1
|
Barbaroux H, Kunze KP, Neji R, Nazir MS, Pennell DJ, Nielles-Vallespin S, Scott AD, Young AA. Automated segmentation of long and short axis DENSE cardiovascular magnetic resonance for myocardial strain analysis using spatio-temporal convolutional neural networks. J Cardiovasc Magn Reson 2023; 25:16. [PMID: 36991474 PMCID: PMC10061808 DOI: 10.1186/s12968-023-00927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Cine Displacement Encoding with Stimulated Echoes (DENSE) facilitates the quantification of myocardial deformation, by encoding tissue displacements in the cardiovascular magnetic resonance (CMR) image phase, from which myocardial strain can be estimated with high accuracy and reproducibility. Current methods for analyzing DENSE images still heavily rely on user input, making this process time-consuming and subject to inter-observer variability. The present study sought to develop a spatio-temporal deep learning model for segmentation of the left-ventricular (LV) myocardium, as spatial networks often fail due to contrast-related properties of DENSE images. METHODS 2D + time nnU-Net-based models have been trained to segment the LV myocardium from DENSE magnitude data in short- and long-axis images. A dataset of 360 short-axis and 124 long-axis slices was used to train the networks, from a combination of healthy subjects and patients with various conditions (hypertrophic and dilated cardiomyopathy, myocardial infarction, myocarditis). Segmentation performance was evaluated using ground-truth manual labels, and a strain analysis using conventional methods was performed to assess strain agreement with manual segmentation. Additional validation was performed using an externally acquired dataset to compare the inter- and intra-scanner reproducibility with respect to conventional methods. RESULTS Spatio-temporal models gave consistent segmentation performance throughout the cine sequence, while 2D architectures often failed to segment end-diastolic frames due to the limited blood-to-myocardium contrast. Our models achieved a DICE score of 0.83 ± 0.05 and a Hausdorff distance of 4.0 ± 1.1 mm for short-axis segmentation, and 0.82 ± 0.03 and 7.9 ± 3.9 mm respectively for long-axis segmentations. Strain measurements obtained from automatically estimated myocardial contours showed good to excellent agreement with manual pipelines, and remained within the limits of inter-user variability estimated in previous studies. CONCLUSION Spatio-temporal deep learning shows increased robustness for the segmentation of cine DENSE images. It provides excellent agreement with manual segmentation for strain extraction. Deep learning will facilitate the analysis of DENSE data, bringing it one step closer to clinical routine.
Collapse
Affiliation(s)
- Hugo Barbaroux
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital (Guy's and St Thomas' NHS Foundation Trust), London, UK.
| | - Karl P Kunze
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK
| | - Radhouene Neji
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK
| | - Muhummad Sohaib Nazir
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Dudley J Pennell
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital (Guy's and St Thomas' NHS Foundation Trust), London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sonia Nielles-Vallespin
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital (Guy's and St Thomas' NHS Foundation Trust), London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital (Guy's and St Thomas' NHS Foundation Trust), London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alistair A Young
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
2
|
Wilms M, Ehrhardt J, Forkert ND. Localized Statistical Shape Models for Large-scale Problems With Few Training Data. IEEE Trans Biomed Eng 2022; 69:2947-2957. [PMID: 35271438 DOI: 10.1109/tbme.2022.3158278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Statistical shape models have been successfully used in numerous biomedical image analysis applications where prior shape information is helpful such as organ segmentation or data augmentation when training deep learning models. However, training such models requires large data sets, which are often not available and, hence, shape models frequently fail to represent local details of unseen shapes. This work introduces a kernel-based method to alleviate this problem via so-called model localization. It is specifically designed to be used in large-scale shape modeling scenarios like deep learning data augmentation and fits seamlessly into the classical shape modeling framework. METHOD Relying on recent advances in multi-level shape model localization via distance-based covariance matrix manipulations and Grassmannian-based level fusion, this work proposes a novel and computationally efficient kernel-based localization technique. Moreover, a novel way to improve the specificity of such models via normalizing flow-based density estimation is presented. RESULTS The method is evaluated on the publicly available JSRT/SCR chest X-ray and IXI brain data sets. The results confirm the effectiveness of the kernelized formulation and also highlight the models' improved specificity when utilizing the proposed density estimation method. CONCLUSION This work shows that flexible and specific shape models from few training samples can be generated in a computationally efficient way by combining ideas from kernel theory and normalizing flows. SIGNIFICANCE The proposed method together with its publicly available implementation allows to build shape models from few training samples directly usable for applications like data augmentation.
Collapse
|
3
|
Rouvière O, Moldovan PC, Vlachomitrou A, Gouttard S, Riche B, Groth A, Rabotnikov M, Ruffion A, Colombel M, Crouzet S, Weese J, Rabilloud M. Combined model-based and deep learning-based automated 3D zonal segmentation of the prostate on T2-weighted MR images: clinical evaluation. Eur Radiol 2022; 32:3248-3259. [PMID: 35001157 DOI: 10.1007/s00330-021-08408-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/28/2021] [Accepted: 10/09/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To train and to test for prostate zonal segmentation an existing algorithm already trained for whole-gland segmentation. METHODS The algorithm, combining model-based and deep learning-based approaches, was trained for zonal segmentation using the NCI-ISBI-2013 dataset and 70 T2-weighted datasets acquired at an academic centre. Test datasets were randomly selected among examinations performed at this centre on one of two scanners (General Electric, 1.5 T; Philips, 3 T) not used for training. Automated segmentations were corrected by two independent radiologists. When segmentation was initiated outside the prostate, images were cropped and segmentation repeated. Factors influencing the algorithm's mean Dice similarity coefficient (DSC) and its precision were assessed using beta regression. RESULTS Eighty-two test datasets were selected; one was excluded. In 13/81 datasets, segmentation started outside the prostate, but zonal segmentation was possible after image cropping. Depending on the radiologist chosen as reference, algorithm's median DSCs were 96.4/97.4%, 91.8/93.0% and 79.9/89.6% for whole-gland, central gland and anterior fibromuscular stroma (AFMS) segmentations, respectively. DSCs comparing radiologists' delineations were 95.8%, 93.6% and 81.7%, respectively. For all segmentation tasks, the scanner used for imaging significantly influenced the mean DSC and its precision, and the mean DSC was significantly lower in cases with initial segmentation outside the prostate. For central gland segmentation, the mean DSC was also significantly lower in larger prostates. The radiologist chosen as reference had no significant impact, except for AFMS segmentation. CONCLUSIONS The algorithm performance fell within the range of inter-reader variability but remained significantly impacted by the scanner used for imaging. KEY POINTS • Median Dice similarity coefficients obtained by the algorithm fell within human inter-reader variability for the three segmentation tasks (whole gland, central gland, anterior fibromuscular stroma). • The scanner used for imaging significantly impacted the performance of the automated segmentation for the three segmentation tasks. • The performance of the automated segmentation of the anterior fibromuscular stroma was highly variable across patients and showed also high variability across the two radiologists.
Collapse
Affiliation(s)
- Olivier Rouvière
- Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, Hospices Civils de Lyon, Pavillon B, 5 place d'Arsonval, F-69437, Lyon, France. .,Université de Lyon, F-69003, Lyon, France. .,Faculté de Médecine Lyon Est, Université Lyon 1, F-69003, Lyon, France. .,INSERM, LabTau, U1032, Lyon, France.
| | - Paul Cezar Moldovan
- Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, Hospices Civils de Lyon, Pavillon B, 5 place d'Arsonval, F-69437, Lyon, France
| | - Anna Vlachomitrou
- Philips France, 33 rue de Verdun, CS 60 055, 92156, Suresnes Cedex, France
| | - Sylvain Gouttard
- Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, Hospices Civils de Lyon, Pavillon B, 5 place d'Arsonval, F-69437, Lyon, France
| | - Benjamin Riche
- Service de Biostatistique Et Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, F-69003, Lyon, France.,Laboratoire de Biométrie Et Biologie Évolutive, Équipe Biostatistique-Santé, UMR 5558, CNRS, F-69100, Villeurbanne, France
| | - Alexandra Groth
- Philips Research, Röntgenstrasse 24-26, 22335, Hamburg, Germany
| | | | - Alain Ruffion
- Department of Urology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, F-69310, Pierre-Bénite, France
| | - Marc Colombel
- Université de Lyon, F-69003, Lyon, France.,Faculté de Médecine Lyon Est, Université Lyon 1, F-69003, Lyon, France.,Department of Urology, Hôpital Edouard Herriot, Hospices Civils de Lyon, F-69437, Lyon, France
| | - Sébastien Crouzet
- Department of Urology, Hôpital Edouard Herriot, Hospices Civils de Lyon, F-69437, Lyon, France
| | - Juergen Weese
- Philips Research, Röntgenstrasse 24-26, 22335, Hamburg, Germany
| | - Muriel Rabilloud
- Université de Lyon, F-69003, Lyon, France.,Faculté de Médecine Lyon Est, Université Lyon 1, F-69003, Lyon, France.,Service de Biostatistique Et Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, F-69003, Lyon, France.,Laboratoire de Biométrie Et Biologie Évolutive, Équipe Biostatistique-Santé, UMR 5558, CNRS, F-69100, Villeurbanne, France
| |
Collapse
|