1
|
Zhao X, Wu S, Yun Y, Du Z, Liu S, Bo C, Gao Y, Yang L, Song L, Bai C, Su G, Li G. Integrating Transcriptomics, Proteomics, and Metabolomics to Investigate the Mechanism of Fetal Placental Overgrowth in Somatic Cell Nuclear Transfer Cattle. Int J Mol Sci 2024; 25:9388. [PMID: 39273344 PMCID: PMC11395630 DOI: 10.3390/ijms25179388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
A major factor limiting the development of somatic cell nuclear transfer (SCNT) technology is the low success rate of pregnancy, mainly due to placental abnormalities disrupting the maternal-fetal balance during pregnancy. Although there has been some progress in research on the abnormal enlargement of cloned bovine placenta, there are still few reports on the direct regulatory mechanisms of enlarged cloned bovine placenta tissue. In this study, we conducted sequencing and analysis of transcriptomics, proteomics, and metabolomics of placental tissues from SCNT cattle (n = 3) and control (CON) cattle (n = 3). The omics analysis results indicate abnormalities in biological functions such as protein digestion and absorption, glycolysis/gluconeogenesis, the regulation of lipid breakdown, as well as glycerolipid metabolism, and arginine and proline metabolism in the placenta of SCNT cattle. Integrating these analyses highlights critical metabolic pathways affecting SCNT cattle placenta, including choline metabolism and unsaturated fatty acid biosynthesis. These findings suggest that aberrant expressions of genes, proteins, and metabolites in SCNT placentas affect key pathways in protein digestion, growth hormone function, and energy metabolism. Our results suggest that abnormal protein synthesis, growth hormone function, and energy metabolism in SCNT bovine placental tissues contribute to placental hypertrophy. These findings offer valuable insights for further investigation into the mechanisms underlying SCNT bovine placental abnormalities.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Shanshan Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yuan Yun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Zhiwen Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Shuqin Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Chunjie Bo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Yuxin Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Lishuang Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| |
Collapse
|
2
|
Interaction between Long Noncoding RNAs and Syncytin-1/Syncytin-2 Genes and Transcripts: How Noncoding RNAs May Affect Pregnancy in Patients with Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:ijms24032259. [PMID: 36768581 PMCID: PMC9917164 DOI: 10.3390/ijms24032259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Patients with systemic lupus erythematosus (SLE) often suffer from obstetric complications not necessarily associated with the antiphospholipid syndrome. These events may potentially result from the reduced placental synthesis of the fusogenic proteins syncytin-1 and syncytin-2, observed in women with pregnancy-related disorders. SLE patients have an aberrant noncoding (nc)RNA signature that may in turn dysregulate the expression of syncytin-1 and syncytin-2 during placentation. The aim of this research is to computationally evaluate and characterize the interaction between syncytin-1 and syncytin-2 genes and human ncRNAs and to discuss the potential implications for SLE pregnancy adverse outcomes. METHODS The FASTA sequences of the syncytin-1 and syncytin-2 genes were used as inputs to the Ensembl.org library to find any alignments with human ncRNA genes and their transcripts, which were characterized for their tissue expression, regulatory activity on adjacent genes, biological pathways, and potential association with human disease. RESULTS BLASTN analysis revealed a total of 100 hits with human long ncRNAs (lncRNAs) for the syncytin-1 and syncytin-2 genes, with median alignment scores of 151 and 66.7, respectively. Only lncRNAs TP53TG1, TTTY14, and ENSG00000273328 were reported to be expressed in placental tissue. Dysregulated expression of lncRNAs TP53TG1, LINC01239, and LINC01320 found in this analysis has previously been described in SLE patients as well as in women with a high-risk pregnancy. In addition, some of the genes adjacent to lncRNAs aligned with syncytin-1 or syncytin-2 in a regulatory region might increase the risk of pregnancy complications or SLE. CONCLUSIONS This is the first computational study showing alignments between syncytin-1 and syncytin-2 genes and human lncRNAs. Whether this mechanism affects syncytiotrophoblast morphogenesis in SLE females is unknown and requires further investigation.
Collapse
|
3
|
Wang W, Min L, Qiu X, Wu X, Liu C, Ma J, Zhang D, Zhu L. Biological Function of Long Non-coding RNA (LncRNA) Xist. Front Cell Dev Biol 2021; 9:645647. [PMID: 34178980 PMCID: PMC8222981 DOI: 10.3389/fcell.2021.645647] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression in a variety of ways at epigenetic, chromatin remodeling, transcriptional, and translational levels. Accumulating evidence suggests that lncRNA X-inactive specific transcript (lncRNA Xist) serves as an important regulator of cell growth and development. Despites its original roles in X-chromosome dosage compensation, lncRNA Xist also participates in the development of tumor and other human diseases by functioning as a competing endogenous RNA (ceRNA). In this review, we comprehensively summarized recent progress in understanding the cellular functions of lncRNA Xist in mammalian cells and discussed current knowledge regarding the ceRNA network of lncRNA Xist in various diseases. Long non-coding RNAs (lncRNAs) are transcripts that are more than 200 nt in length and without an apparent protein-coding capacity (Furlan and Rougeulle, 2016; Maduro et al., 2016). These RNAs are believed to be transcribed by the approximately 98-99% non-coding regions of the human genome (Derrien et al., 2012; Fu, 2014; Montalbano et al., 2017; Slack and Chinnaiyan, 2019), as well as a large variety of genomic regions, such as exonic, tronic, and intergenic regions. Hence, lncRNAs are also divided into eight categories: Intergenic lncRNAs, Intronic lncRNAs, Enhancer lncRNAs, Promoter lncRNAs, Natural antisense/sense lncRNAs, Small nucleolar RNA-ended lncRNAs (sno-lncRNAs), Bidirectional lncRNAs, and non-poly(A) lncRNAs (Ma et al., 2013; Devaux et al., 2015; St Laurent et al., 2015; Chen, 2016; Quinn and Chang, 2016; Richard and Eichhorn, 2018; Connerty et al., 2020). A range of evidence has suggested that lncRNAs function as key regulators in crucial cellular functions, including proliferation, differentiation, apoptosis, migration, and invasion, by regulating the expression level of target genes via epigenomic, transcriptional, or post-transcriptional approaches (Cao et al., 2018). Moreover, lncRNAs detected in body fluids were also believed to serve as potential biomarkers for the diagnosis, prognosis, and monitoring of disease progression, and act as novel and potential drug targets for therapeutic exploitation in human disease (Jiang W. et al., 2018; Zhou et al., 2019a). Long non-coding RNA X-inactive specific transcript (lncRNA Xist) are a set of 15,000-20,000 nt sequences localized in the X chromosome inactivation center (XIC) of chromosome Xq13.2 (Brown et al., 1992; Debrand et al., 1998; Kay, 1998; Lee et al., 2013; da Rocha and Heard, 2017; Yang Z. et al., 2018; Brockdorff, 2019). Previous studies have indicated that lncRNA Xist regulate X chromosome inactivation (XCI), resulting in the inheritable silencing of one of the X-chromosomes during female cell development. Also, it serves a vital regulatory function in the whole spectrum of human disease (notably cancer) and can be used as a novel diagnostic and prognostic biomarker and as a potential therapeutic target for human disease in the clinic (Liu et al., 2018b; Deng et al., 2019; Dinescu et al., 2019; Mutzel and Schulz, 2020; Patrat et al., 2020; Wang et al., 2020a). In particular, lncRNA Xist have been demonstrated to be involved in the development of multiple types of tumors including brain tumor, Leukemia, lung cancer, breast cancer, and liver cancer, with the prominent examples outlined in Table 1. It was also believed that lncRNA Xist (Chaligne and Heard, 2014; Yang Z. et al., 2018) contributed to other diseases, such as pulmonary fibrosis, inflammation, neuropathic pain, cardiomyocyte hypertrophy, and osteoarthritis chondrocytes, and more specific details can be found in Table 2. This review summarizes the current knowledge on the regulatory mechanisms of lncRNA Xist on both chromosome dosage compensation and pathogenesis (especially cancer) processes, with a focus on the regulatory network of lncRNA Xist in human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongyi Zhang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
4
|
Yang L, Wu X, Zhang N, Shi J, Zhou R, Su Q, Zheng E, Huang S, Xu Z, Hong L, Gu T, Yang J, Yang H, Cai G, Wu Z, Li Z. Knockdown of RLIM inhibits XIST expression and improves developmental competence of cloned male pig embryos. Mol Reprod Dev 2021; 88:228-237. [PMID: 33650239 DOI: 10.1002/mrd.23460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 11/09/2022]
Abstract
Ectopic expression of Xist on the putative active X chromosome is a primary cause of the low developmental efficiency of cloned mouse and pig embryos. Suppression of abnormal Xist expression via gene knockout or RNA interference (RNAi) can significantly enhance the developmental competence of cloned mouse and pig embryos. RLIM is a Xist expression activator, whereas REX1 is an Xist transcription inhibitor, as RLIM triggers Xist expression by mediating the proteasomal degradation of REX1 to induce imprinted and random X chromosome inactivation in mice. This study aimed to test whether the knockdown of RLIM and overexpression of REX1 can repress aberrant Xist expression and improve the developmental ability of cloned male pig embryos. Results showed that injection of anti-RLIM small interfering RNA significantly decreased Xist messenger RNA abundance, increased REX1 protein level, and enhanced the preimplantation development of cloned male porcine embryos. These positive effects were not observed in cloned male pig embryos injected with REX1 expression plasmid, which might be due to the low expression efficiency of injected REX1 plasmid and/or the short half-life of expressed REX1 protein. The findings from this study indicated that RLIM participated in the ectopic activation of Xist expression in cloned pig embryos by targeting REX1 degradation. Furthermore, this study provided a new method to improve cloned pig embryo development by the inhibition of Xist expression via RNAi of RLIM.
Collapse
Affiliation(s)
- Liusong Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiao Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ning Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Junsong Shi
- Guangdong Wens Pig Breeding Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Rong Zhou
- Guangdong Wens Pig Breeding Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Qiaoyun Su
- Guangdong Wens Pig Breeding Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Sidrat T, Kong R, Khan AA, Idrees M, Xu L, Sheikh ME, Joo MD, Lee KL, Kong IK. Difference in Developmental Kinetics of Y-Specific Monoclonal Antibody Sorted Male and Female In Vitro Produced Bovine Embryos. Int J Mol Sci 2019; 21:ijms21010244. [PMID: 31905822 PMCID: PMC6981608 DOI: 10.3390/ijms21010244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 01/09/2023] Open
Abstract
Sex-related growth differences between male and female embryos remain an attractive subject for reproductive biologists. This study aimed to investigate the endogenous factors that play a crucial role in the pace of early development between male and female bovine embryos. Using sex pre-selected semen by Y-specific monoclonal antibodies for the production of bovine embryos, we characterized the critical endogenous factors that are responsible for creating the development differences, especially during the pre-implantation period between male and female embryos. Our results showed that at day seven, (57.8%) Y-sperm sorted in vitro cultured embryos reached the expanded blastocyst (BL) stage, whereas the X-sperm sorted group were only 25%. Y-BLs showed higher mRNA abundance of pluripotency and developmental competency regulators, such as Oct4 and IGF1-R. Interestingly, Y-sperm sorted BLs had a homogeneous mitochondrial distribution pattern, higher mitochondrial membrane potential (∆Ѱm), efficient OXPHOS (oxidative phosphorylation) system and well-encountered production of ROS (reactive oxygen species) level. Moreover, Y-blastocysts (BLs) showed less utilization of glucose metabolism relative to the X-BLs group. Importantly, both sexes showed differences in the timing of epigenetic events. All these factors directly or indirectly orchestrate the whole embryonic progression and may help in the faster and better quality yield of BL in the Y-sperm sorted group compared to the X counterpart group.
Collapse
Affiliation(s)
- Tabinda Sidrat
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.S.); (M.I.); (L.X.); (M.E.S.); (M.-D.J.); (K.-L.L.)
| | - Rami Kong
- Gyeongsang Animal Science Technology (GAST), Gyeongsang National University; Jinju-daero 501, Korea;
| | - Abdul Aziz Khan
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA;
| | - Muhammad Idrees
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.S.); (M.I.); (L.X.); (M.E.S.); (M.-D.J.); (K.-L.L.)
| | - Lianguang Xu
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.S.); (M.I.); (L.X.); (M.E.S.); (M.-D.J.); (K.-L.L.)
| | - Marwa El Sheikh
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.S.); (M.I.); (L.X.); (M.E.S.); (M.-D.J.); (K.-L.L.)
| | - Myeong-Don Joo
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.S.); (M.I.); (L.X.); (M.E.S.); (M.-D.J.); (K.-L.L.)
| | - Kyeong-Lim Lee
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.S.); (M.I.); (L.X.); (M.E.S.); (M.-D.J.); (K.-L.L.)
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.S.); (M.I.); (L.X.); (M.E.S.); (M.-D.J.); (K.-L.L.)
- Correspondence: ; Tel.: +82-55-772-1942
| |
Collapse
|
6
|
Kong Q, Yang X, Zhang H, Liu S, Zhao J, Zhang J, Weng X, Jin J, Liu Z. Lineage specification and pluripotency revealed by transcriptome analysis from oocyte to blastocyst in pig. FASEB J 2019; 34:691-705. [DOI: 10.1096/fj.201901818rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/02/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Qingran Kong
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Xu Yang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Heng Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
- Institute of Biology Westlake University Hangzhou China
| | - Shichao Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Jianchao Zhao
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Jiaming Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Xiaogang Weng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Junxue Jin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| |
Collapse
|
7
|
Yang X, Wu X, Yang Y, Gu T, Hong L, Zheng E, Xu Z, Zeng F, Shi J, Zhou R, Cai G, Wu Z, Li Z. Improvement of developmental competence of cloned male pig embryos by short hairpin ribonucleic acid (shRNA) vector-based but not small interfering RNA (siRNA)-mediated RNA interference (RNAi) of Xist expression. J Reprod Dev 2019; 65:533-539. [PMID: 31631092 PMCID: PMC6923154 DOI: 10.1262/jrd.2019-070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Xist is an X-linked ribonucleic acid (RNA) gene responsible for the cis induction of X chromosome inactivation (XCI). In cloned mammalian embryos, Xist is
ectopically activated at the morula to blastocyst stage on the X chromosome that is supposed to be active, thus resulting in abnormal XCI. Suppression of erroneous Xist
expression by injecting small interfering RNA (siRNA) remarkably increased the developmental efficiency of cloned male mouse embryos by approximately 10-fold. However, injection of
anti-Xist siRNA resulted in only a slight increase in the developmental ability of injected cloned male pig embryos because the blocking effect of the injected siRNA was
not maintained beyond the morula stage, which is 5 days post-activation. To develop a more effective approach for suppressing the ectopic expression of Xist in cloned pig
embryos, we compared the silencing effect of short hairpin RNA (shRNA) and siRNA on Xist expression and the effects of these two Xist knockdown methods on
the developmental competence of cloned male pig embryos. Results indicated that an shRNA-based RNA interference (RNAi) has a longer blocking effect on Xist expression than
an siRNA-mediated RNAi. Injection of anti-Xist shRNA plasmid into two-cell-stage cloned male pig embryos effectively suppressed Xist expression, rescued XCI
at the blastocyst stage, and improved the in vitro developmental ability of injected cloned embryos. These positive effects, however, were not observed in cloned male pig
embryos injected with anti-Xist siRNA. This study demonstrates that vector-based rather than siRNA-mediated RNAi of Xist expression can be employed to
improve pig cloning efficiency.
Collapse
Affiliation(s)
- Xuqiong Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xiao Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yang Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Fang Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Junsong Shi
- Guangdong Wens Pig Breeding Technology Co., Ltd., Wens Foodstuff Group Co., Ltd., Yunfu 527400, Guangdong, China
| | - Rong Zhou
- Guangdong Wens Pig Breeding Technology Co., Ltd., Wens Foodstuff Group Co., Ltd., Yunfu 527400, Guangdong, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| |
Collapse
|
8
|
Choi KH, Lee DK, Kim SW, Woo SH, Kim DY, Lee CK. Chemically Defined Media Can Maintain Pig Pluripotency Network In Vitro. Stem Cell Reports 2019; 13:221-234. [PMID: 31257130 PMCID: PMC6626979 DOI: 10.1016/j.stemcr.2019.05.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
Pig embryonic stem cells (pESCs) have been considered an important candidate for preclinical research on human therapies. However, the lack of understanding of pig pluripotent networks has hampered establishment of authentic pESCs. Here, we report that FGF2, ACTVIN, and WNT signaling are essential to sustain pig pluripotency in vitro. Newly derived pESCs were stably maintained over an extended period, and capable of forming teratomas that contained three germ layers. Transcriptome analysis showed that pESCs were developmentally similar to late epiblasts of preimplantation embryos and in terms of biological functions resembled human rather than mouse pluripotent stem cells. However, the pESCs had distinct features such as coexpression of SSEA1 and SSEA4, two active X chromosomes, and a unique transcriptional pattern. Our findings will facilitate both the development of large animal models for human stem cell therapy and the generation of pluripotent stem cells from other domestic animals for agricultural use.
Collapse
Affiliation(s)
- Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Dong-Kyung Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Sung Woo Kim
- Animal Genetic Resources Research Center, National Institute of Animal Science, RDA, Namwon, Jeollabuk-do 55717, Korea
| | - Sang-Ho Woo
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Yong Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyeong Chang, Kangwon-do 25354, Korea.
| |
Collapse
|
9
|
Ramos-Ibeas P, Sang F, Zhu Q, Tang WWC, Withey S, Klisch D, Wood L, Loose M, Surani MA, Alberio R. Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. Nat Commun 2019; 10:500. [PMID: 30700715 PMCID: PMC6353908 DOI: 10.1038/s41467-019-08387-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023] Open
Abstract
High-resolution molecular programmes delineating the cellular foundations of mammalian embryogenesis have emerged recently. Similar analysis of human embryos is limited to pre-implantation stages, since early post-implantation embryos are largely inaccessible. Notwithstanding, we previously suggested conserved principles of pig and human early development. For further insight on pluripotent states and lineage delineation, we analysed pig embryos at single cell resolution. Here we show progressive segregation of inner cell mass and trophectoderm in early blastocysts, and of epiblast and hypoblast in late blastocysts. We show that following an emergent short naive pluripotent signature in early embryos, there is a protracted appearance of a primed signature in advanced embryonic stages. Dosage compensation with respect to the X-chromosome in females is attained via X-inactivation in late epiblasts. Detailed human-pig comparison is a basis towards comprehending early human development and a foundation for further studies of human pluripotent stem cell differentiation in pig interspecies chimeras. Lineage segregation from conception to gastrulation has been mapped at the single cell level in mouse, human and monkey. Here, the authors provide a comprehensive analysis of porcine preimplantation development using single cell RNA-seq; mapping metabolic changes, X chromosome inactivation and signalling pathways.
Collapse
Affiliation(s)
- Priscila Ramos-Ibeas
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK.,Animal Reproduction Department, National Institute for Agricultural and Food Research and Technology, 28040, Madrid, Spain
| | - Fei Sang
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Qifan Zhu
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Walfred W C Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Sarah Withey
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK.,Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Building 75, St Lucia, QLD, 4072, Australia
| | - Doris Klisch
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Liam Wood
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Matt Loose
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK. .,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK. .,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK.
| |
Collapse
|
10
|
Sahakyan A, Yang Y, Plath K. The Role of Xist in X-Chromosome Dosage Compensation. Trends Cell Biol 2018; 28:999-1013. [PMID: 29910081 DOI: 10.1016/j.tcb.2018.05.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 01/15/2023]
Abstract
In each somatic cell of a female mammal one X chromosome is transcriptionally silenced via X-chromosome inactivation (XCI), initiating early in development. Although XCI events are conserved in mouse and human postimplantation development, regulation of X-chromosome dosage in preimplantation development occurs differently. In preimplantation development, mouse embryos undergo imprinted form of XCI, yet humans lack imprinted XCI and instead regulate gene expression of both X chromosomes by dampening transcription. The long non-coding RNA Xist/XIST is expressed in mouse and human preimplantation and postimplantation development to orchestrate XCI, but its role in dampening is unclear. In this review, we discuss recent advances in our understanding of the role of Xist in X chromosome dosage compensation in mouse and human.
Collapse
Affiliation(s)
- Anna Sahakyan
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yihao Yang
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
11
|
Pérez-Cerezales S, Ramos-Ibeas P, Rizos D, Lonergan P, Bermejo-Alvarez P, Gutiérrez-Adán A. Early sex-dependent differences in response to environmental stress. Reproduction 2017; 155:R39-R51. [PMID: 29030490 DOI: 10.1530/rep-17-0466] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
Developmental plasticity enables the appearance of long-term effects in offspring caused by exposure to environmental stressors during embryonic and foetal life. These long-term effects can be traced to pre- and post-implantation development, and in both cases, the effects are usually sex specific. During preimplantation development, male and female embryos exhibit an extensive transcriptional dimorphism mainly driven by incomplete X chromosome inactivation. These early developmental stages are crucial for the establishment of epigenetic marks that will be conserved throughout development, making it a particularly susceptible period for the appearance of long-term epigenetic-based phenotypes. Later in development, gonadal formation generates hormonal differences between the sexes, and male and female placentae exhibit different responses to environmental stressors. The maternal environment, including hormones and environmental insults during pregnancy, contributes to sex-specific placental development that controls genetic and epigenetic programming during foetal development, regulating sex-specific differences, including sex-specific epigenetic responses to environmental hazards, leading to long-term effects. This review summarizes several human and animal studies examining sex-specific responses to environmental stressors during both the periconception period (caused by differences in sex chromosome dosage) and placental development (caused by both sex chromosomes and hormones). The identification of relevant sex-dependent trajectories caused by sex chromosomes and/or sex hormones is essential to define diagnostic markers and prevention/intervention protocols.
Collapse
Affiliation(s)
| | | | | | - Pat Lonergan
- School of Agriculture and Food ScienceUniversity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
12
|
Choosing the Active X: The Human Version of X Inactivation. Trends Genet 2017; 33:899-909. [PMID: 28988701 DOI: 10.1016/j.tig.2017.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/29/2017] [Accepted: 09/12/2017] [Indexed: 01/30/2023]
Abstract
Humans and rodents differ in how they carry out X inactivation (XI), the mammalian method to compensate for the different number of X chromosomes in males and females. Evolutionary changes in staging embryogenesis and in mutations within the XI center alter the process among mammals. The mouse model of XI is predicated on X counting and subsequently choosing the X to 'inactivate'. However, new evidence suggests that humans initiate XI by protecting one X in both sexes from inactivation by XIST, the noncoding RNA that silences the inactive X. This opinion article explores the question of how the active X is protected from silencing by its own Xist locus, and the possibility of different solutions for mouse and human.
Collapse
|
13
|
Data for identification of porcine X-chromosome inactivation center, XIC, by genomic comparison with human and mouse XIC. Data Brief 2015; 5:1072-7. [PMID: 26793753 PMCID: PMC4689114 DOI: 10.1016/j.dib.2015.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/10/2015] [Indexed: 11/21/2022] Open
Abstract
The data included in this article shows homologies of genes in porcine X-chromosome inactivation center, XIC, to each orthologue in human and mouse XIC. Open sequences of XIC-linked genes in human and mouse were compared to porcine genome and sequence homology of each orthologue to porcine genome was calculated. Sequence information of porcine genes encoded in the genomic regions having sequence homology with the human XIC-linked genes and their 2 Kb upstream regions were downloaded. Obtained information was used to design primer pairs for expression and methylation pattern analyses of XIC-linked genes in pigs. The data represented in here is related and applied to the research article entitled “Dosage compensation of X-chromosome inactivation center, XIC,-linked genes in porcine preimplantation embryos: Non-chromosome wide initiation of X-chromosome inactivation in blastocysts”, published in Mechanisms of Development Hwang et al., 2015 [1].
Collapse
|