J, Liang Y, Zhou L. Natural products for kidney disease treatment: Focus on targeting mitochondrial dysfunction. Front Pharmacol 2023; 14:1142001. [PMID: 37007023 PMCID: PMC10050361 DOI: 10.3389/fphar.2023.1142001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The patients with kidney diseases are increasing rapidly all over the world. With the rich abundance of mitochondria, kidney is an organ with a high consumption of energy. Hence, renal failure is highly correlated with the breakup of mitochondrial homeostasis. However, the potential drugs targeting mitochondrial dysfunction are still in mystery. The natural products have the superiorities to explore the potential drugs regulating energy metabolism. However, their roles in targeting mitochondrial dysfunction in kidney diseases have not been extensively reviewed. Herein, we reviewed a series of natural products targeting mitochondrial oxidative stress, mitochondrial biogenesis, mitophagy, and mitochondrial dynamics. We found lots of them with great medicinal values in kidney disease. Our review provides a wide prospect for seeking the effective drugs targeting kidney diseases.
Collapse
|
17
|
Makarov M, Korkotian E. Differential Role of Active Compounds in Mitophagy and Related Neurodegenerative Diseases. Toxins (Basel) 2023; 15:202. [PMID: 36977093 PMCID: PMC10058020 DOI: 10.3390/toxins15030202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease, significantly reduce the quality of life of patients and eventually result in complete maladjustment. Disruption of the synapses leads to a deterioration in the communication of nerve cells and decreased plasticity, which is associated with a loss of cognitive functions and neurodegeneration. Maintaining proper synaptic activity depends on the qualitative composition of mitochondria, because synaptic processes require sufficient energy supply and fine calcium regulation. The maintenance of the qualitative composition of mitochondria occurs due to mitophagy. The regulation of mitophagy is usually based on several internal mechanisms, as well as on signals and substances coming from outside the cell. These substances may directly or indirectly enhance or weaken mitophagy. In this review, we have considered the role of some compounds in process of mitophagy and neurodegeneration. Some of them have a beneficial effect on the functions of mitochondria and enhance mitophagy, showing promise as novel drugs for the treatment of neurodegenerative pathologies, while others contribute to a decrease in mitophagy.
Collapse
Affiliation(s)
| | - Eduard Korkotian
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot 7630031, Israel
| |
Collapse
|
18
|
Akhouri V, Majumder S, Gaikwad AB. The emerging insight into E3 ligases as the potential therapeutic target for diabetic kidney disease. Life Sci 2023; 321:121643. [PMID: 36997061 DOI: 10.1016/j.lfs.2023.121643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/25/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
Diabetic kidney disease (DKD) is a major diabetic complication and global health concern, occurring in nearly 30 % to 40 % of people with diabetes. Importantly, several therapeutic strategies are being used against DKD; however, available treatments are not uniformly effective and the continuous rise in the prevalence of DKD demands more potential therapeutic approaches or targets. Epigenetic modifiers are regarded for their potential therapeutic effects against DKD. E3 ligases are such epigenetic modifier that regulates the target gene expression by attaching ubiquitin to the histone protein. In recent years, the E3 ligases came up as a potential therapeutic target as it selectively attaches ubiquitin to the substrate proteins in the ubiquitination cascade and modulates cellular homeostasis. The E3 ligases are also actively involved in DKD by regulating the expression of several proteins involved in the proinflammatory and profibrotic pathways. Burgeoning reports suggest that several E3 ligases such as TRIM18 (tripartite motif 18), Smurf1 (Smad ubiquitination regulatory factor 1), and NEDD4-2 (neural precursor cell-expressed developmentally downregulated gene 4-2) are involved in kidney epithelial-mesenchymal transition, inflammation, and fibrosis by regulating respective signaling pathways. However, the various signaling pathways that are regulated by different E3 ligases in the progression of DKD are poorly understood. In this review, we have discussed E3 ligases as potential therapeutic target for DKD. Moreover, different signaling pathways regulated by E3 ligases in the progression of DKD have also been discussed.
Collapse
Affiliation(s)
- Vivek Akhouri
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
19
|
Oxidative Stress and Mitochondrial Dysfunction in Chronic Kidney Disease. Cells 2022; 12:cells12010088. [PMID: 36611880 PMCID: PMC9818928 DOI: 10.3390/cells12010088] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The kidney contains many mitochondria that generate ATP to provide energy for cellular processes. Oxidative stress injury can be caused by impaired mitochondria with excessive levels of reactive oxygen species. Accumulating evidence has indicated a relationship between oxidative stress and kidney diseases, and revealed new insights into mitochondria-targeted therapeutics for renal injury. Improving mitochondrial homeostasis, increasing mitochondrial biogenesis, and balancing mitochondrial turnover has the potential to protect renal function against oxidative stress. Although there are some reviews that addressed this issue, the articles summarizing the relationship between mitochondria-targeted effects and the risk factors of renal failure are still few. In this review, we integrate recent studies on oxidative stress and mitochondrial function in kidney diseases, especially chronic kidney disease. We organized the causes and risk factors of oxidative stress in the kidneys based in their mitochondria-targeted effects. This review also listed the possible candidates for clinical therapeutics of kidney diseases by modulating mitochondrial function.
Collapse
|