1
|
Pozzi G, Ciarletta P. Geometric control by active mechanics of epithelial gap closure. SOFT MATTER 2024; 20:900-908. [PMID: 38180343 DOI: 10.1039/d3sm01419c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Epithelial wound healing is one of the most important biological processes occurring during the lifetime of an organism. It is a self-repair mechanism closing wounds or gaps within tissues to restore their functional integrity. In this work we derive a new diffuse interface approach for modelling the gap closure by means of a variational principle in the framework of non-equilibrium thermodynamics. We investigate the interplay between the crawling with lamellipodia protrusions and the supracellular tension exerted by the actomyosin cable on the closure dynamics. These active features are modeled as Korteweg forces into a generalised chemical potential. From an asymptotic analysis, we derive a pressure jump across the gap edge in the sharp interface limit. Moreover, the chemical potential diffuses as a Mullins-Sekerka system, and its interfacial value is given by a Gibbs-Thompson relation for its local potential driven by the curvature-dependent purse-string tension. The finite element simulations show an excellent quantitative agreement between the closure dynamics and the morphology of the edge with respect to existing biological experiments. The resulting force patterns are also in good qualitative agreement with existing traction force microscopy measurements. Our results shed light on the geometrical control of the gap closure dynamics resulting from the active forces that are chemically activated around the gap edge.
Collapse
Affiliation(s)
- G Pozzi
- MOX, Dipartimento di Matematica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - P Ciarletta
- MOX, Dipartimento di Matematica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| |
Collapse
|
2
|
Tian A, Wang X, Xu Y, Morejon V, Huang Y, Nwapuda C, Deng W. EGFR signaling controls directionality of epithelial multilayer formation upon loss of cell polarity. EMBO J 2023; 42:e113856. [PMID: 37953688 PMCID: PMC10711663 DOI: 10.15252/embj.2023113856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Apical-basal polarity is maintained by distinct protein complexes that reside in membrane junctions, and polarity loss in monolayered epithelial cells can lead to formation of multilayers, cell extrusion, and/or malignant overgrowth. Yet, how polarity loss cooperates with intrinsic signals to control directional invasion toward neighboring epithelial cells remains elusive. Using the Drosophila ovarian follicular epithelium as a model, we found that posterior follicle cells with loss of lethal giant larvae (lgl) or Discs large (Dlg) accumulate apically toward germline cells, whereas cells with loss of Bazooka (Baz) or atypical protein kinase C (aPKC) expand toward the basal side of wildtype neighbors. Further studies revealed that these distinct multilayering patterns in the follicular epithelium were determined by epidermal growth factor receptor (EGFR) signaling and its downstream target Pointed, a zinc-finger transcription factor. Additionally, we identified Rho kinase as a Pointed target that regulates formation of distinct multilayering patterns. These findings provide insight into how cell polarity genes and receptor tyrosine kinase signaling interact to govern epithelial cell organization and directional growth that contribute to epithelial tumor formation.
Collapse
Affiliation(s)
- Aiguo Tian
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
- Tulane Aging CenterTulane University School of MedicineNew OrleansLAUSA
| | - Xian‐Feng Wang
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
| | - Yuting Xu
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
| | - Virginia Morejon
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
| | - Yi‐Chun Huang
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
| | - Chidi Nwapuda
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
| | - Wu‐Min Deng
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
- Tulane Aging CenterTulane University School of MedicineNew OrleansLAUSA
| |
Collapse
|
3
|
Nandy N, Roy JK. Rab11 negatively regulates wingless preventing JNK-mediated apoptosis in Drosophila epithelium during embryonic dorsal closure. Cell Tissue Res 2023; 391:485-504. [PMID: 36705747 DOI: 10.1007/s00441-023-03740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/12/2023] [Indexed: 01/28/2023]
Abstract
Rab11, a small Ras like GTPase marking the recycling endosomes, plays instrumental roles in Drosophila embryonic epithelial morphogenesis where an array of reports testify its importance in the maintenance of cyto-architectural as well as functional attributes of the concerned cells. Proper Rab11 functions ensure a precise regulation of developmentally active cell signaling pathways which in turn promote the expression of morphogens and other physico-chemical cues which finally forge an embryo out of a single layer of cells. Earlier reports have established that Rab11 functions are vital for fly embryonic development where amorphic mutants such as EP3017 homozygotes show a fair degree of epithelial defects along with incomplete dorsal closure. Here, we present a detailed account of the effects of Rab11 loss of function in the dorso-lateral epithelium which resulted in severe dorsal closure defects along with an elevated JNK-Dpp expression. We further observed that the dorso-lateral epithelial cells undergo epithelial to mesenchymal transition as well as apoptosis in Rab11 mutants with elevated expression levels of MMP1 and Caspase-3, where Caspase-3 contributes to the Rab11 knockout phenotype contrary to the knockdown mutants or hypomorphs. Interestingly, the elevated expressions of the core JNK-Dpp signaling could be rescued with a simultaneous knockdown of wingless in the Rab11 knockout mutants suggesting a genetic interaction of Rab11 with the Wingless pathway during dorsal closure, an ideal model of epithelial wound healing.
Collapse
Affiliation(s)
- Nabarun Nandy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
4
|
Schmidt-Ott U, Kwan CW. How two extraembryonic epithelia became one: serosa and amnion features and functions of Drosophila's amnioserosa. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210265. [PMID: 36252222 PMCID: PMC9574642 DOI: 10.1098/rstb.2021.0265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/30/2022] [Indexed: 01/19/2023] Open
Abstract
The conservation of gene networks that specify and differentiate distinct tissues has long been a subject of great interest to evolutionary developmental biologists, but the question of how pre-existing tissue-specific developmental trajectories merge is rarely asked. During the radiation of flies, two extraembryonic epithelia, known as serosa and amnion, evolved into one, called amnioserosa. This unique extraembryonic epithelium is found in fly species of the group Schizophora, including the genetic model organism Drosophila melanogaster, and has been studied in depth. Close relatives of this group develop a serosa and a rudimentary amnion. The scuttle fly Megaselia abdita has emerged as an excellent model organism to study this extraembryonic tissue organization. In this review, development and functions of the extraembryonic tissue complements of Drosophila and Megaselia are compared. It is concluded that the amnioserosa combines cells, genetic pathway components and functions that were previously associated either with serosa development or amnion development. The composite developmental trajectory of the amnioserosa raises the question of whether merging tissue-specific gene networks is a common evolutionary process. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Chun Wai Kwan
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
5
|
Moore RP, Fogerson SM, Tulu US, Yu JW, Cox AH, Sican MA, Li D, Legant WR, Weigel AV, Crawford JM, Betzig E, Kiehart DP. Super-resolution microscopy reveals actomyosin dynamics in medioapical arrays. Mol Biol Cell 2022; 33:ar94. [PMID: 35544300 DOI: 10.1091/mbc.e21-11-0537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Arrays of actin filaments (F-actin) near the apical surface of epithelial cells (medioapical arrays) contribute to apical constriction and morphogenesis throughout phylogeny. Here, super-resolution approaches (grazing incidence structured illumination, GI-SIM and lattice light sheet, LLSM) microscopy resolve individual, fluorescently labeled F-actin and bipolar myosin filaments that drive amnioserosa cell shape changes during dorsal closure in Drosophila. In expanded cells, F-actin and myosin form loose, apically domed meshworks at the plasma membrane. The arrays condense as cells contract, drawing the domes into the plane of the junctional belts. As condensation continues, individual filaments are no longer uniformly apparent. As cells expand, arrays of actomyosin are again resolved - some F-actin turnover likely occurs, but a large fraction of existing filaments rearrange. In morphologically isotropic cells, actin filaments are randomly oriented and during contraction, are drawn together but remain essentially randomly oriented. In anisotropic cells, largely parallel actin filaments are drawn closer to one another. Our images offer unparalleled resolution of F-actin in embryonic tissue show that medioapical arrays are tightly apposed to the plasma membrane, are continuous with meshworks of lamellar F-actin and thereby constitute modified cell cortex. In concert with other tagged array components, super-resolution imaging of live specimens will offer new understanding of cortical architecture and function. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Regan P Moore
- Biology Department, Duke University, Durham, NC, 27708, USA.,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, 27599, USA and North Carolina State University, Raleigh, NC, 27695, USA
| | | | - U Serdar Tulu
- Biology Department, Duke University, Durham, NC, 27708, USA
| | - Jason W Yu
- Biology Department, Duke University, Durham, NC, 27708, USA
| | - Amanda H Cox
- Biology Department, Duke University, Durham, NC, 27708, USA
| | | | - Dong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wesley R Legant
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, 27599, USA and North Carolina State University, Raleigh, NC, 27695, USA
| | - Aubrey V Weigel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | | | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA.,Departments of Physics and Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | | |
Collapse
|
6
|
The Tbx6 Transcription Factor Dorsocross Mediates Dpp Signaling to Regulate Drosophila Thorax Closure. Int J Mol Sci 2022; 23:ijms23094543. [PMID: 35562934 PMCID: PMC9104307 DOI: 10.3390/ijms23094543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022] Open
Abstract
Movement and fusion of separate cell populations are critical for several developmental processes, such as neural tube closure in vertebrates or embryonic dorsal closure and pupal thorax closure in Drosophila. Fusion failure results in an opening or groove on the body surface. Drosophila pupal thorax closure is an established model to investigate the mechanism of tissue closure. Here, we report the identification of T-box transcription factor genes Dorsocross (Doc) as Decapentaplegic (Dpp) targets in the leading edge cells of the notum in the late third instar larval and early pupal stages. Reduction of Doc in the notum region results in a thorax closure defect, similar to that in dpp loss-of-function flies. Nine genes are identified as potential downstream targets of Doc in regulating thorax closure by molecular and genetic screens. Our results reveal a novel function of Doc in Drosophila development. The candidate target genes provide new clues for unravelling the mechanism of collective cell movement.
Collapse
|
7
|
Epithelial plasticity, epithelial-mesenchymal transition, and the TGF-β family. Dev Cell 2021; 56:726-746. [PMID: 33756119 DOI: 10.1016/j.devcel.2021.02.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/04/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Epithelial cells repress epithelial characteristics and elaborate mesenchymal characteristics to migrate to other locations and acquire new properties. Epithelial plasticity responses are directed through cooperation of signaling pathways, with TGF-β and TGF-β-related proteins playing prominent instructive roles. Epithelial-mesenchymal transitions (EMTs) directed by activin-like molecules, bone morphogenetic proteins, or TGF-β regulate metazoan development and wound healing and drive fibrosis and cancer progression. In carcinomas, diverse EMTs enable stem cell generation, anti-cancer drug resistance, genomic instability, and localized immunosuppression. This review discusses roles of TGF-β and TGF-β-related proteins, and underlying molecular mechanisms, in epithelial plasticity in development and wound healing, fibrosis, and cancer.
Collapse
|
8
|
Yoo B, Kim HY, Chen X, Shen W, Jang JS, Stein SN, Cormier O, Pereira L, Shih CRY, Krieger C, Reed B, Harden N, Wang SJH. 20-hydroxyecdysone (20E) signaling regulates amnioserosa morphogenesis during Drosophila dorsal closure: EcR modulates gene expression in a complex with the AP-1 subunit, Jun. Biol Open 2021; 10:271855. [PMID: 34296248 PMCID: PMC8411571 DOI: 10.1242/bio.058605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022] Open
Abstract
Steroid hormones influence diverse biological processes throughout the animal life cycle, including metabolism, stress resistance, reproduction, and lifespan. In insects, the steroid hormone, 20-hydroxyecdysone (20E), is the central hormone regulator of molting and metamorphosis, and plays roles in tissue morphogenesis. For example, amnioserosa contraction, which is a major driving force in Drosophila dorsal closure (DC), is defective in embryos mutant for 20E biosynthesis. Here, we show that 20E signaling modulates the transcription of several DC participants in the amnioserosa and other dorsal tissues during late embryonic development, including zipper, which encodes for non-muscle myosin. Canonical ecdysone signaling typically involves the binding of Ecdysone receptor (EcR) and Ultraspiracle heterodimers to ecdysone-response elements (EcREs) within the promoters of responsive genes to drive expression. During DC, however, we provide evidence that 20E signaling instead acts in parallel to the JNK cascade via a direct interaction between EcR and the AP-1 transcription factor subunit, Jun, which together binds to genomic regions containing AP-1 binding sites but no EcREs to control gene expression. Our work demonstrates a novel mode of action for 20E signaling in Drosophila that likely functions beyond DC, and may provide further insights into mammalian steroid hormone receptor interactions with AP-1. Summary: During Drosophila dorsal closure, 20E signaling acts non-canonically through an interaction between EcR and the AP-1 subunit, Jun, to control gene expression at regions containing AP-1 motifs but no EcREs.
Collapse
Affiliation(s)
- Byoungjoo Yoo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Hae-Yoon Kim
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Xi Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Weiping Shen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Ji Sun Jang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Shaianne N Stein
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Olga Cormier
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Lionel Pereira
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Claire R Y Shih
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Charles Krieger
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Bruce Reed
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Simon J H Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
9
|
Rice C, De O, Alhadyian H, Hall S, Ward RE. Expanding the Junction: New Insights into Non-Occluding Roles for Septate Junction Proteins during Development. J Dev Biol 2021; 9:11. [PMID: 33801162 PMCID: PMC8006247 DOI: 10.3390/jdb9010011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
The septate junction (SJ) provides an occluding function for epithelial tissues in invertebrate organisms. This ability to seal the paracellular route between cells allows internal tissues to create unique compartments for organ function and endows the epidermis with a barrier function to restrict the passage of pathogens. Over the past twenty-five years, numerous investigators have identified more than 30 proteins that are required for the formation or maintenance of the SJs in Drosophila melanogaster, and have determined many of the steps involved in the biogenesis of the junction. Along the way, it has become clear that SJ proteins are also required for a number of developmental events that occur throughout the life of the organism. Many of these developmental events occur prior to the formation of the occluding junction, suggesting that SJ proteins possess non-occluding functions. In this review, we will describe the composition of SJs, taking note of which proteins are core components of the junction versus resident or accessory proteins, and the steps involved in the biogenesis of the junction. We will then elaborate on the functions that core SJ proteins likely play outside of their role in forming the occluding junction and describe studies that provide some cell biological perspectives that are beginning to provide mechanistic understanding of how these proteins function in developmental contexts.
Collapse
Affiliation(s)
- Clinton Rice
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA; (C.R.); (H.A.)
| | - Oindrila De
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Haifa Alhadyian
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA; (C.R.); (H.A.)
| | | | - Robert E. Ward
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
10
|
Signaling cross-talk during development: Context-specific networking of Notch, NF-κB and JNK signaling pathways in Drosophila. Cell Signal 2021; 82:109937. [PMID: 33529757 DOI: 10.1016/j.cellsig.2021.109937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023]
Abstract
Multicellular organisms depend on a handful of core signaling pathways that regulate a variety of cell fate choices. Often these relatively simple signals integrate to form a large and complex signaling network to achieve a distinct developmental fate in a context-specific manner. Various pathway-dependent and independent events control the assembly of signaling complexes. Notch pathway is one such conserved signaling mechanism that integrates with other signaling pathways to exhibit a context-dependent pleiotropic output. To understand how Notch signaling provides a spectrum of distinct outputs, it is important to understand various regulatory switches involved in mediating signaling cross-talk of Notch with other pathways. Here, we review our current understanding as to how Notch signal integrates with JNK and NF-κB signaling pathways in Drosophila to regulate various developmental events such as sensory organ precursor formation, innate immunity, dorsal closure, establishment of planar cell polarity as well as during proliferation and tumor progression. We highlight the importance of conserved signaling molecules during these cross-talks and debate further possibilities of novel switches that may be involved in mediating these cross-talk events.
Collapse
|
11
|
Identifying Key Genetic Regions for Cell Sheet Morphogenesis on Chromosome 2L Using a Drosophila Deficiency Screen in Dorsal Closure. G3-GENES GENOMES GENETICS 2020; 10:4249-4269. [PMID: 32978263 PMCID: PMC7642946 DOI: 10.1534/g3.120.401386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cell sheet morphogenesis is essential for metazoan development and homeostasis of animal form - it contributes to developmental milestones including gastrulation, neural tube closure, heart and palate formation and to tissue maintenance during wound healing. Dorsal closure, a well-characterized stage in Drosophila embryogenesis and a model for cell sheet morphogenesis, is a remarkably robust process during which coordination of conserved gene expression patterns and signaling cascades regulate the cellular shape changes and movements. New 'dorsal closure genes' continue to be discovered due to advances in imaging and genetics. Here, we extend our previous study of the right arm of the 2nd chromosome to the left arm of the 2nd chromosome using the Bloomington deficiency kit's set of large deletions, which collectively remove 98.9% of the genes on the left arm of chromosome two (2L) to identify 'dorsal closure deficiencies'. We successfully screened 87.2% of the genes and identified diverse dorsal closure defects in embryos homozygous for 49 deficiencies, 27 of which delete no known dorsal closure gene. These homozygous deficiencies cause defects in cell shape, canthus formation and tissue dynamics. Within these deficiencies, we have identified pimples, odd-skipped, paired, and sloppy-paired 1 as dorsal closure genes on 2L that affect lateral epidermal cells. We will continue to identify novel 'dorsal closure genes' with further analysis. These forward genetic screens are expected to identify new processes and pathways that contribute to closure and links between pathways and structures already known to coordinate various aspects of closure.
Collapse
|
12
|
van Loon AP, Erofeev IS, Maryshev IV, Goryachev AB, Sagasti A. Cortical contraction drives the 3D patterning of epithelial cell surfaces. J Cell Biol 2020; 219:133677. [PMID: 32003768 PMCID: PMC7054995 DOI: 10.1083/jcb.201904144] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/16/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Cellular protrusions create complex cell surface topographies, but biomechanical mechanisms regulating their formation and arrangement are largely unknown. To study how protrusions form, we focused on the morphogenesis of microridges, elongated actin-based structures that are arranged in maze-like patterns on the apical surfaces of zebrafish skin cells. Microridges form by accreting simple finger-like precursors. Live imaging demonstrated that microridge morphogenesis is linked to apical constriction. A nonmuscle myosin II (NMII) reporter revealed pulsatile contractions of the actomyosin cortex, and inhibiting NMII blocked apical constriction and microridge formation. A biomechanical model suggested that contraction reduces surface tension to permit the fusion of precursors into microridges. Indeed, reducing surface tension with hyperosmolar media promoted microridge formation. In anisotropically stretched cells, microridges formed by precursor fusion along the stretch axis, which computational modeling explained as a consequence of stretch-induced cortical flow. Collectively, our results demonstrate how contraction within the 2D plane of the cortex can pattern 3D cell surfaces.
Collapse
Affiliation(s)
- Aaron P van Loon
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Ivan S Erofeev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Ivan V Maryshev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Alvaro Sagasti
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
13
|
Nandy N, Roy JK. Rab11 is essential for lgl mediated JNK-Dpp signaling in dorsal closure and epithelial morphogenesis in Drosophila. Dev Biol 2020; 464:188-201. [PMID: 32562757 DOI: 10.1016/j.ydbio.2020.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Abstract
Dorsal closure during Drosophila embryogenesis provides a robust genetic platform to study the basic cellular mechanisms that govern epithelial wound healing and morphogenesis. As dorsal closure proceeds, the lateral epithelial tissue (LE) adjacent to the dorsal opening advance contra-laterally, with a simultaneous retraction of the amnioserosa. The process involves a fair degree of coordinated cell shape changes in the dorsal most epithelial (DME) cells as well as a few penultimate rows of lateral epithelial (LE) cells (collectively referred here as Dorsolateral Epithelial (DLE) cells), lining the periphery of the amnioserosa, which in due course of time extend contra-laterally and ultimately fuse over the dorsal hole, giving rise to a dorsal epithelial continuum. The JNK-Dpp signaling in the dorsolateral epidermis, plays an instrumental role in guiding their fate during this process. A large array of genes have been reported to be involved in the regulation of this core signaling pathway, yet the mechanisms by which they do so is hitherto unclear, which forms the objective of our present study. Here we show a probable mechanism via which lgl, a conserved tumour suppressor gene, regulates the JNK-Dpp pathway during dorsal closure and epithelial morphogenesis. A conditional/targeted knock-down of lgl in the dorsolateral epithelium of embryos results in failure of dorsal closure. Interestingly, we also observed a similar phenotype in a Rab11 knockdown condition. Our experiment suggests Rab11 to be interacting with lgl as they seem to synergize in order to regulate the core JNK-Dpp signaling pathway during dorsal closure and also during adult thorax closure process.
Collapse
Affiliation(s)
- Nabarun Nandy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
14
|
McCleery WT, Veldhuis J, Bennett ME, Lynch HE, Ma X, Brodland GW, Hutson MS. Elongated Cells Drive Morphogenesis in a Surface-Wrapped Finite-Element Model of Germband Retraction. Biophys J 2019; 117:157-169. [PMID: 31229244 DOI: 10.1016/j.bpj.2019.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 10/26/2022] Open
Abstract
During Drosophila embryogenesis, the germband first extends to curl around the posterior end of the embryo and then retracts back; however, retraction is not simply the reversal of extension. At a tissue level, extension is coincident with ventral furrow formation, and at a cellular level, extension occurs via convergent cell neighbor exchanges in the germband, whereas retraction involves only changes in cell shape. To understand how cell shapes, tissue organization, and cellular forces drive germband retraction, we investigate this process using a whole-embryo, surface-wrapped cellular finite-element model. This model represents two key epithelial tissues-amnioserosa and germband-as adjacent sheets of two-dimensional cellular finite elements that are wrapped around an ellipsoidal three-dimensional approximation of an embryo. The model reproduces the detailed kinematics of in vivo retraction by fitting just one free model parameter, the tension along germband cell interfaces; all other cellular forces are constrained to follow ratios inferred from experimental observations. With no additional parameter adjustments, the model also reproduces quantitative assessments of mechanical stress using laser dissection and failures of retraction when amnioserosa cells are removed via mutations or microsurgery. Surprisingly, retraction in the model is robust to changes in cellular force values but is critically dependent on starting from a configuration with highly elongated amnioserosa cells. Their extreme cellular elongation is established during the prior process of germband extension and is then used to drive retraction. The amnioserosa is the one tissue whose cellular morphogenesis is reversed from germband extension to retraction, and this reversal coordinates the forces needed to retract the germband back to its pre-extension position and shape. In this case, cellular force strengths are less important than the carefully established cell shapes that direct them. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- W Tyler McCleery
- Department of Physics & Astronomy, Vanderbilt University, Nashville, Tennessee
| | - Jim Veldhuis
- Department of Civil & Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Monica E Bennett
- Department of Physics & Astronomy, Vanderbilt University, Nashville, Tennessee
| | - Holley E Lynch
- Department of Physics, Stetson University, DeLand, Florida
| | - Xiaoyan Ma
- Department of Physics & Astronomy, Vanderbilt University, Nashville, Tennessee
| | - G Wayne Brodland
- Department of Civil & Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - M Shane Hutson
- Department of Physics & Astronomy, Vanderbilt University, Nashville, Tennessee; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
15
|
Aristotelous AC, Crawford JM, Edwards GS, Kiehart DP, Venakides S. Mathematical models of dorsal closure. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:111-131. [PMID: 29852207 PMCID: PMC6109426 DOI: 10.1016/j.pbiomolbio.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 12/13/2022]
Abstract
Dorsal closure is a model cell sheet movement that occurs midway through Drosophila embryogenesis. A dorsal hole, filled with amnioserosa, closes through the dorsalward elongation of lateral epidermal cell sheets. Closure requires contributions from 5 distinct tissues and well over 140 genes (see Mortensen et al., 2018, reviewed in Kiehart et al., 2017 and Hayes and Solon, 2017). In spite of this biological complexity, the movements (kinematics) of closure are geometrically simple at tissue, and in certain cases, at cellular scales. This simplicity has made closure the target of a number of mathematical models that seek to explain and quantify the processes that underlie closure's kinematics. The first (purely kinematic) modeling approach recapitulated well the time-evolving geometry of closure even though the underlying physical principles were not known. Almost all subsequent models delve into the forces of closure (i.e. the dynamics of closure). Models assign elastic, contractile and viscous forces which impact tissue and/or cell mechanics. They write rate equations which relate the forces to one another and to other variables, including those which represent geometric, kinematic, and or signaling characteristics. The time evolution of the variables is obtained by computing the solution of the model's system of equations, with optimized model parameters. The basis of the equations range from the phenomenological to biophysical first principles. We review various models and present their contribution to our understanding of the molecular mechanisms and biophysics of closure. Models of closure will contribute to our understanding of similar movements that characterize vertebrate morphogenesis.
Collapse
Affiliation(s)
- A C Aristotelous
- Department of Mathematics, West Chester University, West Chester, PA, USA.
| | - J M Crawford
- Department of Biology, Duke University, Durham, NC, USA
| | - G S Edwards
- Department of Physics, Duke University, Durham, NC, USA
| | - D P Kiehart
- Department of Biology, Duke University, Durham, NC, USA.
| | - S Venakides
- Department of Mathematics, Duke University, Durham, NC, USA
| |
Collapse
|
16
|
Muñoz-Soriano V, Belacortu Y, Sanz FJ, Solana-Manrique C, Dillon L, Suay-Corredera C, Ruiz-Romero M, Corominas M, Paricio N. Cbt modulates Foxo activation by positively regulating insulin signaling in Drosophila embryos. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30034-8. [PMID: 30055320 DOI: 10.1016/j.bbagrm.2018.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 01/05/2023]
Abstract
In late Drosophila embryos, the epidermis exhibits a dorsal hole as a consequence of germ band retraction. It is sealed during dorsal closure (DC), a morphogenetic process in which the two lateral epidermal layers converge towards the dorsal midline and fuse. We previously demonstrated the involvement of the Cbt transcription factor in Drosophila DC. However its molecular role in the process remained obscure. In this study, we used genomic approaches to identify genes regulated by Cbt as well as its direct targets during late embryogenesis. Our results reveal a complex transcriptional circuit downstream of Cbt and evidence that it is functionally related with the Insulin/insulin-like growth factor signaling pathway. In this context, Cbt may act as a positive regulator of the pathway, leading to the repression of Foxo activity. Our results also suggest that the DC defects observed in cbt embryos could be partially due to Foxo overactivation and that a regulatory feedback loop between Foxo and Cbt may be operating in the DC context.
Collapse
Affiliation(s)
- Verónica Muñoz-Soriano
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain
| | - Yaiza Belacortu
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain
| | - Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain
| | - Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain
| | - Luke Dillon
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain
| | - Carmen Suay-Corredera
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain
| | - Marina Ruiz-Romero
- Departament de Genètica, Facultat de Biologia, and Institut de Biomedicina (IBUB) de la Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Corominas
- Departament de Genètica, Facultat de Biologia, and Institut de Biomedicina (IBUB) de la Universitat de Barcelona, Barcelona, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain.
| |
Collapse
|
17
|
Identifying Genetic Players in Cell Sheet Morphogenesis Using a Drosophila Deficiency Screen for Genes on Chromosome 2R Involved in Dorsal Closure. G3-GENES GENOMES GENETICS 2018; 8:2361-2387. [PMID: 29776969 PMCID: PMC6027880 DOI: 10.1534/g3.118.200233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell sheet morphogenesis characterizes key developmental transitions and homeostasis, in vertebrates and throughout phylogeny, including gastrulation, neural tube formation and wound healing. Dorsal closure, a process during Drosophila embryogenesis, has emerged as a model for cell sheet morphogenesis. ∼140 genes are currently known to affect dorsal closure and new genes are identified each year. Many of these genes were identified in screens that resulted in arrested development. Dorsal closure is remarkably robust and many questions regarding the molecular mechanisms involved in this complex biological process remain. Thus, it is important to identify all genes that contribute to the kinematics and dynamics of closure. Here, we used a set of large deletions (deficiencies), which collectively remove 98.5% of the genes on the right arm of Drosophila melanogaster’s 2nd chromosome to identify “dorsal closure deficiencies”. Through two crosses, we unambiguously identified embryos homozygous for each deficiency and time-lapse imaged them for the duration of closure. Images were analyzed for defects in cell shapes and tissue movements. Embryos homozygous for 47 deficiencies have notable, diverse defects in closure, demonstrating that a number of discrete processes comprise closure and are susceptible to mutational disruption. Further analysis of these deficiencies will lead to the identification of at least 30 novel “dorsal closure genes”. We expect that many of these novel genes will identify links to pathways and structures already known to coordinate various aspects of closure. We also expect to identify new processes and pathways that contribute to closure.
Collapse
|
18
|
Lo WC, Madrak C, Kiehart DP, Edwards GS. Unified biophysical mechanism for cell-shape oscillations and cell ingression. Phys Rev E 2018; 97:062414. [PMID: 30011599 PMCID: PMC6440536 DOI: 10.1103/physreve.97.062414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Indexed: 12/31/2022]
Abstract
We describe a mechanochemical and percolation cascade that augments myosin's regulatory network to tune cytoskeletal forces. Actomyosin forces collectively generate cytoskeletal forces during cell oscillations and ingression, which we quantify by elastic percolation of the internally driven, cross-linked actin network. Contractile units can produce relatively large, oscillatory forces that disrupt crosslinks to reduce cytoskeletal forces. A (reverse) Hopf bifurcation switches contractile units to produce smaller, steady forces that enhance crosslinking and consequently boost cytoskeletal forces to promote ingression. We describe cell-shape changes and cell ingression in terms of intercellular force imbalances along common cell junctions.
Collapse
Affiliation(s)
- Wei-Chang Lo
- Physics Department, Duke University, Durham, North Carolina 27708, USA
| | - Craig Madrak
- Physics Department, Duke University, Durham, North Carolina 27708, USA
| | - Daniel P Kiehart
- Biology Department, Duke University, Durham, North Carolina 27708, USA
| | - Glenn S Edwards
- Physics Department, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
19
|
Kiehart DP, Crawford JM, Aristotelous A, Venakides S, Edwards GS. Cell Sheet Morphogenesis: Dorsal Closure in Drosophila melanogaster as a Model System. Annu Rev Cell Dev Biol 2018; 33:169-202. [PMID: 28992442 DOI: 10.1146/annurev-cellbio-111315-125357] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dorsal closure is a key process during Drosophila morphogenesis that models cell sheet movements in chordates, including neural tube closure, palate formation, and wound healing. Closure occurs midway through embryogenesis and entails circumferential elongation of lateral epidermal cell sheets that close a dorsal hole filled with amnioserosa cells. Signaling pathways regulate the function of cellular structures and processes, including Actomyosin and microtubule cytoskeletons, cell-cell/cell-matrix adhesion complexes, and endocytosis/vesicle trafficking. These orchestrate complex shape changes and movements that entail interactions between five distinct cell types. Genetic and laser perturbation studies establish that closure is robust, resilient, and the consequence of redundancy that contributes to four distinct biophysical processes: contraction of the amnioserosa, contraction of supracellular Actomyosin cables, elongation (stretching?) of the lateral epidermis, and zipping together of two converging cell sheets. What triggers closure and what the emergent properties are that give rise to its extraordinary resilience and fidelity remain key, extant questions.
Collapse
Affiliation(s)
- Daniel P Kiehart
- Department of Biology, Duke University, Durham, North Carolina 27708;
| | - Janice M Crawford
- Department of Biology, Duke University, Durham, North Carolina 27708;
| | - Andreas Aristotelous
- Department of Mathematics, West Chester University, West Chester, Pennsylvania 19383
| | | | - Glenn S Edwards
- Physics Department, Duke University, Durham, North Carolina 27708
| |
Collapse
|
20
|
Fraire-Zamora JJ, Jaeger J, Solon J. Two consecutive microtubule-based epithelial seaming events mediate dorsal closure in the scuttle fly Megaselia abdita. eLife 2018. [PMID: 29537962 PMCID: PMC5851697 DOI: 10.7554/elife.33807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Evolution of morphogenesis is generally associated with changes in genetic regulation. Here, we report evidence indicating that dorsal closure, a conserved morphogenetic process in dipterans, evolved as the consequence of rearrangements in epithelial organization rather than signaling regulation. In Drosophila melanogaster, dorsal closure consists of a two-tissue system where the contraction of extraembryonic amnioserosa and a JNK/Dpp-dependent epidermal actomyosin cable result in microtubule-dependent seaming of the epidermis. We find that dorsal closure in Megaselia abdita, a three-tissue system comprising serosa, amnion and epidermis, differs in morphogenetic rearrangements despite conservation of JNK/Dpp signaling. In addition to an actomyosin cable, M. abdita dorsal closure is driven by the rupture and contraction of the serosa and the consecutive microtubule-dependent seaming of amnion and epidermis. Our study indicates that the evolutionary transition to a reduced system of dorsal closure involves simplification of the seaming process without changing the signaling pathways of closure progression.
Collapse
Affiliation(s)
- Juan Jose Fraire-Zamora
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Johannes Jaeger
- Universitat Pompeu Fabra, Barcelona, Spain.,System Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Konrad Lorenz Institute for Evolution and Cognition Research (KLI), Klosterneuburg, Austria
| | - Jérôme Solon
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
21
|
Ohsawa S, Vaughen J, Igaki T. Cell Extrusion: A Stress-Responsive Force for Good or Evil in Epithelial Homeostasis. Dev Cell 2018; 44:284-296. [PMID: 29408235 DOI: 10.1016/j.devcel.2018.01.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
Epithelial tissues robustly respond to internal and external stressors via dynamic cellular rearrangements. Cell extrusion acts as a key regulator of epithelial homeostasis by removing apoptotic cells, orchestrating morphogenesis, and mediating competitive cellular battles during tumorigenesis. Here, we delineate the diverse functions of cell extrusion during development and disease. We emphasize the expanding role for apoptotic cell extrusion in exerting morphogenetic forces, as well as the strong intersection of cell extrusion with cell competition, a homeostatic mechanism that eliminates aberrant or unfit cells. While cell competition and extrusion can exert potent, tumor-suppressive effects, dysregulation of either critical homeostatic program can fuel cancer progression.
Collapse
Affiliation(s)
- Shizue Ohsawa
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - John Vaughen
- Department of Developmental Biology, Stanford School of Medicine, Beckman Center, 279 Campus Drive B300, Stanford, CA 94305, USA
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
22
|
Upadhyay A, Moss-Taylor L, Kim MJ, Ghosh AC, O'Connor MB. TGF-β Family Signaling in Drosophila. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022152. [PMID: 28130362 DOI: 10.1101/cshperspect.a022152] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The transforming growth factor β (TGF-β) family signaling pathway is conserved and ubiquitous in animals. In Drosophila, fewer representatives of each signaling component are present compared with vertebrates, simplifying mechanistic study of the pathway. Although there are fewer family members, the TGF-β family pathway still regulates multiple and diverse functions in Drosophila. In this review, we focus our attention on several of the classic and best-studied functions for TGF-β family signaling in regulating Drosophila developmental processes such as embryonic and imaginal disc patterning, but we also describe several recently discovered roles in regulating hormonal, physiological, neuronal, innate immunity, and tissue homeostatic processes.
Collapse
Affiliation(s)
- Ambuj Upadhyay
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lindsay Moss-Taylor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Arpan C Ghosh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
23
|
Studying Nonproliferative Roles for Egfr Signaling in Tissue Morphogenesis Using Dorsal Closure of the Drosophila Embryo. Methods Mol Biol 2017. [PMID: 28791646 DOI: 10.1007/978-1-4939-7219-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
For several decades, genetic analysis in Drosophila has made important contributions to the understanding of signaling by Egfr. Egfr has been well characterized with regard to its oncogenic potential but is also being studied for its roles in organismal development. We have recently developed dorsal closure of the Drosophila embryo as a system for characterizing Egfr regulation of events that do not involve proliferation, as no cell divisions occur during this process. Dorsal closure is essentially a developmental wound healing event with parallels to vertebrate developmental epithelial fusions such as neural tube closure and palate fusion. We describe here a set of materials and protocols for studying Egfr signaling during dorsal closure, including assessing effects of altering Egfr signaling on other pathways, gene expression and, using live imaging, morphogenesis and programmed cell death. Although this "tool kit" is designed for looking at Egfr, it can be readily adapted to look at the participation of any signaling molecule in dorsal closure.
Collapse
|
24
|
Kushnir T, Mezuman S, Bar-Cohen S, Lange R, Paroush Z, Helman A. Novel interplay between JNK and Egfr signaling in Drosophila dorsal closure. PLoS Genet 2017. [PMID: 28628612 PMCID: PMC5495517 DOI: 10.1371/journal.pgen.1006860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dorsal closure (DC) is a developmental process in which two contralateral epithelial sheets migrate to seal a large hole in the dorsal ectoderm of the Drosophila embryo. Two signaling pathways act sequentially to orchestrate this dynamic morphogenetic process. First, c-Jun N-terminal kinase (JNK) signaling activity in the dorsal-most leading edge (LE) cells of the epidermis induces expression of decapentaplegic (dpp). Second, Dpp, a secreted TGF-β homolog, triggers cell shape changes in the adjacent, ventrally located lateral epidermis, that guide the morphogenetic movements and cell migration mandatory for DC. Here we uncover a cell non-autonomous requirement for the Epidermal growth factor receptor (Egfr) pathway in the lateral epidermis for sustained dpp expression in the LE. Specifically, we demonstrate that Egfr pathway activity in the lateral epidermis prevents expression of the gene scarface (scaf), encoding a secreted antagonist of JNK signaling. In embryos with compromised Egfr signaling, upregulated Scaf causes reduction of JNK activity in LE cells, thereby impeding completion of DC. Our results identify a new developmental role for Egfr signaling in regulating epithelial plasticity via crosstalk with the JNK pathway.
Collapse
Affiliation(s)
- Tatyana Kushnir
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Sharon Mezuman
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Shaked Bar-Cohen
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Rotem Lange
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ze'ev Paroush
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
- * E-mail:
| | - Aharon Helman
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
25
|
Nazario-Yepiz NO, Riesgo-Escovar JR. piragua encodes a zinc finger protein required for development in Drosophila. Mech Dev 2016; 144:171-181. [PMID: 28011160 DOI: 10.1016/j.mod.2016.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 11/07/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
Abstract
We isolated and characterized embryonic lethal mutations in piragua (prg). The prg locus encodes a protein with an amino terminus Zinc Finger-Associated-Domain (ZAD) and nine C2H2 zinc fingers (ZF). prg mRNA and protein expression during embryogenesis is dynamic with widespread maternal contribution, and subsequent expression in epithelial precursors. About a quarter of prg mutant embryos do not develop cuticle, and from those that do a small fraction have cuticular defects. Roughly half of prg mutants die during embryogenesis. prg mutants have an extended phenocritical period encompassing embryogenesis and first instar larval stage, since the other half of prg mutants die as first or second instar larvae. During dorsal closure, time-lapse high-resolution imaging shows defects arising out of sluggishness in closure, resolving at times in failures of closure. prg is expressed in imaginal discs, and is required for imaginal development. prg was identified in imaginal tissue in a cell super competition screen, together with other genes, like flower. We find that flower mutations are also embryonic lethal with a similar phenocritical period and strong embryonic mutant phenotypes (head involution defects, primarily). The two loci interact genetically in the embryo, as they increase embryonic mortality to close to 90% with the same embryonic phenotypes (dorsal closure and head involution defects, plus lack of cuticle). Mutant prg clones generated in developing dorsal thorax and eye imaginal tissue have strong developmental defects (lack of bristles and ommatidial malformations). prg is required in several developmental morphogenetic processes.
Collapse
Affiliation(s)
- Nestor O Nazario-Yepiz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Campus UNAM Juriquilla, Boulevard Juriquilla 3001, Querétaro, Querétaro c.p. 76230, Mexico
| | - Juan R Riesgo-Escovar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Campus UNAM Juriquilla, Boulevard Juriquilla 3001, Querétaro, Querétaro c.p. 76230, Mexico.
| |
Collapse
|
26
|
Hara Y, Shagirov M, Toyama Y. Cell Boundary Elongation by Non-autonomous Contractility in Cell Oscillation. Curr Biol 2016; 26:2388-96. [PMID: 27524484 DOI: 10.1016/j.cub.2016.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 05/23/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022]
Abstract
Throughout development, tissues exhibit dynamic cell deformation, which is characterized by the integration of cell boundary contraction and/or elongation. Such changes ultimately establish tissue morphology and function [1-5]. In comparison to cell boundary contraction, which is predominantly driven by non-muscle myosin II (MyoII)-dependent contraction [6-9], the mechanisms of cell boundary elongation remain elusive. We explored the dynamics of the amnioserosa, which is known to exhibit cell shape oscillation [10-15], as a model system to study the subcellular-level mechanics that spatiotemporally evolve during Drosophila dorsal closure. Here we show that cell boundary elongation occurs through a combination of a non-autonomous active process and an autonomous process. The former is driven by a transient change in the level of MyoII in the neighboring cells that pull the vertices, whereas the latter is governed by the relaxation of junctional tension. By monitoring cell boundary deformation during live imaging, junctional tension at the specific phase of cell boundary oscillation, e.g., contraction or elongation, was probed by laser ablation. Junctional tension during boundary elongation is lower than during the other phase of oscillation. We extended our tension measurements to non-invasively estimate a tension map across the tissue, and found a correlation between junctional tension and vinculin dynamics at the cell junction. We propose that the medial actomyosin network is used as an entity to both contract and elongate the cell boundary. Moreover, our findings raise a possibility that the level of vinculin at the cell boundary could be used to approximate junctional tension in vivo.
Collapse
Affiliation(s)
- Yusuke Hara
- Mechanobiology Institute, T-Lab, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Murat Shagirov
- Mechanobiology Institute, T-Lab, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, T-Lab, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
27
|
Lacy ME, Hutson MS. Amnioserosa development and function in Drosophila embryogenesis: Critical mechanical roles for an extraembryonic tissue. Dev Dyn 2016; 245:558-68. [PMID: 26878336 DOI: 10.1002/dvdy.24395] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 11/07/2022] Open
Abstract
Despite being a short-lived, extraembryonic tissue, the amnioserosa plays critical roles in the major morphogenetic events of Drosophila embryogenesis. These roles involve both cellular mechanics and biochemical signaling. Its best-known role is in dorsal closure-well studied by both developmental biologists and biophysicists-but the amnioserosa is also important during earlier developmental stages. Here, we provide an overview of amnioserosa specification and its role in several key developmental stages: germ band extension, germ band retraction, and dorsal closure. We also compare embryonic development in Drosophila and its relative Megaselia to highlight how the amnioserosa and its roles have evolved. Placed in context, the amnioserosa provides a fascinating example of how signaling, mechanics, and morphogen patterns govern cell-type specification and subsequent morphogenetic changes in cell shape, orientation, and movement. Developmental Dynamics 245:558-568, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Monica E Lacy
- Department of Physics & Astronomy, Vanderbilt University, Nashville, Tennessee
| | - M Shane Hutson
- Department of Physics & Astronomy, Vanderbilt University, Nashville, Tennessee.,Vanderbilt Institute for Integrative Biosystems Research & Education, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
28
|
Fly LMBR1/LIMR-type protein Lilipod promotes germ-line stem cell self-renewal by enhancing BMP signaling. Proc Natl Acad Sci U S A 2015; 112:13928-33. [PMID: 26512105 DOI: 10.1073/pnas.1509856112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Limb development membrane protein-1 (LMBR1)/lipocalin-interacting membrane receptor (LIMR)-type proteins are putative nine-transmembrane receptors that are evolutionarily conserved across metazoans. However, their biological function is unknown. Here, we show that the fly family member Lilipod (Lili) is required for germ-line stem cell (GSC) self-renewal in the Drosophila ovary where it enhances bone morphogenetic protein (BMP) signaling. lili mutant GSCs are lost through differentiation, and display reduced levels of the Dpp transducer pMad and precocious activation of the master differentiation factor bam. Conversely, overexpressed Lili induces supernumerary pMad-positive bamP-GFP-negative GSCs. Interestingly, differentiation of lili mutant GSCs is bam-dependent; however, its effect on pMad is not. Thus, although it promotes stem cell self-renewal by repressing a bam-dependent process, Lilipod enhances transduction of the Dpp signal independently of its suppression of differentiation. In addition, because Lili is still required by a ligand-independent BMP receptor, its function likely occurs between receptor activation and pMad phosphorylation within the signaling cascade. This first, to our knowledge, in vivo characterization of a LMBR1/LIMR-type protein in a genetic model reveals an important role in modulating BMP signaling during the asymmetric division of an adult stem cell population and in other BMP signaling contexts.
Collapse
|
29
|
Garlena RA, Lennox AL, Baker LR, Parsons TE, Weinberg SM, Stronach BE. The receptor tyrosine kinase Pvr promotes tissue closure by coordinating corpse removal and epidermal zippering. Development 2015; 142:3403-15. [PMID: 26293306 DOI: 10.1242/dev.122226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022]
Abstract
A leading cause of human birth defects is the incomplete fusion of tissues, often manifested in the palate, heart or neural tube. To investigate the molecular control of tissue fusion, embryonic dorsal closure and pupal thorax closure in Drosophila are useful experimental models. We find that Pvr mutants have defects in dorsal midline closure with incomplete amnioserosa internalization and epidermal zippering, as well as cardia bifida. These defects are relatively mild in comparison to those seen with other signaling mutants, such as in the JNK pathway, and we demonstrate that JNK signaling is not perturbed by altering Pvr receptor tyrosine kinase activity. Rather, modulation of Pvr levels in the ectoderm has an impact on PIP3 membrane accumulation, consistent with a link to PI3K signal transduction. Polarized PI3K activity influences protrusive activity from the epidermal leading edge and the protrusion area changes in accord with Pvr signaling intensity, providing a possible mechanism to explain Pvr mutant phenotypes. Tissue-specific rescue experiments indicate a partial requirement in epithelial tissue, but confirm the essential role of Pvr in hemocytes for embryonic survival. Taken together, we argue that inefficient removal of the internalizing amnioserosa tissue by mutant hemocytes coupled with impaired midline zippering of mutant epithelium creates a situation in some embryos whereby dorsal midline closure is incomplete. Based on these observations, we suggest that efferocytosis (corpse clearance) could contribute to proper tissue closure and thus might underlie some congenital birth defects.
Collapse
Affiliation(s)
- Rebecca A Garlena
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ashley L Lennox
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Lewis R Baker
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Trish E Parsons
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Beth E Stronach
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
30
|
Ducuing A, Keeley C, Mollereau B, Vincent S. A DPP-mediated feed-forward loop canalizes morphogenesis during Drosophila dorsal closure. ACTA ACUST UNITED AC 2015; 208:239-48. [PMID: 25601405 PMCID: PMC4298692 DOI: 10.1083/jcb.201410042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
During Drosophila dorsal closure, DPP and JNK signaling form a feed-forward loop that controls the specification and differentiation of leading edge cells to ensure robust morphogenesis. Development is robust because nature has selected various mechanisms to buffer the deleterious effects of environmental and genetic variations to deliver phenotypic stability. Robustness relies on smart network motifs such as feed-forward loops (FFLs) that ensure the reliable interpretation of developmental signals. In this paper, we show that Decapentaplegic (DPP) and JNK form a coherent FFL that controls the specification and differentiation of leading edge cells during Drosophila melanogaster dorsal closure (DC). We provide molecular evidence that through repression by Brinker (Brk), the DPP branch of the FFL filters unwanted JNK activity. High-throughput live imaging revealed that this DPP/Brk branch is dispensable for DC under normal conditions but is required when embryos are subjected to thermal stress. Our results indicate that the wiring of DPP signaling buffers against environmental challenges and canalizes cell identity. We propose that the main function of DPP pathway during Drosophila DC is to ensure robust morphogenesis, a distinct function from its well-established ability to spread spatial information.
Collapse
Affiliation(s)
- Antoine Ducuing
- Laboratory of Molecular Biology of the Cell, UMR5239, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, 69007 Lyon, France
| | - Charlotte Keeley
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Bertrand Mollereau
- Laboratory of Molecular Biology of the Cell, UMR5239, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, 69007 Lyon, France
| | - Stéphane Vincent
- Laboratory of Molecular Biology of the Cell, UMR5239, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, 69007 Lyon, France
| |
Collapse
|
31
|
Beira JV, Springhorn A, Gunther S, Hufnagel L, Pyrowolakis G, Vincent JP. The Dpp/TGFβ-dependent corepressor Schnurri protects epithelial cells from JNK-induced apoptosis in drosophila embryos. Dev Cell 2014; 31:240-7. [PMID: 25307481 PMCID: PMC4220000 DOI: 10.1016/j.devcel.2014.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 06/27/2014] [Accepted: 08/11/2014] [Indexed: 12/16/2022]
Abstract
Jun N-terminal kinase (JNK) often mediates apoptosis in response to cellular stress. However, during normal development, JNK signaling controls a variety of live cell behaviors, such as during dorsal closure in Drosophila embryos. During this process, the latent proapoptotic activity of JNK becomes apparent following Dpp signaling suppression, which leads to JNK-dependent transcriptional activation of the proapoptotic gene reaper. Dpp signaling also protects cells from JNK-dependent apoptosis caused by epithelial disruption. We find that repression of reaper transcription by Dpp is mediated by Schnurri. Moreover, reporter gene analysis shows that a transcriptional regulatory module comprising AP-1 and Schnurri binding sites located upstream of reaper integrate the activities of JNK and Dpp. This arrangement allows JNK to control a migratory behavior without triggering apoptosis. Dpp plays a dual role during dorsal closure. It cooperates with JNK in stimulating cell migration and also prevents JNK from inducing apoptosis.
Collapse
Affiliation(s)
- Jorge V Beira
- Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Alexander Springhorn
- BIOSS Centre for Biological Signalling Studies and Institute for Biology I, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Research Training Program GRK 1104, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Stefan Gunther
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Lars Hufnagel
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Giorgos Pyrowolakis
- BIOSS Centre for Biological Signalling Studies and Institute for Biology I, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Jean-Paul Vincent
- Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
32
|
Wells AR, Zou RS, Tulu US, Sokolow AC, Crawford JM, Edwards GS, Kiehart DP. Complete canthi removal reveals that forces from the amnioserosa alone are sufficient to drive dorsal closure in Drosophila. Mol Biol Cell 2014; 25:3552-68. [PMID: 25253724 PMCID: PMC4230616 DOI: 10.1091/mbc.e14-07-1190] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Drosophila's dorsal closure provides an excellent model system with which to analyze biomechanical processes during morphogenesis. During native closure, the amnioserosa, flanked by two lateral epidermal sheets, forms an eye-shaped opening with canthi at each corner. The dynamics of amnioserosa cells and actomyosin purse strings in the leading edges of epidermal cells promote closure, whereas the bulk of the lateral epidermis opposes closure. Canthi maintain purse string curvature (necessary for their dorsalward forces), and zipping at the canthi shortens leading edges, ensuring a continuous epithelium at closure completion. We investigated the requirement for intact canthi during closure with laser dissection approaches. Dissection of one or both canthi resulted in tissue recoil and flattening of each purse string. After recoil and a temporary pause, closure resumed at approximately native rates until slowing near the completion of closure. Thus the amnioserosa alone can drive closure after dissection of one or both canthi, requiring neither substantial purse string curvature nor zipping during the bulk of closure. How the embryo coordinates multiple, large forces (each of which is orders of magnitude greater than the net force) during native closure and is also resilient to multiple perturbations are key extant questions.
Collapse
Affiliation(s)
| | - Roger S Zou
- Department of Biology, Duke University, Durham, NC 27708
| | - U Serdar Tulu
- Department of Biology, Duke University, Durham, NC 27708
| | - Adam C Sokolow
- Department of Physics, Duke University, Durham, NC 27708
| | | | | | | |
Collapse
|
33
|
Nowotarski SH, McKeon N, Moser RJ, Peifer M. The actin regulators Enabled and Diaphanous direct distinct protrusive behaviors in different tissues during Drosophila development. Mol Biol Cell 2014; 25:3147-65. [PMID: 25143400 PMCID: PMC4196866 DOI: 10.1091/mbc.e14-05-0951] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Actin-based protrusions are important for signaling and migration during development and homeostasis. Gain- and loss-of-function and quantitative approaches are used to define differential roles for the actin elongation factors Diaphanous and Enabled in regulating distinct protrusive behaviors in different tissues during Drosophila morphogenesis. Actin-based protrusions are important for signaling and migration during development and homeostasis. Defining how different tissues in vivo craft diverse protrusive behaviors using the same genomic toolkit of actin regulators is a current challenge. The actin elongation factors Diaphanous and Enabled both promote barbed-end actin polymerization and can stimulate filopodia in cultured cells. However, redundancy in mammals and Diaphanous’ role in cytokinesis limited analysis of whether and how they regulate protrusions during development. We used two tissues driving Drosophila dorsal closure—migratory leading-edge (LE) and nonmigratory amnioserosal (AS) cells—as models to define how cells shape distinct protrusions during morphogenesis. We found that nonmigratory AS cells produce filopodia that are morphologically and dynamically distinct from those of LE cells. We hypothesized that differing Enabled and/or Diaphanous activity drives these differences. Combining gain- and loss-of-function with quantitative approaches revealed that Diaphanous and Enabled each regulate filopodial behavior in vivo and defined a quantitative “fingerprint”—the protrusive profile—which our data suggest is characteristic of each actin regulator. Our data suggest that LE protrusiveness is primarily Enabled driven, whereas Diaphanous plays the primary role in the AS, and reveal each has roles in dorsal closure, but its robustness ensures timely completion in their absence.
Collapse
Affiliation(s)
- Stephanie H Nowotarski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Natalie McKeon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Rachel J Moser
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
34
|
Martin AC, Goldstein B. Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development 2014; 141:1987-98. [PMID: 24803648 DOI: 10.1242/dev.102228] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apical constriction is a cell shape change that promotes tissue remodeling in a variety of homeostatic and developmental contexts, including gastrulation in many organisms and neural tube formation in vertebrates. In recent years, progress has been made towards understanding how the distinct cell biological processes that together drive apical constriction are coordinated. These processes include the contraction of actin-myosin networks, which generates force, and the attachment of actin networks to cell-cell junctions, which allows forces to be transmitted between cells. Different cell types regulate contractility and adhesion in unique ways, resulting in apical constriction with varying dynamics and subcellular organizations, as well as a variety of resulting tissue shape changes. Understanding both the common themes and the variations in apical constriction mechanisms promises to provide insight into the mechanics that underlie tissue morphogenesis.
Collapse
Affiliation(s)
- Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | |
Collapse
|
35
|
Abstract
The construction and prediction of cell fate maps at the whole embryo level require the establishment of an accurate atlas of gene expression patterns throughout development and the identification of the corresponding cis-regulatory sequences. However, while the expression and regulation of genes encoding upstream developmental regulators such as transcription factors or signaling pathway components have been analyzed in detail, up to date the number of cis-regulatory sequences identified for downstream effector genes, like ion channels, pumps and exchangers, is very low. The control and regulation of ion homeostasis in each cell, including at blastoderm stages, are essential for normal embryonic development. In this study, we analyzed in detail the embryonic expression pattern and cis-regulatory modules of the Drosophila Na+-driven anion exchanger 1 (Ndae1) gene, involved in the regulation of pH homeostasis. We show that Ndae1 is expressed in a tight and complex spatial-temporal pattern. In particular, we report that this downstream effector gene is under the control of the canonical dorsal-ventral patterning cascade through dorsal, Toll, twist and snail at early embryogenesis. Moreover, we identify several cis-regulatory modules, some of which control discrete and non-overlapping aspects of endogenous gene expression throughout development.
Collapse
|
36
|
O'Keefe DD, Thomas S, Edgar BA, Buttitta L. Temporal regulation of Dpp signaling output in the Drosophila wing. Dev Dyn 2014; 243:818-32. [PMID: 24591046 DOI: 10.1002/dvdy.24122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The Decapentaplegic (Dpp) signaling pathway is used in many developmental and homeostatic contexts, each time resulting in cellular responses particular to that biological niche. The flexibility of Dpp signaling is clearly evident in epithelial cells of the Drosophila wing imaginal disc. During larval stages of development, Dpp functions as a morphogen, patterning the wing developmental field and stimulating tissue growth. A short time later, however, as wing-epithelial cells exit the cell cycle and begin to differentiate, Dpp is a critical determinant of vein-cell fate. It is likely that the Dpp signaling pathway regulates different sets of target genes at these two developmental time points. RESULTS To identify mechanisms that temporally control the transcriptional output of Dpp signaling in this system, we have taken a gene expression profiling approach. We identified genes affected by Dpp signaling at late larval or early pupal developmental time points, thereby identifying patterning- and differentiation-specific downstream targets, respectively. CONCLUSIONS Analysis of target genes and transcription factor binding sites associated with these groups of genes revealed potential mechanisms by which target-gene specificity of the Dpp signaling pathway is temporally regulated. In addition, this approach revealed novel mechanisms by which Dpp affects the cellular differentiation of wing-veins.
Collapse
Affiliation(s)
- David D O'Keefe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | | |
Collapse
|
37
|
Erceg J, Saunders TE, Girardot C, Devos DP, Hufnagel L, Furlong EEM. Subtle changes in motif positioning cause tissue-specific effects on robustness of an enhancer's activity. PLoS Genet 2014; 10:e1004060. [PMID: 24391522 PMCID: PMC3879207 DOI: 10.1371/journal.pgen.1004060] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 11/11/2013] [Indexed: 12/14/2022] Open
Abstract
Deciphering the specific contribution of individual motifs within cis-regulatory modules (CRMs) is crucial to understanding how gene expression is regulated and how this process is affected by sequence variation. But despite vast improvements in the ability to identify where transcription factors (TFs) bind throughout the genome, we are limited in our ability to relate information on motif occupancy to function from sequence alone. Here, we engineered 63 synthetic CRMs to systematically assess the relationship between variation in the content and spacing of motifs within CRMs to CRM activity during development using Drosophila transgenic embryos. In over half the cases, very simple elements containing only one or two types of TF binding motifs were capable of driving specific spatio-temporal patterns during development. Different motif organizations provide different degrees of robustness to enhancer activity, ranging from binary on-off responses to more subtle effects including embryo-to-embryo and within-embryo variation. By quantifying the effects of subtle changes in motif organization, we were able to model biophysical rules that explain CRM behavior and may contribute to the spatial positioning of CRM activity in vivo. For the same enhancer, the effects of small differences in motif positions varied in developmentally related tissues, suggesting that gene expression may be more susceptible to sequence variation in one tissue compared to another. This result has important implications for human eQTL studies in which many associated mutations are found in cis-regulatory regions, though the mechanism for how they affect tissue-specific gene expression is often not understood.
Collapse
Affiliation(s)
- Jelena Erceg
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Timothy E. Saunders
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Charles Girardot
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Damien P. Devos
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Lars Hufnagel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Eileen E. M. Furlong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
38
|
Abstract
Morphogenesis is the remarkable process by which cells self-assemble into complex tissues and organs that exhibit specialized form and function during embryological development. Many of the genes and chemical cues that mediate tissue and organ formation have been identified; however, these signals alone are not sufficient to explain how tissues and organs are constructed that exhibit their unique material properties and three-dimensional forms. Here, we review work that has revealed the central role that physical forces and extracellular matrix mechanics play in the control of cell fate switching, pattern formation, and tissue development in the embryo and how these same mechanical signals contribute to tissue homeostasis and developmental control throughout adult life.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
39
|
Hunter GL, Crawford JM, Genkins JZ, Kiehart DP. Ion channels contribute to the regulation of cell sheet forces during Drosophila dorsal closure. Development 2013; 141:325-34. [PMID: 24306105 DOI: 10.1242/dev.097097] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We demonstrate that ion channels contribute to the regulation of dorsal closure in Drosophila, a model system for cell sheet morphogenesis. We find that Ca(2+) is sufficient to cause cell contraction in dorsal closure tissues, as UV-mediated release of caged Ca(2+) leads to cell contraction. Furthermore, endogenous Ca(2+) fluxes correlate with cell contraction in the amnioserosa during closure, whereas the chelation of Ca(2+) slows closure. Microinjection of high concentrations of the peptide GsMTx4, which is a specific modulator of mechanically gated ion channel function, causes increases in cytoplasmic free Ca(2+) and actomyosin contractility and, in the long term, blocks closure in a dose-dependent manner. We identify two channel subunits, ripped pocket and dtrpA1 (TrpA1), that play a role in closure and other morphogenetic events. Blocking channels leads to defects in force generation via failure of actomyosin structures, and impairs the ability of tissues to regulate forces in response to laser microsurgery. Our results point to a key role for ion channels in closure, and suggest a mechanism for the coordination of force-producing cell behaviors across the embryo.
Collapse
Affiliation(s)
- Ginger L Hunter
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
40
|
Giuliani F, Giuliani G, Bauer R, Rabouille C. Innexin 3, a new gene required for dorsal closure in Drosophila embryo. PLoS One 2013; 8:e69212. [PMID: 23894431 PMCID: PMC3722180 DOI: 10.1371/journal.pone.0069212] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 06/10/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Dorsal closure is a morphogenetic event that occurs during mid-embryogenesis in many insects including Drosophila, during which the ectoderm migrates on the extraembryonic amnioserosa to seal the embryo dorsally. The contribution of the ectoderm in this event has been known for a long time. However, amnioserosa tension and contractibility have recently been shown also to be instrumental to the closure. A critical pre-requisite for dorsal closure is integrity of these tissues that in part is mediated by cell-cell junctions and cell adhesion. In this regard, mutations impairing junction formation and/or adhesion lead to dorsal closure. However, no role for the gap junction proteins Innexins has so far been described. RESULTS AND DISCUSSION Here, we show that Innexin 1, 2 and 3, are present in the ectoderm but also in the amnioserosa in plaques consistent with gap junctions. However, only the loss of Inx3 leads to dorsal closure defects that are completely rescued by overexpression of inx3::GFP in the whole embryo. Loss of Inx3 leads to the destabilisation of Inx1, Inx2 and DE-cadherin at the plasma membrane, suggesting that these four proteins form a complex. Accordingly, in addition to the known interaction of Inx2 with DE-cadherin, we show that Inx3 can bind to DE-cadherin. Furthermore, Inx3-GFP overexpression recruits DE-cadherin from its wildtype plasma membrane domain to typical Innexin plaques, strengthening the notion that they form a complex. Finally, we show that Inx3 stability is directly dependent on tissue tension. Taken together, we propose that Inx3 is a critical factor for dorsal closure and that it mediates the stability of Inx1, 2 and DE-cadherin by forming a complex.
Collapse
Affiliation(s)
- Fabrizio Giuliani
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
- UMC Utrecht, Utrecht, The Netherlands
| | - Giuliano Giuliani
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
- UMC Utrecht, Utrecht, The Netherlands
| | - Reinhard Bauer
- LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Laboratory for Molecular Developmental Biology, University of Bonn, Bonn, Germany
| | - Catherine Rabouille
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
- UMC Utrecht, Utrecht, The Netherlands
- Department of Cell Biology, UMC Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
41
|
Humphreys GB, Jud MC, Monroe KM, Kimball SS, Higley M, Shipley D, Vrablik MC, Bates KL, Letsou A. Mummy, A UDP-N-acetylglucosamine pyrophosphorylase, modulates DPP signaling in the embryonic epidermis of Drosophila. Dev Biol 2013; 381:434-45. [PMID: 23796903 DOI: 10.1016/j.ydbio.2013.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/06/2013] [Indexed: 12/29/2022]
Abstract
The evolutionarily conserved JNK/AP-1 (Jun N-terminal kinase/activator protein 1) and BMP (Bone Morphogenetic Protein) signaling cascades are deployed hierarchically to regulate dorsal closure in the fruit fly Drosophila melanogaster. In this developmental context, the JNK/AP-1 signaling cascade transcriptionally activates BMP signaling in leading edge epidermal cells. Here we show that the mummy (mmy) gene product, which is required for dorsal closure, functions as a BMP signaling antagonist. Genetic and biochemical tests of Mmy's role as a BMP-antagonist indicate that its function is independent of AP-1, the transcriptional trigger of BMP signal transduction in leading edge cells. pMAD (phosphorylated Mothers Against Dpp) activity data show the mmy gene product to be a new type of epidermal BMP regulator - one which transforms a BMP ligand from a long- to a short-range signal. mmy codes for the single UDP-N-acetylglucosamine pyrophosphorylase in Drosophila, and its requirement for attenuating epidermal BMP signaling during dorsal closure points to a new role for glycosylation in defining a highly restricted BMP activity field in the fly. These findings add a new dimension to our understanding of mechanisms modulating the BMP signaling gradient.
Collapse
Affiliation(s)
- Gregory B Humphreys
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fine-tuned shuttles for bone morphogenetic proteins. Curr Opin Genet Dev 2013; 23:374-84. [PMID: 23735641 DOI: 10.1016/j.gde.2013.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/27/2023]
Abstract
Bone morphogenetic proteins (BMPs) are potent secreted signaling factors that trigger phosphorylation of Smad transcriptional regulators through receptor complex binding at the cell-surface. Resulting changes in target gene expression impact critical cellular responses during development and tissue homeostasis. BMP activity is tightly regulated in time and space by secreted modulators that control BMP extracellular distribution and availability for receptor binding. Such extracellular regulation is key for BMPs to function as morphogens and/or in the formation of morphogen activity gradients. Here, we review shuttling systems utilized to control the distribution of BMP ligands in tissue of various geometries, developing under different temporal constraints. We discuss the biological advantages for employing specific strategies for BMP shuttling and roles of varied ligand forms.
Collapse
|
43
|
Shen W, Chen X, Cormier O, Cheng DCP, Reed B, Harden N. Modulation of morphogenesis by Egfr during dorsal closure in Drosophila. PLoS One 2013; 8:e60180. [PMID: 23579691 PMCID: PMC3620322 DOI: 10.1371/journal.pone.0060180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/23/2013] [Indexed: 01/12/2023] Open
Abstract
During Drosophila embryogenesis the process of dorsal closure (DC) results in continuity of the embryonic epidermis, and DC is well recognized as a model system for the analysis of epithelial morphogenesis as well as wound healing. During DC the flanking lateral epidermal sheets stretch, align, and fuse along the dorsal midline, thereby sealing a hole in the epidermis occupied by an extra-embryonic tissue known as the amnioserosa (AS). Successful DC requires the regulation of cell shape change via actomyosin contractility in both the epidermis and the AS, and this involves bidirectional communication between these two tissues. We previously demonstrated that transcriptional regulation of myosin from the zipper (zip) locus in both the epidermis and the AS involves the expression of Ack family tyrosine kinases in the AS in conjunction with Dpp secreted from the epidermis. A major function of Ack in other species, however, involves the negative regulation of Egfr. We have, therefore, asked what role Egfr might play in the regulation of DC. Our studies demonstrate that Egfr is required to negatively regulate epidermal expression of dpp during DC. Interestingly, we also find that Egfr signaling in the AS is required to repress zip expression in both the AS and the epidermis, and this may be generally restrictive to the progression of morphogenesis in these tissues. Consistent with this theme of restricting morphogenesis, it has previously been shown that programmed cell death of the AS is essential for proper DC, and we show that Egfr signaling also functions to inhibit or delay AS programmed cell death. Finally, we present evidence that Ack regulates zip expression by promoting the endocytosis of Egfr in the AS. We propose that the general role of Egfr signaling during DC is that of a braking mechanism on the overall progression of DC.
Collapse
Affiliation(s)
- Weiping Shen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Xi Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Olga Cormier
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - David Chung-Pei Cheng
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Bruce Reed
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
44
|
Irles P, Silva-Torres FA, Piulachs MD. RNAi reveals the key role of Nervana 1 in cockroach oogenesis and embryo development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:178-188. [PMID: 23262289 DOI: 10.1016/j.ibmb.2012.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/07/2012] [Accepted: 12/11/2012] [Indexed: 06/01/2023]
Abstract
Na(+), K(+)-ATPases is a heterodimer protein consisting of α- and β-subunits that control the ion transport through cell membranes. In insects the β-subunit of the Na(+), K(+)-ATPase, known as Nervana, was characterized as a nervous system-specific glycoprotein antigen from adult Drosophila melanogaster heads. Nervana is expressed ubiquitously in all insect tissues, and in epithelial cells appeared located in a basolateral position as part of the septate junctions. Herein we study two Nervana isoforms from Blattella germanica, a cockroach species with panoistic ovaries. The sequencing and the phylogenetic analysis results suggest that these two isoforms are orthologs of D. melanogaster Nervana 1 and Nervana 2, respectively. Nervana 1 is highly expressed in the ovary of B. germanica, and depleting its expression results in changes in oocyte shape that do not impair oviposition. However, the resulting embryos show different defects and never hatch. These findings highlight the importance of this type of membrane pump in insect oogenesis as well as in embryo development, and its possible regulation by juvenile hormone.
Collapse
Affiliation(s)
- Paula Irles
- Institut de Biologia Evolutiva (Universitat Pompeu Fabra-CSIC), Passeig Marítim de la Barceloneta, 37, 08003 Barcelona, Spain.
| | | | | |
Collapse
|
45
|
Ríos-Barrera LD, Riesgo-Escovar JR. Regulating cell morphogenesis: The drosophila jun N-terminal kinase pathway. Genesis 2012; 51:147-62. [DOI: 10.1002/dvg.22354] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 10/14/2012] [Accepted: 10/19/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Luis Daniel Ríos-Barrera
- Developmental Neurobioloy and Neurophysiology Department; Instituto de Neurobiología; Universidad Nacional Autónoma de México; Boulevard Juriquilla #3001; Querétaro, Querétaro; México; c.p. 76230
| | - Juan Rafael Riesgo-Escovar
- Developmental Neurobioloy and Neurophysiology Department; Instituto de Neurobiología; Universidad Nacional Autónoma de México; Boulevard Juriquilla #3001; Querétaro, Querétaro; México; c.p. 76230
| |
Collapse
|
46
|
O'Keefe DD, Gonzalez-Niño E, Edgar BA, Curtiss J. Discontinuities in Rap1 activity determine epithelial cell morphology within the developing wing of Drosophila. Dev Biol 2012; 369:223-34. [PMID: 22776378 DOI: 10.1016/j.ydbio.2012.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 05/31/2012] [Accepted: 06/28/2012] [Indexed: 11/28/2022]
Abstract
Mechanisms that govern cell-fate specification within developing epithelia have been intensely investigated, with many of the critical intercellular signaling pathways identified, and well characterized. Much less is known, however, about downstream events that drive the morphological differentiation of these cells, once their fate has been determined. In the Drosophila wing-blade epithelium, two cell types predominate: vein and intervein. After cell proliferation is complete and adhesive cell-cell contacts have been refined, the vast majority of intervein cells adopt a hexagonal morphology. Within vein territories, however, cell-shape refinement results in trapezoids. Signaling events that differentiate between vein and intervein cell fates are well understood, but the genetic pathways underlying vein/intervein cyto-architectural differences remain largely undescribed. We show here that the Rap1 GTPase plays a critical role in determining cell-type-specific morphologies within the developing wing epithelium. Rap1, together with its effector Canoe, promotes symmetric distribution of the adhesion molecule DE-cadherin about the apicolateral circumference of epithelial cells. We provide evidence that in presumptive vein tissue Rap1/Canoe activity is down-regulated, resulting in adhesive asymmetries and non-hexagonal cell morphologies. In particular Canoe levels are reduced in vein cells as they morphologically differentiate. We also demonstrate that over-expression of Rap1 disrupts vein formation both in the developing epithelium and the adult wing blade. Therefore, vein/intervein morphological differences result, at least in part, from the patterned regulation of Rap1 activity.
Collapse
Affiliation(s)
- David D O'Keefe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
47
|
Sokolow A, Toyama Y, Kiehart DP, Edwards GS. Cell ingression and apical shape oscillations during dorsal closure in Drosophila. Biophys J 2012; 102:969-79. [PMID: 22404919 DOI: 10.1016/j.bpj.2012.01.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 01/11/2012] [Accepted: 01/17/2012] [Indexed: 01/22/2023] Open
Abstract
Programmed patterns of gene expression, cell-cell signaling, and cellular forces cause morphogenic movements during dorsal closure. We investigated the apical cell-shape changes that characterize amnioserosa cells during dorsal closure in Drosophila embryos with in vivo imaging of green-fluorescent-protein-labeled DE-cadherin. Time-lapsed, confocal images were assessed with a novel segmentation algorithm, Fourier analysis, and kinematic and dynamical modeling. We found two generic processes, reversible oscillations in apical cross-sectional area and cell ingression characterized by persistent loss of apical area. We quantified a time-dependent, spatially-averaged sum of intracellular and intercellular forces acting on each cell's apical belt of DE-cadherin. We observed that a substantial fraction of amnioserosa cells ingress near the leading edges of lateral epidermis, consistent with the view that ingression can be regulated by leading-edge cells. This is in addition to previously observed ingression processes associated with zipping and apoptosis. Although there is cell-to-cell variability in the maximum rate for decreasing apical area (0.3-9.5 μm(2)/min), the rate for completing ingression is remarkably constant (0.83 cells/min, r(2) > 0.99). We propose that this constant ingression rate contributes to the spatiotemporal regularity of mechanical stress exerted by the amnioserosa on each leading edge during closure.
Collapse
Affiliation(s)
- Adam Sokolow
- Physics Department, Duke University, Durham, North Carolina, USA
| | | | | | | |
Collapse
|
48
|
Lada K, Gorfinkiel N, Martinez Arias A. Interactions between the amnioserosa and the epidermis revealed by the function of the u-shaped gene. Biol Open 2012; 1:353-61. [PMID: 23213425 PMCID: PMC3509461 DOI: 10.1242/bio.2012497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dorsal closure (DC) is an essential step during Drosophila development whereby a hole is sealed in the dorsal epidermis and serves as a model for cell sheet morphogenesis and wound healing. It involves the orchestrated interplay of transcriptional networks and dynamic regulation of cell machinery to bring about shape changes, mechanical forces, and emergent properties. Here we provide insight into the regulation of dorsal closure by describing novel autonomous and non-autonomous roles for U-shaped (Ush) in the amnioserosa, the epidermis, and in mediation of communication between the tissues. We identified Ush by gene expression microarray analysis of Dpp signaling targets and show that Ush mediates some DC functions of Dpp. By selectively restoring Ush function in either the AS or the epidermis in ush mutants, we show that the AS makes a greater (Ush-dependent) contribution to closure than the epidermis. A signal from the AS induces epidermal cell elongation and JNK activation in the DME, while cable formation requires Ush on both sides of the leading edge, i.e. in both the AS and epidermis. Our study demonstrates that the amnioserosa and epidermis communicate at several steps during the process: sometimes the epidermis instructs the amnioserosa, other times the AS instructs the epidermis, and still other times they appear to collaborate.
Collapse
Affiliation(s)
- Karolina Lada
- Department of Genetics, University of Cambridge , CB2 3EH, Cambridge , UK
| | | | | |
Collapse
|
49
|
Bischoff M. Lamellipodia-based migrations of larval epithelial cells are required for normal closure of the adult epidermis of Drosophila. Dev Biol 2011; 363:179-90. [PMID: 22230614 PMCID: PMC3314956 DOI: 10.1016/j.ydbio.2011.12.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/29/2022]
Abstract
Cell migrations are an important feature of animal development. They are, furthermore, essential to wound healing and tumour progression. Despite recent progress, it is still mysterious how cell migration is spatially and temporally regulated during morphogenesis and how cell migration is coordinated with other cellular behaviours to shape tissues and organs. The formation of the abdominal epithelium of Drosophila during metamorphosis provides an attractive system to study morphogenesis. Here, the diploid adult histoblasts replace the polyploid larval epithelial cells (LECs). Using in vivo 4D microscopy, I show that, besides apical constriction and apoptosis, the LECs undergo extensive coordinated migrations. The migrations follow a transition from a stationary (epithelial) to a migratory mode. The migratory behaviour is stimulated by autocrine Dpp signalling. Directed apical lamellipodia-like protrusions propel the cells. Initially, planar cell polarity determines the orientation of LEC migration. While LECs are migrating they also constrict apically, and changes in activity of the small GTPase Rho1 can favour one behaviour over the other. This study shows that the LECs play a more active role in morphogenesis than previously thought, with their migrations contributing to abdominal closure. It furthermore provides insights into how the migratory behaviour of cells is regulated during morphogenesis.
Collapse
Affiliation(s)
- Marcus Bischoff
- University of Cambridge, Department of Zoology, Cambridge, UK.
| |
Collapse
|
50
|
Ikegami R, Simokat K, Zheng H, Brown L, Garriga G, Hardin J, Culotti J. Semaphorin and Eph receptor signaling guide a series of cell movements for ventral enclosure in C. elegans. Curr Biol 2011; 22:1-11. [PMID: 22197242 DOI: 10.1016/j.cub.2011.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND In the last stage of the Caenorhabditis elegans body wall closure, an open pocket in the epidermis is closed by the migration of marginal epidermal P/pocket cells to the ventral midline. The cellular and molecular mechanisms of this closure remain unknown. RESULTS Cells within the pocket align to form a bridge for migration of contralateral P cell pair P9/10 L,R (and neighboring P cells) to the midline. Bridge formation involves rearrangement of five sister pairs of PLX-2/plexin and VAB-1/Eph receptor expressing "plexin band" cells, of which three pairs form a scaffold for bridge assembly and two pairs form the bridge. Bridge formation requires VAB-1 kinase-dependent extension of presumptive bridge cells over scaffold cells toward the ventral midline. An unassembled vab-1 null mutant bridge obstructs P cell migration, which is largely overcome by plexin band expression of VAB-1 or VAB-1(delC) (a kinase deletion of VAB-1). VAB-1 also functions redundantly with MAB-20/semaphorin to prevent perdurant gaps between sister plexin band cells that block P cell migration. CONCLUSIONS The Eph receptor mediates cellular extensions required for bridge formation, independently facilitates P cell migration to the midline, and functions redundantly with PLX-2/plexin to prevent gaps in the bridge used for P9/10 cell migration in body wall closure.
Collapse
Affiliation(s)
- Richard Ikegami
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | |
Collapse
|