1
|
Griffith-Jones S, Álvarez L, Mukhopadhyay U, Gharbi S, Rettel M, Adams M, Hennig J, Bhogaraju S. Structural basis for RAD18 regulation by MAGEA4 and its implications for RING ubiquitin ligase binding by MAGE family proteins. EMBO J 2024; 43:1273-1300. [PMID: 38448672 PMCID: PMC10987633 DOI: 10.1038/s44318-024-00058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
MAGEA4 is a cancer-testis antigen primarily expressed in the testes but aberrantly overexpressed in several cancers. MAGEA4 interacts with the RING ubiquitin ligase RAD18 and activates trans-lesion DNA synthesis (TLS), potentially favouring tumour evolution. Here, we employed NMR and AlphaFold2 (AF) to elucidate the interaction mode between RAD18 and MAGEA4, and reveal that the RAD6-binding domain (R6BD) of RAD18 occupies a groove in the C-terminal winged-helix subdomain of MAGEA4. We found that MAGEA4 partially displaces RAD6 from the RAD18 R6BD and inhibits degradative RAD18 autoubiquitination, which could be countered by a competing peptide of the RAD18 R6BD. AlphaFold2 and cross-linking mass spectrometry (XL-MS) also revealed an evolutionary invariant intramolecular interaction between the catalytic RING and the DNA-binding SAP domains of RAD18, which is essential for PCNA mono-ubiquitination. Using interaction proteomics, we found that another Type-I MAGE, MAGE-C2, interacts with the RING ubiquitin ligase TRIM28 in a manner similar to the MAGEA4/RAD18 complex, suggesting that the MAGEA4 peptide-binding groove also serves as a ligase-binding cleft in other type-I MAGEs. Our data provide new insights into the mechanism and regulation of RAD18-mediated PCNA mono-ubiquitination.
Collapse
Affiliation(s)
| | - Lucía Álvarez
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Urbi Mukhopadhyay
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Sarah Gharbi
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Mandy Rettel
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Michael Adams
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Janosch Hennig
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Sagar Bhogaraju
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France.
| |
Collapse
|
2
|
Kalweit K, Gölling V, Kosan C, Jungnickel B. Role of Rad18 in B cell activation and lymphomagenesis. Sci Rep 2024; 14:7066. [PMID: 38528023 PMCID: PMC10963733 DOI: 10.1038/s41598-024-57018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
Maintenance of genome integrity is instrumental in preventing cancer. In addition to DNA repair pathways that prevent damage to DNA, damage tolerance pathways allow for the survival of cells that encounter DNA damage during replication. The Rad6/18 pathway is instrumental in this process, mediating damage bypass by ubiquitination of proliferating cell nuclear antigen. Previous studies have shown different roles of Rad18 in vivo and in tumorigenesis. Here, we show that B cells induce Rad18 expression upon proliferation induction. We have therefore analysed the role of Rad18 in B cell activation as well as in B cell lymphomagenesis mediated by an Eµ-Myc transgene. We find no activation defects or survival differences between Rad18 WT mice and two different models of Rad18 deficient tumour mice. Also, tumour subtypes do not differ between the mouse models. Accordingly, functions of Rad18 in B cell activation and tumorigenesis may be compensated for by other pathways in B cells.
Collapse
Affiliation(s)
- Kevin Kalweit
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Hans Knöll Strasse 2, 07745, Jena, Germany
| | - Vanessa Gölling
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Hans Knöll Strasse 2, 07745, Jena, Germany
| | - Christian Kosan
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Hans Knöll Strasse 2, 07745, Jena, Germany
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Hans Knöll Strasse 2, 07745, Jena, Germany.
| |
Collapse
|
3
|
Li M. Sex body: A nest of protein mixture. Front Cell Dev Biol 2023; 11:1165745. [PMID: 37123420 PMCID: PMC10140345 DOI: 10.3389/fcell.2023.1165745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
During the pachytene stage in mammalian meiosis, the X and Y chromosomes remain largely unsynapsed outside the pseudoautosomal region, while autosomes are fully synapsed. Then, the sex chromosomes are compartmentalized into a "sex body" in the nucleus and are subjected to meiotic sex chromosome inactivation (MSCI). For decades, the formation and functioning of the sex body and MSCI have been subjects worth exploring. Notably, a series of proteins have been reported to be located on the sex body area and inferred to play an essential role in MSCI; however, the proteins that are actually located in this area and how these proteins promote sex body formation and establish MSCI remain unclear. Collectively, the DNA damage response factors, downstream fanconi anemia proteins, and other canonical repressive histone modifications have been reported to be associated with the sex body. Here, this study reviews the factors located on the sex body area and tries to provide new insights into studying this mysterious domain.
Collapse
|
4
|
Lou J, Yang Y, Gu Q, Price BA, Qiu Y, Fedoriw Y, Desai S, Mose LE, Chen B, Tateishi S, Parker JS, Vaziri C, Wu D. Rad18 mediates specific mutational signatures and shapes the genomic landscape of carcinogen-induced tumors in vivo. NAR Cancer 2021; 3:zcaa037. [PMID: 33447826 PMCID: PMC7787264 DOI: 10.1093/narcan/zcaa037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/01/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022] Open
Abstract
The E3 ubiquitin ligase Rad18 promotes a damage-tolerant and error-prone mode of DNA replication termed trans-lesion synthesis that is pathologically activated in cancer. However, the impact of vertebrate Rad18 on cancer genomes is not known. To determine how Rad18 affects mutagenesis in vivo, we have developed and implemented a novel computational pipeline to analyze genomes of carcinogen (7, 12-Dimethylbenz[a]anthracene, DMBA)-induced skin tumors from Rad18+/+ and Rad18- / - mice. We show that Rad18 mediates specific mutational signatures characterized by high levels of A(T)>T(A) single nucleotide variations (SNVs). In Rad18- /- tumors, an alternative mutation pattern arises, which is characterized by increased numbers of deletions >4 bp. Comparison with annotated human mutational signatures shows that COSMIC signature 22 predominates in Rad18+/+ tumors whereas Rad18- / - tumors are characterized by increased contribution of COSMIC signature 3 (a hallmark of BRCA-mutant tumors). Analysis of The Cancer Genome Atlas shows that RAD18 expression is strongly associated with high SNV burdens, suggesting RAD18 also promotes mutagenesis in human cancers. Taken together, our results show Rad18 promotes mutagenesis in vivo, modulates DNA repair pathway choice in neoplastic cells, and mediates specific mutational signatures that are present in human tumors.
Collapse
Affiliation(s)
- Jitong Lou
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| | - Qisheng Gu
- Division of Oral and Craniofacial Health Sciences, Adam School of Dentistry, University of North Carolina at Chapel Hill, 385 S. Columbia Street, Chapel Hill, NC 27599, USA
| | - Brandon A Price
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC 27599, USA
| | - Yuheng Qiu
- Department of Statistics, Purdue University, 250 N. University St, West Lafayette, IN 47907, USA
| | - Yuri Fedoriw
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| | - Siddhi Desai
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| | - Lisle E Mose
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC 27599, USA
| | - Brian Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Satoshi Tateishi
- Department of Cell Maintenance, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo Chuoku, Kumamoto 860-0811, Japan
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC 27599, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Pearson GA, Martins N, Madeira P, Serrão EA, Bartsch I. Sex-dependent and -independent transcriptional changes during haploid phase gametogenesis in the sugar kelp Saccharina latissima. PLoS One 2019; 14:e0219723. [PMID: 31513596 PMCID: PMC6742357 DOI: 10.1371/journal.pone.0219723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/27/2019] [Indexed: 11/26/2022] Open
Abstract
In haplodiplontic lineages, sexual reproduction occurs in haploid parents without meiosis. Although widespread in multicellular lineages such as brown algae (Phaeophyceae), haplodiplontic gametogenesis has been little studied at the molecular level. We addressed this by generating an annotated reference transcriptome for the gametophytic phase of the sugar kelp, Saccharina latissima. Transcriptional profiles of microscopic male and female gametophytes were analysed at four time points during the transition from vegetative growth to gametogenesis. Gametogenic signals resulting from a switch in culture irradiance from red to white light activated a core set of genes in a sex-independent manner, involving rapid activation of ribosome biogenesis, transcription and translation related pathways, with several acting at the post-transcriptional or post-translational level. Additional genes regulating nutrient acquisition and key carbohydrate-energy pathways were also identified. Candidate sex-biased genes under gametogenic conditions had potentially key roles in controlling female- and male-specific gametogenesis. Among these were several sex-biased or -specific E3 ubiquitin-protein ligases that may have important regulatory roles. Females specifically expressed several genes that coordinate gene expression and/or protein degradation, and the synthesis of inositol-containing compounds. Other female-biased genes supported parallels with oogenesis in divergent multicellular lineages, in particular reactive oxygen signalling via an NADPH-oxidase. Males specifically expressed the hypothesised brown algal sex-determining factor. Male-biased expression mainly involved upregulation of genes that control mitotic cell proliferation and spermatogenesis in other systems, as well as multiple flagella-related genes. Our data and results enhance genome-level understanding of gametogenesis in this ecologically and economically important multicellular lineage.
Collapse
Affiliation(s)
- Gareth A. Pearson
- Centre for Marine Sciences (CCMAR)-CIMAR, University of Algarve, Portugal
| | - Neusa Martins
- Centre for Marine Sciences (CCMAR)-CIMAR, University of Algarve, Portugal
| | - Pedro Madeira
- Centre for Marine Sciences (CCMAR)-CIMAR, University of Algarve, Portugal
| | - Ester A. Serrão
- Centre for Marine Sciences (CCMAR)-CIMAR, University of Algarve, Portugal
| | - Inka Bartsch
- Alfred-Wegener-Institute, Helmholtz Center for Polar and Marine Research, Am Handelshafen, Germany
| |
Collapse
|
6
|
Shao Z, Niwa S, Higashitani A, Daigaku Y. Vital roles of PCNA K165 modification during C. elegans gametogenesis and embryogenesis. DNA Repair (Amst) 2019; 82:102688. [PMID: 31450086 DOI: 10.1016/j.dnarep.2019.102688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/19/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
In eukaryotes, the DNA damage bypass pathway is promoted by ubiquitylation of PCNA at the conserved lysine 164. Using CRISPR-Cas9 system, we introduced amino acid substitution at K165 of C. elegans PCNA that corresponds to K164 in other characterised organisms and examined the contribution of this residue at a variety of stages during development. In the presence of UV-induced DNA lesions, PCNA-K165 is crucial for not only the early embryonic stages but also during larval development, implicating its functions for a broad time period during animal development. We also show that, without induction of DNA damage, concomitant inhibition of PCNA ubiquitylation and checkpoint activation causes abnormal gametogenesis events and severely impairs reproduction of worms. Our findings suggest a conserved function of PCNA ubiquitylation in tolerance of UV-induced damage and also propose that PCNA ubiquitylation contributes to gametogenesis during unperturbed C. elegans development.
Collapse
Affiliation(s)
- Zhenhua Shao
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shinsuke Niwa
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | | | - Yasukazu Daigaku
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
7
|
DDX5 plays essential transcriptional and post-transcriptional roles in the maintenance and function of spermatogonia. Nat Commun 2019; 10:2278. [PMID: 31123254 PMCID: PMC6533336 DOI: 10.1038/s41467-019-09972-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Mammalian spermatogenesis is sustained by mitotic germ cells with self-renewal potential known as undifferentiated spermatogonia. Maintenance of undifferentiated spermatogonia and spermatogenesis is dependent on tightly co-ordinated transcriptional and post-transcriptional mechanisms. The RNA helicase DDX5 is expressed by spermatogonia but roles in spermatogenesis are unexplored. Using an inducible knockout mouse model, we characterise an essential role for DDX5 in spermatogonial maintenance and show that Ddx5 is indispensable for male fertility. We demonstrate that DDX5 regulates appropriate splicing of key genes necessary for spermatogenesis. Moreover, DDX5 regulates expression of cell cycle genes in undifferentiated spermatogonia post-transcriptionally and is required for cell proliferation and survival. DDX5 can also act as a transcriptional co-activator and we demonstrate that DDX5 interacts with PLZF, a transcription factor required for germline maintenance, to co-regulate select target genes. Combined, our data reveal a critical multifunctional role for DDX5 in regulating gene expression programmes and activity of undifferentiated spermatogonia. Sustained sperm production is dependent on activity of undifferentiated spermatogonia. Here, the authors demonstrate an essential role for RNA helicase DDX5 in maintenance of spermatogonia in adults through control of gene transcription plus RNA processing and export.
Collapse
|
8
|
Cheung LYM, George AS, McGee SR, Daly AZ, Brinkmeier ML, Ellsworth BS, Camper SA. Single-Cell RNA Sequencing Reveals Novel Markers of Male Pituitary Stem Cells and Hormone-Producing Cell Types. Endocrinology 2018; 159:3910-3924. [PMID: 30335147 PMCID: PMC6240904 DOI: 10.1210/en.2018-00750] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022]
Abstract
Transcription factors and signaling pathways that regulate stem cells and specialized hormone-producing cells in the pituitary gland have been the subject of intense study and have yielded a mechanistic understanding of pituitary organogenesis and disease. However, the regulation of stem cell proliferation and differentiation, the heterogeneity among specialized hormone-producing cells, and the role of nonendocrine cells in the gland remain important, unanswered questions. Recent advances in single-cell RNA sequencing (scRNAseq) technologies provide new avenues to address these questions. We performed scRNAseq on ∼13,663 cells pooled from six whole pituitary glands of 7-week-old C57BL/6 male mice. We identified pituitary endocrine and stem cells in silico, as well as other support cell types such as endothelia, connective tissue, and red and white blood cells. Differential gene expression analyses identify known and novel markers of pituitary endocrine and stem cell populations. We demonstrate the value of scRNAseq by in vivo validation of a novel gonadotrope-enriched marker, Foxp2. We present novel scRNAseq data of in vivo pituitary tissue, including data from agnostic clustering algorithms that suggest the presence of a somatotrope subpopulation enriched in sterol/cholesterol synthesis genes. Additionally, we show that incomplete transcriptome annotation can cause false negatives on some scRNAseq platforms that only generate 3' transcript end sequences, and we use in vivo data to recover reads of the pituitary transcription factor Prop1. Ultimately, scRNAseq technologies represent a significant opportunity to address long-standing questions regarding the development and function of the different populations of the pituitary gland throughout life.
Collapse
Affiliation(s)
- Leonard Y M Cheung
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Akima S George
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Stacey R McGee
- Department of Physiology, Southern Illinois University, Carbondale, Illinois
| | - Alexandre Z Daly
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | | | - Buffy S Ellsworth
- Department of Physiology, Southern Illinois University, Carbondale, Illinois
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
- Correspondence: Sally A. Camper, PhD, Department of Human Genetics, University of Michigan, 5805 Medical Science Building II, 1241 East Catherine Street, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
9
|
Tanoue Y, Toyoda T, Sun J, Mustofa MK, Tateishi C, Endo S, Motoyama N, Araki K, Wu D, Okuno Y, Tsukamoto T, Takeya M, Ihn H, Vaziri C, Tateishi S. Differential Roles of Rad18 and Chk2 in Genome Maintenance and Skin Carcinogenesis Following UV Exposure. J Invest Dermatol 2018; 138:2550-2557. [PMID: 29859927 DOI: 10.1016/j.jid.2018.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022]
Abstract
Defects in DNA polymerase Eta (Polη) cause the sunlight-sensitivity and skin cancer-propensity disorder xeroderma pigmentosum variant. The extent to which Polη function depends on the upstream E3 ubiquitin ligase Rad18 is controversial and has not been investigated using mouse models. Therefore, we tested the role of Rad18 in UV-inducible skin tumorigenesis. Because Rad18 deficiency leads to compensatory DNA damage signaling by Chk2, we also investigated genetic interactions between Rad18 and Chk2 in vivo. Chk2-/-Rad18-/- mice were prone to spontaneous lymphomagenesis. Both Chk2-/- and Chk2-/-Rad18-/- mice were prone to UV-B irradiation-induced skin tumorigenesis when compared with wild-type (WT) animals, but unexpectedly Rad18-/- mice did not recapitulate the skin tumor propensity of Polη mutants. UV-irradiated Rad18-/- cells were more susceptible to G1/S arrest and apoptosis than WT cultures. Chk2 deficiency alleviated both UV-induced G1/S phase arrest and apoptosis of WT and Rad18-/- cells, but led to increased genomic instability. Taken together, our results demonstrate that the tumor-suppressive role of Polη in UV-treated skin is Rad18 independent. We also define a role for Chk2 in suppressing UV-induced skin carcinogenesis in vivo. This study identifies Chk2 dysfunction as a potential risk factor for sunlight-induced skin tumorigenesis in humans.
Collapse
Affiliation(s)
- Yuki Tanoue
- Department of Cell Maintenance, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan; Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Takeshi Toyoda
- Division of Pathology, National institute of Health Sciences Biological safety center, Tokyo, Japan
| | - Jinghua Sun
- Department of Cell Maintenance, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Md Kawsar Mustofa
- Department of Cell Maintenance, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Chie Tateishi
- Department of Cell Maintenance, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shinya Endo
- Departments of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Noboru Motoyama
- Department of Human Nutrition, Sugiyama Jogakuen University School of Life Studies, Nagoya, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Di Wu
- Department of Periodontology, Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yutaka Okuno
- Departments of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology I, Fujita Health University School of Medicine, Toyoake, Japan
| | - Motohiro Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Cyrus Vaziri
- Department of Pathology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Satoshi Tateishi
- Department of Cell Maintenance, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
10
|
Effects of different kinds of essentiality on sequence evolution of human testis proteins. Sci Rep 2017; 7:43534. [PMID: 28272493 PMCID: PMC5341092 DOI: 10.1038/srep43534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/25/2017] [Indexed: 11/17/2022] Open
Abstract
We asked if essentiality for either fertility or viability differentially affects sequence evolution of human testis proteins. Based on murine knockout data, we classified a set of 965 proteins expressed in human seminiferous tubules into three categories: proteins essential for prepubertal survival (“lethality proteins”), associated with male sub- or infertility (“male sub-/infertility proteins”), and nonessential proteins. In our testis protein dataset, lethality genes evolved significantly slower than nonessential and male sub-/infertility genes, which is in line with other authors’ findings. Using tissue specificity, connectivity in the protein-protein interaction (PPI) network, and multifunctionality as proxies for evolutionary constraints, we found that of the three categories, proteins linked to male sub- or infertility are least constrained. Lethality proteins, on the other hand, are characterized by broad expression, many PPI partners, and high multifunctionality, all of which points to strong evolutionary constraints. We conclude that compared with lethality proteins, those linked to male sub- or infertility are nonetheless indispensable, but evolve under more relaxed constraints. Finally, adaptive evolution in response to postmating sexual selection could further accelerate evolutionary rates of male sub- or infertility proteins expressed in human testis. These findings may become useful for in silico detection of human sub-/infertility genes.
Collapse
|
11
|
Shimizu T, Tateishi S, Tanoue Y, Azuma T, Ohmori H. Somatic hypermutation of immunoglobulin genes in Rad18 knockout mice. DNA Repair (Amst) 2016; 50:54-60. [PMID: 28082021 DOI: 10.1016/j.dnarep.2016.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
Abstract
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes is triggered by the activity of activation-induced cytidine deaminase (AID). AID induces DNA lesions in variable regions of Ig genes, and error-prone DNA repair mechanisms initiated in response to these lesions introduce the mutations that characterize SHM. Error-prone DNA repair in SHM is proposed to be mediated by low-fidelity DNA polymerases such as those that mediate trans-lesion synthesis (TLS); however, the mechanism by which these enzymes are recruited to AID-induced lesions remains unclear. Proliferating cell nuclear antigen (PCNA), the sliding clamp for multiple DNA polymerases, undergoes Rad6/Rad18-dependent ubiquitination in response to DNA damage. Ubiquitinated PCNA promotes the replacement of the replicative DNA polymerase stalled at the site of a DNA lesion with a TLS polymerase. To examine the potential role of Rad18-dependent PCNA ubiquitination in SHM, we analyzed Ig gene mutations in Rad18 knockout (KO) mice immunized with T cell-dependent antigens. We found that SHM in Rad18 KO mice was similar to wild-type mice, suggesting that Rad18 is dispensable for SHM. However, residual levels of ubiquitinated PCNA were observed in Rad18 KO cells, indicating that Rad18-independent PCNA ubiquitination might play a role in SHM.
Collapse
Affiliation(s)
- Takeyuki Shimizu
- Department of Immunology, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi 783-8505, Japan.
| | - Satoshi Tateishi
- Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan
| | - Yuki Tanoue
- Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan
| | - Takachika Azuma
- Research Institute for Biological Sciences (RIBS), Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Haruo Ohmori
- Departments of Gene Information Analysis, Institute for Virus Research, Kyoto University, Shogoin Kawara-cho 53, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
12
|
Abstract
DNA damage response is required for male fertility. DNA damage repair mediates recombination between homologous chromosomes in meiotic prophase, which is essential for proper chromosome segregation during meiotic division. Interestingly, some DNA damage response proteins are also required for the survival of premeiotic germ cells, but their roles in these cells are still unclear. CHFR was recently shown to participate in DNA damage response, but it remains to be established if CHFR is required for male fertility. In this study, we characterized Chfr knockout male mice and found that around 30% of them were infertile. The onset of spermatogenesis was delayed and there was significant increase in apoptosis in premeiotic germ cells. This resulted in complete loss of germ cells in testes in 3 months and azoospermia in these mice. We further demonstrated that ATM activation was compromised in the testes of these mice. Therefore, CHFR is important for the survival of male premeiotic germ cells, which is likely through maintaining genomic stability in spermatogonial stem cells.
Collapse
Affiliation(s)
- Lin-Yu Lu
- a Key Laboratory of Reproductive Genetics; Ministry of Education and Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine; Zhejiang University ; Hangzhou , Zhejiang , China.,b Institute of Translational Medicine; Zhejiang University ; Hangzhou , Zhejiang , China
| | - Xiaochun Yu
- c Department of Cancer Genetics and Epigenetics ; Beckman Research Institute; City of Hope ; Duarte , CA USA
| |
Collapse
|
13
|
Irano N, de Camargo GMF, Costa RB, Terakado APN, Magalhães AFB, Silva RMDO, Dias MM, Bignardi AB, Baldi F, Carvalheiro R, de Oliveira HN, de Albuquerque LG. Genome-Wide Association Study for Indicator Traits of Sexual Precocity in Nellore Cattle. PLoS One 2016; 11:e0159502. [PMID: 27494397 PMCID: PMC4975395 DOI: 10.1371/journal.pone.0159502] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/05/2016] [Indexed: 01/01/2023] Open
Abstract
The objective of this study was to perform a genome-wide association study (GWAS) to detect chromosome regions associated with indicator traits of sexual precocity in Nellore cattle. Data from Nellore animals belonging to farms which participate in the DeltaGen® and Paint® animal breeding programs, were used. The traits used in this study were the occurrence of early pregnancy (EP) and scrotal circumference (SC). Data from 72,675 females and 83,911 males with phenotypes were used; of these, 1,770 females and 1,680 males were genotyped. The SNP effects were estimated with a single-step procedure (WssGBLUP) and the observed phenotypes were used as dependent variables. All animals with available genotypes and phenotypes, in addition to those with only phenotypic information, were used. A single-trait animal model was applied to predict breeding values and the solutions of SNP effects were obtained from these breeding values. The results of GWAS are reported as the proportion of variance explained by windows with 150 adjacent SNPs. The 10 windows that explained the highest proportion of variance were identified. The results of this study indicate the polygenic nature of EP and SC, demonstrating that the indicator traits of sexual precocity studied here are probably controlled by many genes, including some of moderate effect. The 10 windows with large effects obtained for EP are located on chromosomes 5, 6, 7, 14, 18, 21 and 27, and together explained 7.91% of the total genetic variance. For SC, these windows are located on chromosomes 4, 8, 11, 13, 14, 19, 22 and 23, explaining 6.78% of total variance. GWAS permitted to identify chromosome regions associated with EP and SC. The identification of these regions contributes to a better understanding and evaluation of these traits, and permits to indicate candidate genes for future investigation of causal mutations.
Collapse
Affiliation(s)
- Natalia Irano
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
| | | | - Raphael Bermal Costa
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
| | - Ana Paula Nascimento Terakado
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
| | - Ana Fabrícia Braga Magalhães
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
| | - Rafael Medeiros de Oliveira Silva
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
| | - Marina Mortati Dias
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
| | - Annaiza Braga Bignardi
- Grupo de Melhoramento Animal de Mato Grosso, Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Mato Grosso, Rondonópolis, Mato Grosso, Brasil
| | - Fernando Baldi
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
| | - Roberto Carvalheiro
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
| | - Henrique Nunes de Oliveira
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
| | - Lucia Galvão de Albuquerque
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
14
|
A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis. Nat Commun 2016; 7:12105. [PMID: 27377895 PMCID: PMC4935975 DOI: 10.1038/ncomms12105] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 05/31/2016] [Indexed: 12/11/2022] Open
Abstract
Trans-lesion synthesis (TLS) is an important DNA-damage tolerance mechanism that permits ongoing DNA synthesis in cells harbouring damaged genomes. The E3 ubiquitin ligase RAD18 activates TLS by promoting recruitment of Y-family DNA polymerases to sites of DNA-damage-induced replication fork stalling. Here we identify the cancer/testes antigen melanoma antigen-A4 (MAGE-A4) as a tumour cell-specific RAD18-binding partner and an activator of TLS. MAGE-A4 depletion from MAGE-A4-expressing cancer cells destabilizes RAD18. Conversely, ectopic expression of MAGE-A4 (in cell lines lacking endogenous MAGE-A4) promotes RAD18 stability. DNA-damage-induced mono-ubiquitination of the RAD18 substrate PCNA is attenuated by MAGE-A4 silencing. MAGE-A4-depleted cells fail to resume DNA synthesis normally following ultraviolet irradiation and accumulate γH2AX, thereby recapitulating major hallmarks of TLS deficiency. Taken together, these results demonstrate a mechanism by which reprogramming of ubiquitin signalling in cancer cells can influence DNA damage tolerance and probably contribute to an altered genomic landscape. RAD18 is an important protein in trans-lesion synthesis, an error-prone damage-tolerant mode of DNA replication. Here the authors show that MAGE-A4 stabilizes RAD18 and allows cancer cells to maintain on-going DNA synthesis in the face of genotoxic injury.
Collapse
|
15
|
Yang Y, Poe JC, Yang L, Fedoriw A, Desai S, Magnuson T, Li Z, Fedoriw Y, Araki K, Gao Y, Tateishi S, Sarantopoulos S, Vaziri C. Rad18 confers hematopoietic progenitor cell DNA damage tolerance independently of the Fanconi Anemia pathway in vivo. Nucleic Acids Res 2016; 44:4174-88. [PMID: 26883629 PMCID: PMC4872084 DOI: 10.1093/nar/gkw072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/31/2016] [Indexed: 01/09/2023] Open
Abstract
In cultured cancer cells the E3 ubiquitin ligase Rad18 activates Trans-Lesion Synthesis (TLS) and the Fanconi Anemia (FA) pathway. However, physiological roles of Rad18 in DNA damage tolerance and carcinogenesis are unknown and were investigated here. Primary hematopoietic stem and progenitor cells (HSPC) co-expressed RAD18 and FANCD2 proteins, potentially consistent with a role for Rad18 in FA pathway function during hematopoiesis. However, hematopoietic defects typically associated with fanc-deficiency (decreased HSPC numbers, reduced engraftment potential of HSPC, and Mitomycin C (MMC) -sensitive hematopoiesis), were absent in Rad18−/− mice. Moreover, primary Rad18−/− mouse embryonic fibroblasts (MEF) retained robust Fancd2 mono-ubiquitination following MMC treatment. Therefore, Rad18 is dispensable for FA pathway activation in untransformed cells and the Rad18 and FA pathways are separable in hematopoietic cells. In contrast with responses to crosslinking agents, Rad18−/− HSPC were sensitive to in vivo treatment with the myelosuppressive agent 7,12 Dimethylbenz[a]anthracene (DMBA). Rad18-deficient fibroblasts aberrantly accumulated DNA damage markers after DMBA treatment. Moreover, in vivo DMBA treatment led to increased incidence of B cell malignancy in Rad18−/− mice. These results identify novel hematopoietic functions for Rad18 and provide the first demonstration that Rad18 confers DNA damage tolerance and tumor-suppression in a physiological setting.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan C Poe
- Department of Medicine, Division of Hematological Malignancies & Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Lisong Yang
- Department of Medicine, Division of Hematological Malignancies & Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Andrew Fedoriw
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Siddhi Desai
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Terry Magnuson
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zhiguo Li
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Yuri Fedoriw
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kimi Araki
- Institute of Resource Development and Analysis (IRDA) Kumamoto University, Kumamoto 860-0811, Japan
| | - Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Satoshi Tateishi
- Division of Cell Maintenance, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematological Malignancies & Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Lu LY, Yu X. Double-strand break repair on sex chromosomes: challenges during male meiotic prophase. Cell Cycle 2015; 14:516-25. [PMID: 25565522 DOI: 10.1080/15384101.2014.998070] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
During meiotic prophase, DNA double-strand break (DSB) repair-mediated homologous recombination (HR) occurs for exchange of genetic information between homologous chromosomes. Unlike autosomes or female sex chromosomes, human male sex chromosomes X and Y share little homology. Although DSBs are generated throughout male sex chromosomes, homologous recombination does not occur for most regions and DSB repair process is significantly prolonged. As a result, male sex chromosomes are coated with many DNA damage response proteins and form a unique chromatin structure known as the XY body. Interestingly, associated with the prolonged DSB repair, transcription is repressed in the XY body but not in autosomes, a phenomenon known as meiotic sex chromosome inactivation (MSCI), which is critical for male meiosis. Here using mice as model organisms, we briefly summarize recent progress on DSB repair in meiotic prophase and focus on the mechanism and function of DNA damage response in the XY body.
Collapse
Affiliation(s)
- Lin-Yu Lu
- a Women's Hospital ; School of Medicine ; Zhejiang University ; Hangzhou , Zhejiang , China
| | | |
Collapse
|
17
|
Luk ACS, Gao H, Xiao S, Liao J, Wang D, Tu J, Rennert OM, Chan WY, Lee TL. GermlncRNA: a unique catalogue of long non-coding RNAs and associated regulations in male germ cell development. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav044. [PMID: 25982314 PMCID: PMC4433719 DOI: 10.1093/database/bav044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/15/2015] [Indexed: 12/16/2022]
Abstract
Spermatogenic failure is a major cause of male infertility, which affects millions of couples worldwide. Recent discovery of long non-coding RNAs (lncRNAs) as critical regulators in normal and disease development provides new clues for delineating the molecular regulation in male germ cell development. However, few functional lncRNAs have been characterized to date. A major limitation in studying lncRNA in male germ cell development is the absence of germ cell-specific lncRNA annotation. Current lncRNA annotations are assembled by transcriptome data from heterogeneous tissue sources; specific germ cell transcript information of various developmental stages is therefore under-represented, which may lead to biased prediction or fail to identity important germ cell-specific lncRNAs. GermlncRNA provides the first comprehensive web-based and open-access lncRNA catalogue for three key male germ cell stages, including type A spermatogonia, pachytene spermatocytes and round spermatids. This information has been developed by integrating male germ transcriptome resources derived from RNA-Seq, tiling microarray and GermSAGE. Characterizations on lncRNA-associated regulatory features, potential coding gene and microRNA targets are also provided. Search results from GermlncRNA can be exported to Galaxy for downstream analysis or downloaded locally. Taken together, GermlncRNA offers a new avenue to better understand the role of lncRNAs and associated targets during spermatogenesis. Database URL: http://germlncrna.cbiit.cuhk.edu.hk/
Collapse
Affiliation(s)
- Alfred Chun-Shui Luk
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Huayan Gao
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sizhe Xiao
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jinyue Liao
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Daxi Wang
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jiajie Tu
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Owen M Rennert
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Wai-Yee Chan
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and T
| | - Tin-Lap Lee
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics and CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Shatin, Hong Kong, China, GigaScience, Beijing Genomics Institute-Hong Kong (BGI-HK) Research Institute, 16 Dai Fu Street, Tai Po Industrial Estate, Hong Kong, China, Beijing Genomics Institute-Shenzhen (BGI-SZ), Beishan Industrial Zone, Yantian District, Shenzhen, China and T
| |
Collapse
|
18
|
Meng X, Yang S, Zhang Y, Wang X, Goodfellow RX, Jia Y, Thiel KW, Reyes HD, Yang B, Leslie KK. Genetic Deficiency of Mtdh Gene in Mice Causes Male Infertility via Impaired Spermatogenesis and Alterations in the Expression of Small Non-coding RNAs. J Biol Chem 2015; 290:11853-64. [PMID: 25787082 DOI: 10.1074/jbc.m114.627653] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Indexed: 12/25/2022] Open
Abstract
Increased expression of metadherin (MTDH, also known as AEG-1 and 3D3/LYRIC) has been associated with drug resistance, metastasis, and angiogenesis in a variety of cancers. However, the specific mechanisms through which MTDH is involved in these processes remain unclear. To uncover these mechanisms, we generated Mtdh knock-out mice via a targeted disruption of exon 3. Homozygous Mtdh knock-out mice are viable, but males are infertile. The homozygous male mice present with massive loss of spermatozoa as a consequence of meiotic failure. Accumulation of γ-H2AX in spermatocytes of homozygous Mtdh knock-out mice confirms an increase in unrepaired DNA breaks. We also examined expression of the DNA repair protein Rad18, which is regulated by MTDH at the post-transcriptional level. In testes from Mtdh exon 3-deficient mice, Rad18 foci were increased in the lumina of the seminiferous tubules. The Piwi-interacting RNA (piRNA)-interacting protein Mili was expressed at high levels in testes from Mtdh knock-out mice. Accordingly, genome-wide small RNA deep sequencing demonstrated altered expression of piRNAs in the testes of Mtdh knock-out mice as compared with wild type mice. In addition, we observed significantly reduced expression of microRNAs (miRNAs) including miR-16 and miR-19b, which are known to be significantly reduced in the semen of infertile men. In sum, our observations indicate a crucial role for MTDH in male fertility and the DNA repair mechanisms required for normal spermatogenesis.
Collapse
Affiliation(s)
- Xiangbing Meng
- From the Department of Obstetrics and Gynecology and Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa 52242
| | - Shujie Yang
- From the Department of Obstetrics and Gynecology and Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa 52242
| | - Yuping Zhang
- From the Department of Obstetrics and Gynecology and
| | - Xinjun Wang
- From the Department of Obstetrics and Gynecology and
| | | | - Yichen Jia
- From the Department of Obstetrics and Gynecology and
| | | | - Henry D Reyes
- From the Department of Obstetrics and Gynecology and
| | - Baoli Yang
- From the Department of Obstetrics and Gynecology and
| | - Kimberly K Leslie
- From the Department of Obstetrics and Gynecology and Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
19
|
Sasatani M, Xu Y, Kawai H, Cao L, Tateishi S, Shimura T, Li J, Iizuka D, Noda A, Hamasaki K, Kusunoki Y, Kamiya K. RAD18 activates the G2/M checkpoint through DNA damage signaling to maintain genome integrity after ionizing radiation exposure. PLoS One 2015; 10:e0117845. [PMID: 25675240 PMCID: PMC4326275 DOI: 10.1371/journal.pone.0117845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/31/2014] [Indexed: 12/28/2022] Open
Abstract
The ubiquitin ligase RAD18 is involved in post replication repair pathways via its recruitment to stalled replication forks, and its role in the ubiquitylation of proliferating cell nuclear antigen (PCNA). Recently, it has been reported that RAD18 is also recruited to DNA double strand break (DSB) sites, where it plays novel functions in the DNA damage response induced by ionizing radiation (IR). This new role is independent of PCNA ubiquitylation, but little is known about how RAD18 functions after IR exposure. Here, we describe a role for RAD18 in the IR-induced DNA damage signaling pathway at G2/M phase in the cell cycle. Depleting cells of RAD18 reduced the recruitment of the DNA damage signaling factors ATM, γH2AX, and 53BP1 to foci in cells at the G2/M phase after IR exposure, and attenuated activation of the G2/M checkpoint. Furthermore, depletion of RAD18 increased micronuclei formation and cell death following IR exposure, both in vitro and in vivo. Our data suggest that RAD18 can function as a mediator for DNA damage response signals to activate the G2/M checkpoint in order to maintain genome integrity and cell survival after IR exposure.
Collapse
Affiliation(s)
- Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
| | - Yanbin Xu
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
| | - Hidehiko Kawai
- Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
| | - Lili Cao
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
| | - Satoshi Tateishi
- Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2–2–1, Honjo, Kumamoto, 860–0811, Japan
| | - Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, 2–3–6, Minami, Wako, Saitama, 351–0197, Japan
| | - Jianxiang Li
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
| | - Daisuke Iizuka
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
| | - Asao Noda
- Department of Genetics, Radiation Effects Research Foundation, 5–2, hijiyamako-en, Minami-ku, Hiroshima, 732–0815, Japan
| | - Kanya Hamasaki
- Department of Genetics, Radiation Effects Research Foundation, 5–2, hijiyamako-en, Minami-ku, Hiroshima, 732–0815, Japan
| | - Yoichiro Kusunoki
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, 5–2, hijiyamako-en, Minami-ku, Hiroshima, 732–0815, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
- * E-mail:
| |
Collapse
|
20
|
Rad18 and Rnf8 facilitate homologous recombination by two distinct mechanisms, promoting Rad51 focus formation and suppressing the toxic effect of nonhomologous end joining. Oncogene 2014; 34:4403-11. [PMID: 25417706 DOI: 10.1038/onc.2014.371] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 09/25/2014] [Accepted: 09/27/2014] [Indexed: 12/19/2022]
Abstract
The E2 ubiquitin conjugating enzyme Ubc13 and the E3 ubiquitin ligases Rad18 and Rnf8 promote homologous recombination (HR)-mediated double-strand break (DSB) repair by enhancing polymerization of the Rad51 recombinase at γ-ray-induced DSB sites. To analyze functional interactions between the three enzymes, we created RAD18(-/-), RNF8(-/-), RAD18(-/-)/RNF8(-/-) and UBC13(-/-)clones in chicken DT40 cells. To assess the capability of HR, we measured the cellular sensitivity to camptothecin (topoisomerase I poison) and olaparib (poly(ADP ribose)polymerase inhibitor) because these chemotherapeutic agents induce DSBs during DNA replication, which are repaired exclusively by HR. RAD18(-/-), RNF8(-/-) and RAD18(-/-)/RNF8(-/-) clones showed very similar levels of hypersensitivity, indicating that Rad18 and Rnf8 operate in the same pathway in the promotion of HR. Although these three mutants show less prominent defects in the formation of Rad51 foci than UBC13(-/-)cells, they are more sensitive to camptothecin and olaparib than UBC13(-/-)cells. Thus, Rad18 and Rnf8 promote HR-dependent repair in a manner distinct from Ubc13. Remarkably, deletion of Ku70, a protein essential for nonhomologous end joining (NHEJ) significantly restored tolerance of RAD18(-/-) and RNF8(-/-) cells to camptothecin and olaparib without affecting Rad51 focus formation. Thus, in cellular tolerance to the chemotherapeutic agents, the two enzymes collaboratively promote DSB repair by HR by suppressing the toxic effect of NHEJ on HR rather than enhancing Rad51 focus formation. In contrast, following exposure to γ-rays, RAD18(-/-), RNF8(-/-), RAD18(-/-)/RNF8(-/-) and UBC13(-/-)cells showed close correlation between cellular survival and Rad51 focus formation at DSB sites. In summary, the current study reveals that Rad18 and Rnf8 facilitate HR by two distinct mechanisms: suppression of the toxic effect of NHEJ on HR during DNA replication and the promotion of Rad51 focus formation at radiotherapy-induced DSB sites.
Collapse
|
21
|
Lu LY, Xiong Y, Kuang H, Korakavi G, Yu X. Regulation of the DNA damage response on male meiotic sex chromosomes. Nat Commun 2013; 4:2105. [PMID: 23812044 PMCID: PMC3759350 DOI: 10.1038/ncomms3105] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 06/04/2013] [Indexed: 12/13/2022] Open
Abstract
During meiotic prophase in males, the sex chromosomes partially synapse to form the XY body. This is a unique structure that recruits proteins involved in the DNA damage response, which is believed to be important for silencing of the sex chromosomes. It remains elusive how the DNA damage response in the XY body is regulated. H2AX-MDC1-RNF8 signaling, which is well characterized in somatic cells, is dispensable for the recruitment of proteins to the unsynapsed axes in the XY body. However, the DNA damage response that spreads over the sex chromosomes is largely similar to that in somatic cells. Here we show that accumulation of some components of the DNA damage response pathway on the XY body occurs upstream of H2AX-MDC1-RNF8 signalling, and downstream from this cascade of events for others. This analysis shows that there are important differences between the regulation of the DNA damage response at the XY body and at DNA damage sites in somatic cells.
Collapse
Affiliation(s)
- Lin-Yu Lu
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 5560 MSRB II, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
22
|
Watanabe N, Mii S, Asai N, Asai M, Niimi K, Ushida K, Kato T, Enomoto A, Ishii H, Takahashi M, Murakumo Y. The REV7 subunit of DNA polymerase ζ is essential for primordial germ cell maintenance in the mouse. J Biol Chem 2013; 288:10459-71. [PMID: 23463509 DOI: 10.1074/jbc.m112.421966] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
REV7 (also known as MAD2L2 and MAD2B) is involved in DNA repair, cell cycle regulation, gene expression, and carcinogenesis. In vitro studies show that REV7 interacts with several proteins and regulates their function. It has been reported that human REV7 is highly expressed in the adult testis by Northern blot analysis. However, the significance of REV7 in mammalian development has not been elucidated. Here, we present analyses of REV7-deficient (Rev7(-/-)) mice to clarify the significance of Rev7 in mouse development. In WT mice (Rev7(+/+)), Rev7 expression was ubiquitously observed in the embryo and confined to germ cells in the testes after birth. Rev7(-/-) mice exhibited growth retardation and a partial embryonic lethal phenotype. Mice that survived to adulthood were infertile in both sexes and showed germ cell aplasia in the testes and ovaries. Analyses of Rev7(-/-) embryos revealed that primordial germ cells (PGCs) were present at embryonic day 8.5 (E8.5). However, progressive loss of PGCs was observed during migration, and PGCs were absent in the genital ridges at E13.5. An increase of apoptotic cells was detected not only among PGCs but also in the forebrain of the Rev7(-/-) embryo, whereas cell proliferation was unaffected. Moreover, DNA damage accumulation and increased levels of histone methylation were detected in Rev7(-/-) embryos, and expression of Oct4 and Nanog was deregulated by REV7 deficiency at E8.5. These findings indicate that Rev7 is essential for PGC maintenance by prevention of apoptotic cell death in the mouse.
Collapse
Affiliation(s)
- Naoki Watanabe
- Department of Pathology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yang Y, Durando M, Smith-Roe SL, Sproul C, Greenwalt AM, Kaufmann W, Oh S, Hendrickson EA, Vaziri C. Cell cycle stage-specific roles of Rad18 in tolerance and repair of oxidative DNA damage. Nucleic Acids Res 2013; 41:2296-312. [PMID: 23295675 PMCID: PMC3575850 DOI: 10.1093/nar/gks1325] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The E3 ubiquitin ligase Rad18 mediates tolerance of replication fork-stalling bulky DNA lesions, but whether Rad18 mediates tolerance of bulky DNA lesions acquired outside S-phase is unclear. Using synchronized cultures of primary human cells, we defined cell cycle stage-specific contributions of Rad18 to genome maintenance in response to ultraviolet C (UVC) and H(2)O(2)-induced DNA damage. UVC and H(2)O(2) treatments both induced Rad18-mediated proliferating cell nuclear antigen mono-ubiquitination during G(0), G(1) and S-phase. Rad18 was important for repressing H(2)O(2)-induced (but not ultraviolet-induced) double strand break (DSB) accumulation and ATM S1981 phosphorylation only during G(1), indicating a specific role for Rad18 in processing of oxidative DNA lesions outside S-phase. However, H(2)O(2)-induced DSB formation in Rad18-depleted G1 cells was not associated with increased genotoxin sensitivity, indicating that back-up DSB repair mechanisms compensate for Rad18 deficiency. Indeed, in DNA LigIV-deficient cells Rad18-depletion conferred H(2)O(2)-sensitivity, demonstrating functional redundancy between Rad18 and non-homologous end joining for tolerance of oxidative DNA damage acquired during G(1). In contrast with G(1)-synchronized cultures, S-phase cells were H(2)O(2)-sensitive following Rad18-depletion. We conclude that although Rad18 pathway activation by oxidative lesions is not restricted to S-phase, Rad18-mediated trans-lesion synthesis by Polη is dispensable for damage-tolerance in G(1) (because of back-up non-homologous end joining-mediated DSB repair), yet Rad18 is necessary for damage tolerance during S-phase.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Inagaki A, Sleddens-Linkels E, Wassenaar E, Ooms M, van Cappellen WA, Hoeijmakers JHJ, Seibler J, Vogt TF, Shin MK, Grootegoed JA, Baarends WM. Meiotic functions of RAD18. J Cell Sci 2011; 124:2837-50. [PMID: 21807948 PMCID: PMC3213229 DOI: 10.1242/jcs.081968] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RAD18 is an ubiquitin ligase that is involved in replication damage bypass and DNA double-strand break (DSB) repair processes in mitotic cells. Here, we investigated the testicular phenotype of Rad18-knockdown mice to determine the function of RAD18 in meiosis, and in particular, in the repair of meiotic DSBs induced by the meiosis-specific topoisomerase-like enzyme SPO11. We found that RAD18 is recruited to a specific subfraction of persistent meiotic DSBs. In addition, RAD18 is recruited to the chromatin of the XY chromosome pair, which forms the transcriptionally silent XY body. At the XY body, RAD18 mediates the chromatin association of its interaction partners, the ubiquitin-conjugating enzymes HR6A and HR6B. Moreover, RAD18 was found to regulate the level of dimethylation of histone H3 at Lys4 and maintain meiotic sex chromosome inactivation, in a manner similar to that previously observed for HR6B. Finally, we show that RAD18 and HR6B have a role in the efficient repair of a small subset of meiotic DSBs.
Collapse
Affiliation(s)
- Akiko Inagaki
- Department of Reproduction and Development, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: Background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech 2009; 73:241-78. [DOI: 10.1002/jemt.20783] [Citation(s) in RCA: 320] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Abstract
Yeast two-hybrid screening of mouse cDNA libraries was performed to identify proteins interacting with selenocysteine lyase (SCL), which decomposes L-selenocysteine. Several proteins related to spermatogenesis, protein synthesis, and cell viability/apoptosis were identified as potential interactors. Major urinary proteins 1 and 2 interacted with SCL and inhibited its activity. Coimmunoprecipitation revealed interactions between SCL and each of two selenophosphate synthetase isozymes.
Collapse
|